跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊評
研究生(外文):Chun-Ping Huang
論文名稱:探討低頻電刺激對發炎性疼痛過敏化中電壓閘控鈉離子通道的影響暨機械力活化上皮癌細胞Syndecan-4之訊息機轉
論文名稱(外文):Investigation of Voltage-Gated Sodium Channels’ Effects by Using Low-Frequency Electro-Stimulation in Inflammatory Hyperalgesia & Syndecan-4 Promotes Epithelial Tumor Cells Spreading and PKCα Activity under Mechanical Stimulation
指導教授:蘇鴻麟蘇鴻麟引用關係
口試委員:廖俊旺謝慶良陳永祥林以文
口試日期:2015-07-09
學位類別:博士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:68
中文關鍵詞:電壓閘控鈉離子通道針刺鎮痛肝素硫酸鹽蛋白聚醣機械力傳導
外文關鍵詞:Voltage-gated sodium channelsAcupunctureAnalgesiaHeparan sulfate proteoglycansMechanotransduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
疼痛的因素主要來自於炎症、創傷、糖尿病、關節炎或腫瘤等,會造成周邊神經物性的改變,並導致神經自發性放電的增加或傳導特性的改變。電壓閘控鈉離子通道(Voltage-gated sodium channels, Navs)掌控鈉離子流入神經元並在痛覺動作電位啟動與傳導的過程中扮演一個重要角色。在所有Navs的亞型中,Nav1.7、Nav1.8與Nav1.9與痛覺傳導最具相關性,然而PKA(protein kinase A)和PKC(protein kinase C)被認為可磷酸化Nav1.8並增強其電流。針刺可以刺激神經Aδ纖維和C纖維,來調節痛覺傳導。已有研究顯示,針刺能增加體內内源性腦內啡、5-羥色胺、腺苷酸以減輕疼痛。
本實驗首先在小鼠後腳掌皮下注射鹿角菜膠(carrageenan)或佛朗氏完全佐劑(Complete Freund''s Adjuvant, CFA)建立發炎疼痛動物模式,評估電針刺緩解疼痛之可能作用機轉。發炎誘導後第4天進行行為測試,行為測試後犧牲動物取背根神經節。實驗結果顯示:低頻電針刺(2 Hz, 100 μs duration, 20 m)足三里穴位(ST36)可以減緩鹿角菜膠或CFA誘發的機械和熱痛覺敏感化(藉由von Frey、輻射熱、冷熱板實驗),而在偽穴位治療組中並沒有觀察到這種現象。發炎造成Nav1.7與Nav1.8蛋白質表現量增加,但Nav1.9蛋白質表現量並沒有顯著改變,而在偽穴位治療組中亦沒有觀察到這種現象。因此,研究結果顯示,低頻電針刺能減緩鹿角菜膠和CFA誘發的Nav1.7與Nav1.8蛋白質表現增加,而並不會改變Nav1.9蛋白質表現。進一步使用電生理技術,紀錄背根神經元中抗河豚毒素(tetrodotoxin-resistant, TTX-R)電流,結果顯示CFA組中TTX-R電流會增加,而低頻電針刺能顯著地減緩TTX-R電流增加。
為了進一步探討低頻電針刺鎮痛機制,在小鼠足三里穴位注射腺苷酸A1接受器促效劑(CPA)(劑量:0.1 mg/kg),或以腹腔注射μ接受器促效劑:內啡呔1(endomorphin 1)(劑量:10 mg/kg)。結果顯示低頻電針刺與CPA可以改善動物發炎疼痛行為,且降低COX-2蛋白表現和磷酸化蛋白激脢ε(protein kinase C epsilon, PKCε);然而,endomorphin 1僅能降低磷酸化PKCε表現。進一步使用μ接受器拮抗劑:naloxone methiodide與腺苷酸A1接受器拮抗劑(rolofylline)來確認此二者在低頻電針刺鎮痛中扮演之角色,實驗結果顯示阻斷μ接受器與腺苷酸A1接受器會造成低頻電針刺失去鎮痛作用與提高COX-2蛋白和磷酸化PKCε表現量。
在機械力活化上皮癌細胞Syndecan-4之研究中,肝素硫酸鹽蛋白聚醣(Heparan sulfate proteoglycans, HSPGs)位於細胞膜表面並且在細胞貼附、延伸、形成黏著斑與感受機械力扮演著重要的角色。Syndecans歸屬於HSPGs家族成員之一,並且高度表現於各種腫瘤細胞。其中,僅Syndecan-4 (SDC4)具有活化蛋白激脢Cα(protein kinase C alpha, PKCα)的能力,其感受機械力對於腫瘤細胞之影響尚未有深入之報導。
本實驗欲探討腫瘤細胞上SDC4承載機械力之後其訊息機轉,利用兩種上皮腫瘤細胞-人類子宮頸癌細胞(HeLa cells)與小鼠黑色素腫瘤細胞(B16-F10)-種植於表面塗覆poly-L-lysine (Pl)、 fibronectin (Fn)、抗SDC4抗體之聚二甲基矽氧烷(polydimethylsiloxane, PDMS)彈性膜上,並施予5 Ib/in2之壓力。實驗結果顯示透過PDMS膜與腫瘤細胞的SDC4結合,機械力會磷酸化focal adhesion kinase (FAK)與PKCα。進一步分析細胞軟硬度(cell contractility)的指標蛋白:第二型肌球蛋白輕鏈(myosin light chain 2, MLC2),結果顯示在接受機械力10分鐘後,MLC2的磷酸化開始增加,而在30分鐘後便降低並且隨著PKCα活性改變;然而,透過與組合蛋白鍵結結構區(integrin binding motif)之細胞則無此現象。
實驗的結果顯示機械力可以單獨透過SDC4來傳遞訊息,其機轉是活化SDC4下游PKCα來開啟,對腫瘤細胞延伸、組裝細胞骨架與細胞軟硬度扮演重要的角色。

Pain is associated with conditions such as inflammation, trauma, diabetes, arthritis or tumor, which can result from altered properties of peripheral nerves. As a result, this leads to increase spontaneous firing or alterations in their conduction properties. Voltage-gated sodium channels (Navs) control the influx of Na+ ions into the neurons and play an essential role in the initiation and propagation of nociception action potentials in dorsal root ganglion (DRG) neurons. Acupuncture is known to stimulate the Aδ-fibers and modulate pain sensation by activating C-fibers through the meridian. Several studies have suggested that acupuncture increases the release of endogenous opioids, serotonin, and adenosine to reduce pain.
We first established inflammatory pain animal model by injection of carrageenan or Complete Freund''s Adjuvant (CFA) in the mouse plantar surface of the hind paw. Low-frequency electroacupuncture (LFEA) (2 Hz, 100 μs duration, 20 m) at Zusanli (ST36) acupoint reliably attenuated carrageenan or CFA-induced mechanical and thermal hyperalgesia (by von Frey, radial heat, hot/cold plate test). The phenomenon was not observed in sham group. Inflammation increased the expression of Nav 1.7 and Nav1.8, but not Nav1.9. LFEA-elicited down-regulation of Nav1.7 and Nav1.8 was not observed in sham group. Accordingly, our results suggest that LFEA has the ability to ameliorate carrageenan and CFA-induced overexpression of Nav1.7 and Nav1.8, rather than Nav1.9 sodium channels. We used whole-cell recording to compare the tetrodotoxin-resistant (TTX-R) sodium currents in DRG neurons. Inflammation induced by CFA amplified the TTX-R currents and decreased in LFEA-treated group. To investigate analgesia mechanisms by LFEA, C57BL/6 male mice were further injected with CPA, adenosine A1 receptor (A1AR) agonist (0.1 mg/kg) at ST36 acupoint or endomorphin 1, μ-receptor (MOR) agonist (10 mg/kg) intraperitoneally. The results showed LFEA and CPA administration could improve animal pain behaviors and down-regulate the expression of COX-2 and phosphorylated PKCε, but endomorphin 1 administration solely reduced the phosphorylation of PKCε. Furthermore, we applied naloxone methiodide (MOR antagonist) (10 mg/kg), rolofylline (A1AR antagonist) (3 mg/kg) to confirm the analgesia and anti-inflammation effects by LFEA. The data suggested blocking of MOR and A1AR reversed the analgesia effects of LFEA.
Heparan sulfate proteoglycans (HSPGs) at the cell surface play an important role in cell adhesion, spreading, formation of focal adhesion complexes (FACs), and sensing mechanical stress. Syndecans are members of the HSPGs family and are highly expressed in various tumor cells. Syndecan-4 (SDC4) is a unique member of syndecans that activates protein kinase C alpha (PKCα). However, syndecan-4 in tumor cells development is not clear when receiving mechanical stress. Here we investigate the role of syndecan-4 in tumor cells spreading and its downstream kinases under mechanical stimulation. Epithelial tumor cells were seeded onto elastomeric polydimethylsiloxane (PDMS) membranes coated with poly-L-lysine (Pl), fibronectin (Fn), or anti-SDC4 antibody and stretched with a modified pressure-driven cell-stretching (PreCS) device. When cells received mechanical stimulation, engagement of syndecan-4 promoted the phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 and PKCα at serine 657. Furthermore, we analyzed the cell contractility marker—myosin light chain 2 (MLC2) in 30 min time courses. The levels of phosphorylated MLC2 at serine 19 were augmented through ligations of syndecan-4 but not integrin binding motif (RGD) at 10 min mechanical stimulation and were suppressed at 30 min and this phenomenon was associated with the activity of PKCα. Our data demonstrate that syndecan-4 is essential for transmitting the mechanotransduction signals via activation of PKCα and is important for tumor cells spreading, assembly of actin cytoskeleton and cell contractility.

中文摘要 i
ABSTRACT iii
1. INTRODUCTION 1
1.1.1. Pain 1
1.1.2. Inflammation microenvironment: Inflammatory soup 1
1.1.3. Inflammatory mediators cause hyperalgesia 1
1.1.4. Peripheral sensitization increases by inflammatory mediators 1
1.1.5. Voltage-gated sodium channels serve as nociceptive signal transducer 2
1.1.6. Protein Kinase C (PKC) activity is necessary for long-term hyperalgesia 4
1.1.7. Acupuncture relieves pain by releasing endogenous opioids, serotonin and adenosine 5
1.1.8. Analgesia mechanism of MOR and A1AR 5
1.1.9. MOR modulates immune system and inflammatory reactions 6
1.1.10. LFEA down-regulate Navs expression and currents in the inflammatory pain models 6
1.2. Syndecan-4 promotes epithelial tumor cells spreading and regulates PKCα activity under mechanical stimulation 7
1.2.1 Extracellular matrix microenvironment in tumor cells progression 7
1.2.2 Mechanotransducers deliver mechanical stimuli into biochemical information 7
1.2.3. Syndecan-4 activates PKCα when FACs developing 8
1.2.4. Rho activity maintains the contractility of tumor cells 8
2. METHODS 10
2.1. Animals and LFEA treatment 10
2.2. Inflammatory pain models 10
2.3. MOR and A1AR agonist administration 11
2.4. MOR and A1AR antagonist administration 11
2.5. Animal behavior of mechanical and thermal hyperalgesia 11
2.6. Immunofluorescence staining 12
2.7. Immunoblotting assay 12
2.8. Electrophysiology 13
2.9. PDMS membrane and silanization 13
2.10. Immobilized ECM molecules and antibody coating 13
2.11. Cell culture 14
2.12. Mechanical stretch experiment 14
2.13. Tumor cells immunofluorescent staining and spreading area analysis 15
2.14. Tumor cells lysates immunoblotting 15
2.15. Sandwich enzyme-linked immunosorbent assay (ELISA) 17
2.16. Statistical analysis 17
3. RESULTS 18
3.1.1. Inflammatory pain models and behavior 18
3.1.2. Thermal hyperalgesia on the hot and cold plate 18
3.1.3. Immunohistochemistry expression of Navs in DRG neurons 20
3.1.4. Immunoblotting quality of Navs in DRG neurons 21
3.1.5. Functional analysis of TTX-R currents using whole-cell recording 22
3.1.6. MOR and A1AR agonist administration relieved mechanical and thermal pain 22
3.1.7. Nav1.8, COX-2 and phosphorylation of PKCε were attenuated by LFEA or CPA, but endomorphin 1 administration solely reduced the phosphorylation of PKCε 22
3.1.8. The proportion of the Nav1.8 and phosphospecific PKCε double-stained cells was reduced by LFEA, endomorphin 1 or CPA administration …………………… 22
3.1.9. MOR and A1AR antagonist administration reversed the analgesia effect of mechanical and thermal pain 23
3.1.10. MOR and A1AR antagonist administration suppressed the anti-inflammation effect by LFEA, up-regulated the express of phosphospecific PKCε and COX-2 23
3.2.1. HeLa cells expanded on the fibronectin or anti-syndecan-4 antibody-coated elastomeric PDMS membranes 24
3.2.2. Mechanical stretch induced the phosphorylation of focal adhesion kinase at tyrosine 397 through the engagement of syndecan-4 24
3.2.3. Mechanical stretch induced the phosphorylation of syndecan-4 downstream kinases: PKCα, FAK, and ERK 1/2 25
3.2.4. Mechanical stretch induced the phosphorylation of MLC 2 at serine19 through the engagement of syndecan-4 26
3.2.5. The phosphorylation of MLC2 was associated with the activity of PKCα under mechanical stimulation 26
3.2.6. Syndecan-4 delivered mechanical signaling and activated PKCα in B16-F10 mouse melanoma cells 27
3.2.7. FAK activation increased at the initial stage and PKCα was important to maintain the activity of MLC2 under mechanical stimulation 28
4. DISCUSSION 29
5. CONCLUSION 35
6. FIGURES and LEGENDS 36
Figure 1 Primary inflammation-induced mechanical and thermal hyperalgesia through carrageenan and CFA injection 36
Figure 2 Nav1.7 and Nav1.8 expressions were increased in ipsilateral DRGs after intraplantar carrageenan injection and further attenuated by EA at the ST36 acupoint in mice, though Nav1.9 was not different 37
Figure 3 Nav1.7 and Nav1.8 expressions were increased in ipsilateral DRGs after intraplantar CFA injection and further attenuated by EA at the ST36 acupoint in mice, though Nav1.9 was not different 38
Figure 4 Nav1.7 and Nav1.8 protein levels were increased in lumbar DRGs in both intraplantar carrageenan- and CFA-induced inflammation and further attenuated by EA at the ST36 acupoint in mice, but Nav1.9 proteins were not altered 39
Figure 5 Protein levels of Nav1.7, Nav1.8, and Nav1.9 in the L3-L5 DRG in mice in control, Car, EA, S-Acu, S-GM, CFA, EA, S-Acu, S-GM groups 40
Figure 6 Tetrodotoxin-resistant (TTX-R) sodium currents in L3-L5 DRG neurons 41
Figure 7 MOR and A1AR agonist administration relieved mechanical and thermal pain. 42
Figure 8 Nav1.8, COX-2 and phosphorylation of PKCε were attenuated by LFEA or CPA, but endomorphin 1 administration solely reduced the phosphorylation of PKCε 43
Figure 9 The proportion of the Nav1.8 and phosphospecific PKCε double-stained cells was reduced by LFEA, endomorphin 1 or CPA administration 44
Figure 10 MOR and A1AR antagonist administration reversed the analgesia effect of mechanical and thermal pain 45
Figure 11 MOR and A1AR antagonist administration suppressed the anti-inflammation effect by LFEA, up-regulated the express of phosphospecific PKCε and COX-2 46
Figure 12 LFEA reduces inflammatory pain and change the expression of Nav1.7 and Nav1.8, rather than Nav1.9, in mice DRGs 47
Figure 13 HeLa cells expanded on fibronectin or anti-syndecan-4 antibody coated elastomeric PDMS membrane in starvation condition 48
Figure 14 Mechanical stretch induced the phosphorylation of focal adhesion kinase at tyrosine 397 on the elastomeric PDMS membranes 49
Figure 15 Mechanical stretch induced the phosphorylation of syndecan-4 downstream kinases: pPKCα, pFAK and pERK 1/2 50
Figure 16 Mechanical stretch induced the phosphorylation of myosin light chain 2 at serine19 on the Fn or anti-SDC4 antibody coated PDMS membrane 51
Figure 17 Mechanical stretch promoted the phosphorylation of myosin light chain 2 and dynamic changes were associated with the activity of PKCα 52
Figure 18 The engagement of syndecan-4 delivered mechanical signaling and activated PKCα in B16-F10 mouse melanoma cells 53
Figure 19 Mechanical stretch induced FAK activation at the initial stage and PKCα was important to maintain the phosphorylation of FAK and MLC2 54
Figure 20 Summary diagram of syndecan-4 regulates the dynamic activity of kinases through PKCα under mechanical stimuli 55
7. REFERENCES 56
8. APPENDIX 67
9. PUBLICATION LIST 68

1.Basbaum, A.I., Bautista, D.M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267-284 (2009).
2.Julius, D. & Basbaum, A.I. Molecular mechanisms of nociception. Nature 413, 203-210 (2001).
3.Lewin, G.R. & Moshourab, R. Mechanosensation and pain. J Neurobiol 61, 30-44 (2004).
4.Scholz, J. & Woolf, C.J. Can we conquer pain? Nat Neurosci 5 Suppl, 1062-1067 (2002).
5.Raouf, R., Quick, K. & Wood, J.N. Pain as a channelopathy. J Clin Invest 120, 3745-3752 (2010).
6.Catterall, W.A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13-25 (2000).
7.Yu, F.H. & Catterall, W.A. Overview of the voltage-gated sodium channel family. Genome Biol 4, 207 (2003).
8.Sato, C., et al. The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409, 1047-1051 (2001).
9.Baker, M.D. & Bostock, H. Low-threshold, persistent sodium current in rat large dorsal root ganglion neurons in culture. J Neurophysiol 77, 1503-1513 (1997).
10.Black, J.A., Liu, S., Tanaka, M., Cummins, T.R. & Waxman, S.G. Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 108, 237-247 (2004).
11.Crill, W.E. Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58, 349-362 (1996).
12.Dib-Hajj, S.D., Black, J.A. & Waxman, S.G. Voltage-gated sodium channels: therapeutic targets for pain. Pain Med 10, 1260-1269 (2009).
13.Baker, M.D. & Wood, J.N. Involvement of Na+ channels in pain pathways. Trends Pharmacol Sci 22, 27-31 (2001).
14.Rizzo, M.A., Kocsis, J.D. & Waxman, S.G. Selective loss of slow and enhancement of fast Na+ currents in cutaneous afferent dorsal root ganglion neurones following axotomy. Neurobiol Dis 2, 87-96 (1995).
15.Waxman, S.G. The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons. Pain Suppl 6, S133-140 (1999).
16.Black, J.A., et al. Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs. Brain Res Mol Brain Res 43, 117-131 (1996).
17.Nassar, M.A., et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci U S A 101, 12706-12711 (2004).
18.Gould, H.J., 3rd, et al. Ibuprofen blocks changes in Na v 1.7 and 1.8 sodium channels associated with complete Freund''s adjuvant-induced inflammation in rat. J Pain 5, 270-280 (2004).
19.Villarreal, C.F., Sachs, D., Cunha, F.Q., Parada, C.A. & Ferreira, S.H. The role of Na(V)1.8 sodium channel in the maintenance of chronic inflammatory hypernociception. Neurosci Lett 386, 72-77 (2005).
20.England, S., Bevan, S. & Docherty, R.J. PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol 495 ( Pt 2), 429-440 (1996).
21.Gold, M.S., Levine, J.D. & Correa, A.M. Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci 18, 10345-10355 (1998).
22.Khasar, S.G., McCarter, G. & Levine, J.D. Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol 81, 1104-1112 (1999).
23.Aley, K.O., McCarter, G. & Levine, J.D. Nitric oxide signaling in pain and nociceptor sensitization in the rat. J Neurosci 18, 7008-7014 (1998).
24.Dina, O.A., McCarter, G.C., de Coupade, C. & Levine, J.D. Role of the sensory neuron cytoskeleton in second messenger signaling for inflammatory pain. Neuron 39, 613-624 (2003).
25.Zhang, Y.H. & Nicol, G.D. NGF-mediated sensitization of the excitability of rat sensory neurons is prevented by a blocking antibody to the p75 neurotrophin receptor. Neurosci Lett 366, 187-192 (2004).
26.Zhang, Y.H., Vasko, M.R. & Nicol, G.D. Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na(+) current and delayed rectifier K(+) current in rat sensory neurons. J Physiol 544, 385-402 (2002).
27.Aley, K.O. & Levine, J.D. Role of protein kinase A in the maintenance of inflammatory pain. J Neurosci 19, 2181-2186 (1999).
28.de Rooij, J., et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474-477 (1998).
29.Hucho, T.B., Dina, O.A. & Levine, J.D. Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J Neurosci 25, 6119-6126 (2005).
30.Souza, A.L., et al. In vivo evidence for a role of protein kinase C in peripheral nociceptive processing. Br J Pharmacol 135, 239-247 (2002).
31.Burgess, G.M., Mullaney, I., McNeill, M., Dunn, P.M. & Rang, H.P. Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J Neurosci 9, 3314-3325 (1989).
32.Dray, A., Bettaney, J., Forster, P. & Perkins, M.N. Bradykinin-induced stimulation of afferent fibres is mediated through protein kinase C. Neurosci Lett 91, 301-307 (1988).
33.Rang, H.P. & Ritchie, J.M. Depolarization of nonmyelinated fibers of the rat vagus nerve produced by activation of protein kinase C. J Neurosci 8, 2606-2617 (1988).
34.Schepelmann, K., Messlinger, K. & Schmidt, R.F. The effects of phorbol ester on slowly conducting afferents of the cat''s knee joint. Exp Brain Res 92, 391-398 (1993).
35.Cesare, P., Dekker, L.V., Sardini, A., Parker, P.J. & McNaughton, P.A. Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron 23, 617-624 (1999).
36.Kessler, F., Habelt, C., Averbeck, B., Reeh, P.W. & Kress, M. Heat-induced release of CGRP from isolated rat skin and effects of bradykinin and the protein kinase C activator PMA. Pain 83, 289-295 (1999).
37.Cesare, P. & McNaughton, P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci U S A 93, 15435-15439 (1996).
38.Gold, M.S., Reichling, D.B., Shuster, M.J. & Levine, J.D. Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci U S A 93, 1108-1112 (1996).
39.Hucho, T. & Levine, J.D. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55, 365-376 (2007).
40.Vijayaragavan, K., Boutjdir, M. & Chahine, M. Modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C. J. Neurophysiol. 91, 1556-1569 (2004).
41.Li, M., et al. Convergent regulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. Science 261, 1439-1442 (1993).
42.Matsumoto, S., et al. Effect of 8-bromo-cAMP on the tetrodotoxin-resistant sodium (Nav 1.8) current in small-diameter nodose ganglion neurons. Neuropharmacology 52, 904-924 (2007).
43.Wang, W., Gu, J., Li, Y.Q. & Tao, Y.X. Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? Mol Pain 7, 16 (2011).
44.Zhou, W., Fu, L.W., Tjen, A.L.S.C., Li, P. & Longhurst, J.C. Afferent mechanisms underlying stimulation modality-related modulation of acupuncture-related cardiovascular responses. J Appl Physiol 98, 872-880 (2005).
45.Li, A.H., Zhang, J.M. & Xie, Y.K. Human acupuncture points mapped in rats are associated with excitable muscle/skin-nerve complexes with enriched nerve endings. Brain Res 1012, 154-159 (2004).
46.Zhao, Z.Q. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 85, 355-375 (2008).
47.Han, J.S. Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci 26, 17-22 (2003).
48.Lee, S.H., et al. Effects of acupuncture on the 5-hydroxytryptamine synthesis and tryptophan hydroxylase expression in the dorsal raphe of exercised rats. Neurosci Lett 332, 17-20 (2002).
49.Chang, F.C., Tsai, H.Y., Yu, M.C., Yi, P.L. & Lin, J.G. The central serotonergic system mediates the analgesic effect of electroacupuncture on ZUSANLI (ST36) acupoints. J Biomed Sci 11, 179-185 (2004).
50.Goldman, N., et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 13, 883-888 (2010).
51.Brownstein, M.J. A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci U S A 90, 5391-5393 (1993).
52.van Calker, D., Muller, M. & Hamprecht, B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33, 999-1005 (1979).
53.Londos, C., Cooper, D.M. & Wolff, J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A 77, 2551-2554 (1980).
54.Tawfik, H.E., Schnermann, J., Oldenburg, P.J. & Mustafa, S.J. Role of A1 adenosine receptors in regulation of vascular tone. Am J Physiol Heart Circ Physiol 288, H1411-1416 (2005).
55.Waldhoer, M., Bartlett, S.E. & Whistler, J.L. Opioid receptors. Annu Rev Biochem 73, 953-990 (2004).
56.Fredholm, B.B., AP, I.J., Jacobson, K.A., Klotz, K.N. & Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53, 527-552 (2001).
57.Ferreira, S.H. & Nakamura, M. I - Prostaglandin hyperalgesia, a cAMP/Ca2+ dependent process. Prostaglandins 18, 179-190 (1979).
58.Taiwo, Y.O., Bjerknes, L.K., Goetzl, E.J. & Levine, J.D. Mediation of primary afferent peripheral hyperalgesia by the cAMP second messenger system. Neuroscience 32, 577-580 (1989).
59.Louria, D.B., Hensle, T. & Rose, J. The major medical complications of heroin addiction. Ann Intern Med 67, 1-22 (1967).
60.Govitrapong, P., Suttitum, T., Kotchabhakdi, N. & Uneklabh, T. Alterations of immune functions in heroin addicts and heroin withdrawal subjects. J Pharmacol Exp Ther 286, 883-889 (1998).
61.Sacerdote, P., Manfredi, B., Mantegazza, P. & Panerai, A.E. Antinociceptive and immunosuppressive effects of opiate drugs: a structure-related activity study. Br J Pharmacol 121, 834-840 (1997).
62.Gaveriaux-Ruff, C., Matthes, H.W., Peluso, J. & Kieffer, B.L. Abolition of morphine-immunosuppression in mice lacking the mu-opioid receptor gene. Proc Natl Acad Sci U S A 95, 6326-6330 (1998).
63.Nelson, C.J., Schneider, G.M. & Lysle, D.T. Involvement of central mu- but not delta- or kappa-opioid receptors in immunomodulation. Brain Behav Immun 14, 170-184 (2000).
64.Philippe, D., et al. Anti-inflammatory properties of the mu opioid receptor support its use in the treatment of colon inflammation. J Clin Invest 111, 1329-1338 (2003).
65.Whiteside, G.T., Boulet, J.M. & Walker, K. The role of central and peripheral mu opioid receptors in inflammatory pain and edema: a study using morphine and DiPOA ([8-(3,3-diphenyl-propyl)-4-oxo-1-phenyl-1,3,8-triaza-spiro[4.5]dec-3-yl]-acetic acid). J Pharmacol Exp Ther 314, 1234-1240 (2005).
66.Renganathan, M., Cummins, T.R. & Waxman, S.G. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86, 629-640 (2001).
67.Blair, N.T. & Bean, B.P. Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22, 10277-10290 (2002).
68.Rush, A.M., et al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci U S A 103, 8245-8250 (2006).
69.Bissell, M.J. & Radisky, D. Putting tumours in context. Nat Rev Cancer 1, 46-54 (2001).
70.Weiner, T.M., Liu, E.T., Craven, R.J. & Cance, W.G. Expression of focal adhesion kinase gene and invasive cancer. Lancet 342, 1024-1025 (1993).
71.Clark, E.A. & Brugge, J.S. Integrins and signal transduction pathways: the road taken. Science 268, 233-239 (1995).
72.Sieg, D.J., et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2, 249-256 (2000).
73.Orr, A.W., Helmke, B.P., Blackman, B.R. & Schwartz, M.A. Mechanisms of mechanotransduction. Developmental cell 10, 11-20 (2006).
74.Sai, X., Naruse, K. & Sokabe, M. Activation of pp60(src) is critical for stretch-induced orienting response in fibroblasts. J Cell Sci 112 ( Pt 9), 1365-1373 (1999).
75.Wilcox-Adelman, S.A., et al. Syndecan-4: dispensable or indispensable? Glycoconj J 19, 305-313 (2002).
76.Aitken, K.J., et al. Mechanotransduction of extracellular signal-regulated kinases 1 and 2 mitogen-activated protein kinase activity in smooth muscle is dependent on the extracellular matrix and regulated by matrix metalloproteinases. Am J Pathol 169, 459-470 (2006).
77.Wirtz, D., Konstantopoulos, K. & Searson, P.C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11, 512-522 (2011).
78.Woods, A. & Couchman, J.R. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell 5, 183-192 (1994).
79.Florian, J.A., et al. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93, e136-142 (2003).
80.Tkachenko, E., Rhodes, J.M. & Simons, M. Syndecans: new kids on the signaling block. Circ Res 96, 488-500 (2005).
81.Horowitz, A. & Simons, M. Phosphorylation of the cytoplasmic tail of syndecan-4 regulates activation of protein kinase Calpha. J Biol Chem 273, 25548-25551 (1998).
82.Sarrazin, S., Lamanna, W.C. & Esko, J.D. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3 (2011).
83.Carey, D.J. Syndecans: multifunctional cell-surface co-receptors. Biochem J 327 ( Pt 1), 1-16 (1997).
84.Yip, G.W., Smollich, M. & Gotte, M. Therapeutic value of glycosaminoglycans in cancer. Mol Cancer Ther 5, 2139-2148 (2006).
85.Morgan, M.R., Humphries, M.J. & Bass, M.D. Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8, 957-969 (2007).
86.Wilcox-Adelman, S.A., Denhez, F. & Goetinck, P.F. Syndecan-4 modulates focal adhesion kinase phosphorylation. J Biol Chem 277, 32970-32977 (2002).
87.Saoncella, S., et al. Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. Proc Natl Acad Sci U S A 96, 2805-2810 (1999).
88.Finsen, A.V., et al. Syndecan-4 is essential for development of concentric myocardial hypertrophy via stretch-induced activation of the calcineurin-NFAT pathway. PLoS One 6, e28302 (2011).
89.Bellin, R.M., et al. Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. Proc Natl Acad Sci U S A 106, 22102-22107 (2009).
90.Matesic, D.F., Ali, A., Sidorova, T.S. & Burns, T.J. A Cell-Cell Communication Marker for Identifying Targeted Tumor Therapies. Curr Bioact Compd 9, 255-262 (2013).
91.Tumova, S., Woods, A. & Couchman, J.R. Heparan sulfate chains from glypican and syndecans bind the Hep II domain of fibronectin similarly despite minor structural differences. J Biol Chem 275, 9410-9417 (2000).
92.Dovas, A., Yoneda, A. & Couchman, J.R. PKCbeta-dependent activation of RhoA by syndecan-4 during focal adhesion formation. J Cell Sci 119, 2837-2846 (2006).
93.Riveline, D., et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153, 1175-1186 (2001).
94.Totsukawa, G., et al. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol 150, 797-806 (2000).
95.Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1, 136-143 (1999).
96.Paszek, M.J., et al. Tensional homeostasis and the malignant phenotype. Cancer cell 8, 241-254 (2005).
97.Levental, K.R., et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891-906 (2009).
98.Li, B., Chen, J. & Wang, J.H. RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J Biomed Mater Res Part A 79, 989-998 (2006).
99.Lim, S. WHO Standard Acupuncture Point Locations. Evid Based Complement Alternat Med 7, 167-168 (2010).
100.Chen, W.H., et al. Acid-sensing ion channel 3 mediates peripheral anti-hyperalgesia effects of acupuncture in mice inflammatory pain. J Biomed Sci 18, 82 (2011).
101.Zhang, R.X., et al. Electroacupuncture attenuates inflammation in a rat model. J Altern Complement Med 11, 135-142 (2005).
102.Zhang, R.X., et al. Electroacupuncture suppresses spinal expression of neurokinin-1 receptors induced by persistent inflammation in rats. Neurosci Lett 384, 339-343 (2005).
103.Yen, Y.T., et al. Role of acid-sensing ion channel 3 in sub-acute-phase inflammation. Mol Pain 5, 1 (2009).
104.Cheng, C.M., LeDuc, P.R. & Lin, Y.W. Localized bimodal response of neurite extensions and structural proteins in dorsal-root ganglion neurons with controlled polydimethylsiloxane substrate stiffness. Journal of biomechanics 44, 856-862 (2011).
105.Ren, X.D., Kiosses, W.B. & Schwartz, M.A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18, 578-585 (1999).
106.Khalil, Z., Sanderson, K., Modig, M. & Nyberg, F. Modulation of peripheral inflammation by locally administered endomorphin-1. Inflamm Res 48, 550-556 (1999).
107.Bueters, T.J., Joosen, M.J., van Helden, H.P., Ijzerman, A.P. & Danhof, M. Adenosine A1 receptor agonist N6-cyclopentyladenosine affects the inactivation of acetylcholinesterase in blood and brain by sarin. J Pharmacol Exp Ther 304, 1307-1313 (2003).
108.Joosen, M.J., Bueters, T.J. & van Helden, H.P. Cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) decisive for its therapeutic efficacy in sarin poisoning. Arch Toxicol 78, 34-39 (2004).
109.Masters, J.R. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2, 315-319 (2002).
110.Brule, S., et al. The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology 16, 488-501 (2006).
111.Wang, H.B., Dembo, M., Hanks, S.K. & Wang, Y. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci U S A 98, 11295-11300 (2001).
112.Tzima, E., del Pozo, M.A., Shattil, S.J., Chien, S. & Schwartz, M.A. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20, 4639-4647 (2001).
113.Fidler, I.J. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 35, 218-224 (1975).
114.Cillo, C., Dick, J.E., Ling, V. & Hill, R.P. Generation of drug-resistant variants in metastatic B16 mouse melanoma cell lines. Cancer Res 47, 2604-2608 (1987).
115.Matzner, O. & Devor, M. Hyperexcitability at sites of nerve injury depends on voltage-sensitive Na+ channels. J Neurophysiol 72, 349-359 (1994).
116.Cox, J.J., et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894-898 (2006).
117.Goldberg, Y.P., et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71, 311-319 (2007).
118.Djouhri, L., et al. Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav 1.7 (PN1) Na+ channel alpha subunit protein. J Physiol 546, 565-576 (2003).
119.Nassar, M.A., Levato, A., Stirling, L.C. & Wood, J.N. Neuropathic pain develops normally in mice lacking both Na(v)1.7 and Na(v)1.8. Mol Pain 1, 24 (2005).
120.Hoyt, S.B., et al. Benzazepinone Nav1.7 blockers: potential treatments for neuropathic pain. Bioorg Med Chem Lett 17, 6172-6177 (2007).
121.Joshi, S.K., et al. Involvement of the TTX-resistant sodium channel Nav 1.8 in inflammatory and neuropathic, but not post-operative, pain states. Pain 123, 75-82 (2006).
122.Jarvis, M.F., et al. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci U S A 104, 8520-8525 (2007).
123.Fang, X., et al. Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression. J Neurosci 26, 7281-7292 (2006).
124.Wood, J.N., Boorman, J.P., Okuse, K. & Baker, M.D. Voltage-gated sodium channels and pain pathways. J Neurobiol 61, 55-71 (2004).
125.Amaya, F., et al. The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 26, 12852-12860 (2006).
126.Priest, B.T., et al. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci U S A 102, 9382-9387 (2005).
127.Rush, A.M. & Waxman, S.G. PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res 1023, 264-271 (2004).
128.Huang, C., Wang, Y., Chang, J.K. & Han, J.S. Endomorphin and mu-opioid receptors in mouse brain mediate the analgesic effect induced by 2 Hz but not 100 Hz electroacupuncture stimulation. Neuroscience letters 294, 159-162 (2000).
129.Seibert, K. & Masferrer, J.L. Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor 4, 17-23 (1994).
130.Williams, C.S., Mann, M. & DuBois, R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18, 7908-7916 (1999).
131.Stein, C., Schafer, M. & Machelska, H. Attacking pain at its source: new perspectives on opioids. Nature medicine 9, 1003-1008 (2003).
132.Pingle, S.C., et al. Activation of the adenosine A1 receptor inhibits HIV-1 tat-induced apoptosis by reducing nuclear factor-kappaB activation and inducible nitric-oxide synthase. Mol Pharmacol 72, 856-867 (2007).
133.Swett, J.E. & Woolf, C.J. The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord. J Comp Neurol 231, 66-77 (1985).
134.Decosterd, I. & Woolf, C.J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149-158 (2000).
135.Wu, D.F., et al. PKCepsilon phosphorylation of the sodium channel NaV1.8 increases channel function and produces mechanical hyperalgesia in mice. J Clin Invest 122, 1306-1315 (2012).
136.Wu, H.H., Hsieh, W.S., Yang, Y.Y. & Tsai, M.C. Lipoteichoic acid induces prostaglandin E(2) release and cyclooxygenase-2 synthesis in rat cortical neuronal cells: involvement of PKCepsilon and ERK activation. Life sciences 79, 272-280 (2006).
137.Van Wagoner, N.J. & Benveniste, E.N. Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol 100, 124-139 (1999).
138.Sonobe, Y., et al. Interleukin-25 expressed by brain capillary endothelial cells maintains blood-brain barrier function in a protein kinase Cepsilon-dependent manner. J Biol Chem 284, 31834-31842 (2009).
139.Burgos, M., et al. PKCepsilon induces astrocyte stellation by modulating multiple cytoskeletal proteins and interacting with Rho A signalling pathways: implications for neuroinflammation. Eur J Neurosci 25, 1069-1078 (2007).
140.Su, T.F., et al. Electroacupuncture reduces the expression of proinflammatory cytokines in inflamed skin tissues through activation of cannabinoid CB2 receptors. Eur J Pain 16, 624-635 (2012).
141.Shyy, J.Y. & Chien, S. Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 9, 707-713 (1997).
142.Low, B.C., et al. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett 588, 2663-2670 (2014).
143.Mantilidewi, K.I., et al. Shear stress-induced redistribution of vascular endothelial-protein-tyrosine phosphatase (VE-PTP) in endothelial cells and its role in cell elongation. J Biol Chem 289, 6451-6461 (2014).
144.Fu, M., et al. Epithelial membrane protein-2 promotes endometrial tumor formation through activation of FAK and Src. PLoS One 6, e19945 (2011).
145.Li, L. & Chaikof, E.L. Mechanical stress regulates syndecan-4 expression and redistribution in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 22, 61-68 (2002).
146.Li, C., Wernig, F., Leitges, M., Hu, Y. & Xu, Q. Mechanical stress-activated PKCdelta regulates smooth muscle cell migration. FASEB journal 17, 2106-2108 (2003).
147.Butcher, D.T., Alliston, T. & Weaver, V.M. A tense situation: forcing tumour progression. Nat Rev Cancer 9, 108-122 (2009).
148.Even-Ram, S., et al. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat Cell Biol 9, 299-309 (2007).
149.Smith, P.G., Tokui, T. & Ikebe, M. Mechanical strain increases contractile enzyme activity in cultured airway smooth muscle cells. Am J Physiol 268, L999-1005 (1995).
150.Arthur, W.T., Petch, L.A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr Biol 10, 719-722 (2000).
151.Bass, M.D., et al. p190RhoGAP is the convergence point of adhesion signals from alpha 5 beta 1 integrin and syndecan-4. J Cell Biol 181, 1013-1026 (2008).
152.Webb, D.J., et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6, 154-161 (2004).
153.Brucher, B.L. & Jamall, I.S. Cell-cell communication in the tumor microenvironment, carcinogenesis, and anticancer treatment. Cell Physiol Biochem 34, 213-243 (2014).
154.Koo, B.K., et al. Structural basis of syndecan-4 phosphorylation as a molecular switch to regulate signaling. J Mol Biol 355, 651-663 (2006).
155.Woods, A. & Couchman, J.R. Syndecan-4 and focal adhesion function. Curr Opin Cell Biol 13, 578-583 (2001).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王俊權、王建文、張永和: 不同品種芋頭澱粉的理化性質之探討。食品科學,24: 282-294(1997)。
2. 王俊權、王建文、張永和: 不同品種芋頭澱粉的理化性質之探討。食品科學,24: 282-294(1997)。
3. 王俊權、張永和: 顆粒大小對米榖粉物理性質及熱焓特性的影響。食品科學,24: 319-330(1997)。
4. 王俊權、張永和: 顆粒大小對米榖粉物理性質及熱焓特性的影響。食品科學,24: 319-330(1997)。
5. 程竹青: 類胡蘿蔔素與食品的顏色及香味之關聯。食品工業,21: 18-30(1989)。
6. 程竹青: 類胡蘿蔔素與食品的顏色及香味之關聯。食品工業,21: 18-30(1989)。
7. 張鋼鎚: 母芋與子芋用品種生理生態之研究及健康苗繁殖技術之建立。宜蘭農工學報,2: 63-72(1990)。
8. 張鋼鎚: 母芋與子芋用品種生理生態之研究及健康苗繁殖技術之建立。宜蘭農工學報,2: 63-72(1990)。
9. 黃士禮、陳瑤峰、江文章: 省產薏苡籽實中胺基酸、脂肪酸和一般組成分分析。食品科學,21: 67-74(1994)。
10. 黃士禮、陳瑤峰、江文章: 省產薏苡籽實中胺基酸、脂肪酸和一般組成分分析。食品科學,21: 67-74(1994)。
11. 陳烈夫: 水芋收穫指數與乾物質生產分配之關係。中華農業研究,45: 174-185(1996)。
12. 陳烈夫: 水芋收穫指數與乾物質生產分配之關係。中華農業研究,45: 174-185(1996)。
13. 楊啟春、賴惠民、呂政義: 米澱粉分離法之改進。食品科學,11: 158-162(1984)。
14. 楊啟春、賴惠民、呂政義: 米澱粉分離法之改進。食品科學,11: 158-162(1984)。
 
無相關點閱論文