跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/24 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓俊樟
研究生(外文):Jiun-Jang Juo
論文名稱:七彩霓虹稻田魚透過活化滲透壓調節和細胞保護機制適應等滲透壓環境所造成的緊迫
論文名稱(外文):Activation of osmoregulatory and cytoprotective mechanisms in the branchial ionocytes of Daisy''s medaka, Oryzias woworae, in response to isotonic stress
指導教授:李宗翰李宗翰引用關係
口試委員:林惠真龔秀妮吳長益劉旺達
口試日期:2015-07-06
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:103
中文關鍵詞:七彩霓虹稻田魚離子調節細胞納鉀幫浦鈉氯二鉀共轉運蛋白熱休克蛋白60
外文關鍵詞:O. woworaeGillNKANKCC1HSP60
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
滲透壓調節(osmoregulation)是生物透過改變行為或主動運輸離子進出細胞以維持體內水分平衡的機轉。魚鰓為硬骨魚類的主要滲透壓調節器官。前人研究發現硬骨魚類鰓上具有特化的表皮細胞能夠主動運輸離子進出細胞,也發現該細胞具有大量粒線體,因此稱此類細胞為離子調節細胞。稻田魚屬(Oryzias)演化系群分為廣鹽性javanicus與latipes群,以及窄鹽性celebensis群。七彩霓虹稻田魚(Oryzias woworae)為棲息在印尼蘇拉維西島淡水溪流的魚種,在2010年發現的新種稻田魚。
因此本篇研究分二章節探討面臨非原棲環境的滲透壓緊迫時O. woworae其鰓上的調節機制,期望建立一個能夠與廣鹽性硬骨魚比較滲透壓調節機制的窄鹽性模式魚種。
第一章節利用稻田魚的12S及16S rDNA繪製演化樹發現O. woworae屬於celebensis群。鹽度耐受性實驗顯示此魚屬於窄鹽性,從淡水轉入10‰鹽水中一週其存活率降至53.3%。但是先以5‰馴養一週後再轉入10‰鹽水一週,其存活率提升至62.5%。因此本篇實驗以此轉移方式做為給予此魚滲透壓緊迫的實驗設計。血漿分析顯示滲透壓以及鈉、氯離子濃度在10‰組都顯著高於淡水組。在10‰組的魚鰓鈉鉀幫浦(Na+, K+-ATPase; NKA)的蛋白質表現量以及活性皆顯著提升。以NKA抗體免疫螢光染色標定離子調節細胞顯示其在10‰組的細胞具有較大的體積與較多的數量。鰓上鈉鉀二氯共運蛋白(Na+, K+, 2Cl- cotranspoter 1; NKCC1)的蛋白表現量也顯著上升。利用共軛焦顯微鏡觀察證實NKCC1表現在MR細胞基底膜上。進一步分析等量總蛋白質的鰓研磨液,比較NKCC1在O. woworae (窄鹽性)及O. dancena (廣鹽性)鰓上的表現,發現在10‰下廣鹽性稻田魚鰓上NKCC1的蛋白質表現量顯著比窄鹽性稻田魚增加。
第二章節利用穿透式電子顯微鏡觀察O. woworae的離子調節細胞的型態發現在10‰滲透壓緊迫下細胞內粒線體明顯較大。測定鰓上粒線體標記分子cytochorme c oxidase IV (COX IV)的蛋白表現量,也顯示在10‰組顯著提升。進而選殖O. woworae的heat shock protein 60 (hsp60)基因全長序列進行分析,顯示此hsp60的預測蛋白結構中具有保守的HSP60功能性區域。RT-PCR的組織分析顯示hsp60基因主要表現在眼睛、鰓、肝臟、及腸。即時定量PCR結果顯示鰓上hsp60的基因表現量在10‰組確實顯著提升。利用HSP60抗體偵測粒線體內緊迫蛋白質的表現量,發現在10‰組也有顯著提升,並藉由雙重免疫螢光染色顯示HSP60表現在離子調節細胞。市售L-15培養液滲透壓值與10‰鹹水相當,將O. woworae鰓進行離體組織培養,則發現培養在等滲透壓的培養液中的魚鰓hsp60的基因表現量會顯著高於淡水組。
綜合以上結果,當窄鹽性稻田魚O. woworae面臨10‰鹹水下造成的滲透壓緊迫時,其鰓上離子運輸與細胞保護機制皆被活化,以適應等張環境造成的緊迫。此外,與廣鹽性的近源種進行比較研究,則顯示此稻田魚屬於優良的窄鹽性模式魚種。


Osmoregulation is the active regulation of the osmotic pressure of an organism’s fluids by behavior or actively transporting ions across cell membrane to maintain the organism’s water content. Gill is the most important osmoregulatory organ for teleosts. Previous studies reported that fish gill possess a specific type of epithelial cell, the ionocyte, which was characterized by a number of mitochondria in the cytoplasm, and was able to actively transport ions across the cell membrane. Medakas represent teleostean species of the genus Oryzias. Two phylogenetic groups of medakas were found including fish exhibiting euryhality, the javanicus species group and latipes species group, and one phylogenetic group of fish exhibiting stenohality, the celebensis species group. Daisy’s medaka, Oryzias woworae was a recently described medaka species, which inhabit in the upstream freshwater (FW) river of Sulawesi island, Indonesia. The present study was aimed to investigate osmoregulatory and cytoprotective mechanisms in gills of the Daisy’s medaka when exposed to osmotic stress. These results will also establish a comparative model fish for studying the difference in gill osmoregulatory mechanisms between euryhaline and stenohaline teleosts.
In the first chapter, phylogeny analysis of medaka by 12S and 16S rDNA revealed that O. woworae was categorized into the celebensis species group. Salinity tolerance test indicated that Daisy’s medaka was a stenohaline teleost. Only 53.3% fish survived after one week transfer from FW to 10‰ salt water (SW). However, pre-acclimated to 5‰ SW for one week increased the survive rate of Daisy’s medaka to 62.5% when transferred to 10‰ SW. Hence, this transfer regime was used in the following experiments. Plasma analysis revealed that plasma osmolality, sodium and chloride concentration significantly increased in response to 10‰ SW. Protein expression and activity of Na+, K+-ATPase (NKA) were found significantly increased in 10‰ SW group. Anti-NKA antibody was used to label ionocytes. Larger size and more number of ionocytes appeared in the gill of 10‰ SW fish. In the 10‰ SW group, protein expression of branchial Na+, K+, 2Cl- cotransporter 1 (NKCC1) were also significantly increased. Confocal microscopic observation revealed that NKCC1 was localized to the basolateral membrane of ionocytes. Moreover, the present study revealed that protein expression of gill NKCC1 was higher in O. dancena (euryhaline medaka) than that in O. woworae (stenohaline medaka) at the same quantity of gill lysates.
In the second chapter, transmission electron microscopic observation revealed higher density volume of mitochondria in the gill ionocyte of 10‰ SW fish. Protein expression of a mitochondrial maker, cytochrome c oxidase subunit IV (COX IV), was also found significantly increased in the gill of 10‰ SW fish. Full-length analysis of heat shock protein 60 (hsp60) sequence revealed conserved functional motifs of HSP60 in the deduced protein structure. Tissue distribution analysis by RT-PCR revealed that hsp60 gene was mainly expressed in the eye, gill, liver and intestine of Daisy’s medaka. Elevation of hsp60 gene expression was confirmed in the gill of Daisy’s medaka in 10‰ SW group by real-time PCR. Protein expression of HSP60 was also found significantly increased in the gill of 10‰ SW fish. Results of double immunofluorecence staining revealed immunoreactivity of HSP60 in the gill ionocyte. In this study, Leibovitz’s L-15 medium, of which osmolality was similar to 10‰ SW, was used as a treatment to the gill of FW Daisy’s medaka in vitro. After in vitro gill culture, gene expression of hsp60 significantly increased compared to the FW fish gill.
Taken together, Daisy’s medaka, which is a stenohaline teleost, would activate osmoregulatory and cytoprotective mechanism in the gill uopn 10‰ SW salinity challenge. In addition, the congener of euryhaline medaka was available to do the comparative studies on osmoregulatory mechanisms between euryhaline and stenohaline species. The present study indicated that Daisy’s medaka would be a good stenohaline model fish.

中文摘要 I
Abstract III
Chapter 1 1
Abstract 2
Introduction 3
Aims 6
Results 15
Discussion 18
Chapter 2 26
Abstract 27
Introduction 28
Aims 33
Material and methods 34
Results 43
Discussion 46
Table and Figures 54
References 78
Appendix 101


Aschrafi, A., Schwechter, A.D., Mameza, M.G., Natera-Naranjo, O., Gioio, A.E., Kaplan, B.B., 2008. MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci 28, 12581-12590.
Bereiter‐Hahn, J., Vöth, M., 1994. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27, 198-219.
Berra, T.M., 2001. Freshwater fish distribution. Academic Press, San Diego, CA.
Blanco, G., Mercer, R.W., 1998. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol Renal Physiol 275, F633-F650.
Bonga, S.W., 1997. The stress response in fish. Physiol Rev 77, 591-625.
Brocchieri, L., Karlin, S., 2000. Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci 9, 476-486.
Bufalino, A.P., Mayden, R.L., 2010. Phylogenetic evaluation of North American Leuciscidae (Actinopterygii: Cypriniformes: Cyprinoidea) as inferred from analyses of mitochondrial and nuclear DNA sequences. Syst Biodivers 8, 493-505.
Bukau, B., Horwich, A.L., 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366.
Buriro, R., Lv, Y., Ali, I., Tang, S., Liu, Z., Zhang, M., Adem, A., Hartung, J., Bao, E., 2013. Temporal variations of Hsp60 and HSF-1 in primary rat myocardial cells in vitro under heat stress. Genet Mol Res 12, 3003.
Bury, N.R., Jie, L., Flik, G., Lock, R.A., Bonga, S.E.W., 1998. Cortisol protects against copper induced necrosis and promotes apoptosis in fish gill chloride cells in vitro. Aquat Toxicol 40, 193-202.
Cechetto, J.D., Soltys, B.J., Gupta, R.S., 2000. Localization of mitochondrial 60-kD heat shock chaperonin protein (hsp60) in pituitary growth hormone secretory granules and pancreatic zymogen granules. J Histochem Cytochem 48, 45-56.
Chacko, A.D., Liberante, F., Paul, I., Longley, D.B., Fennell, D.A., 2010. Voltage dependent anion channel-1 regulates death receptor mediated apoptosis by enabling cleavage of caspase-8. BMC cancer 10, 380.
Chandrasekar, S., Nich, T., Tripathi, G., Sahu, N.P., Pal, A.K., Dasgupta, S., 2014. Acclimation of brackish water pearl spot (Etroplus suratensis) to various salinities: relative changes in abundance of branchial Na+/K+-ATPase and Na+/ K+/ 2Cl- co-transporter in relation osmoregulatory parameters. Fish Physiol Biochem 40:983-996.
Cheng, M.Y., Hartl, F.-U., Martin, J., Pollock, R.A., Kalousek, F., Neupert, W., Hallberg, E.M., Hallberg, R.L., Horwich, A., 1989. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature, 585-674.
Chew, S.F., Tng, Y.Y.M., Wee, N.L.J., Wilson, J.M., Ip, Y.K., 2009. Nitrogen metabolism and branchial osmoregulatory acclimation in the juvenile marble goby, Oxyeleotris marmorata, exposed to seawater. Comp Biochem Physiol A 154, 360-369.
Collins, T.J., Berridge, M.J., Lipp, P., Bootman, M.D., 2002. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21, 1616-1627.
Craig, E.A., Gambill, B.D., Nelson, R.J., 1993. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57, 402-414.
Cui, Y., Liu, B., Xie, J., Xu, P., Tsion, H.M.H., Zhang, Y., 2013. The effect of hyperthermia on cell viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus). J Therm Biol 38, 355-361.
Dang, Z., Balm, P.H., Flik, G., Wendelaar Bonga, S.E., Lock, R.A., 2000. Cortisol increases Na (+)/K(+)-ATPase density in plasma membranes of gill chloride cells in the freshwater tilapia Oreochromis mossambicus. J Exp Biol 203, 2349-2355.
Degnan, K.J., Karnaky, K.J., Zadunaisky, J.A., 1977. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. J Physiol 271, 155-191
Dendy, L.A., Deter, R.L., Philpott, C.W., 1973. Localizations of Na+, K+-ATPase and other enzymes in the teleost pseudobranch. I. Biochemical characterization of subcellular fractions. J Cell Biol 57, 675-688.
Dymowska, A.K., Hwang, P.P., Goss, G.G., 2012. Structure and function of ionocytes in the freshwater fish gill. Respir Physiol Neurobiol 184, 282-292.
Eckert, S.M., Yada, T., Shepherd, B.S., Stetson, M.H., Hirano, T., Grau, E.G., 2001. Hormonal control of osmoregulation in the channel catfish Ictalurus punctatus. Gen Comp Endocrinol 122, 270-286.
Ellis, R.J., Van der Vies, S.M., 1991. Molecular chaperones. Annu Rev Biochem 60, 321-347.
Evans, D.H., 2008. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 295, R704-R713.
Evans, D.H., Claiborne, J.B., 2006. The physiology of fishes. 3th ed. CRC press, Boca Raton, FL. pp. 179-180.
Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
Evans, T.G., Somero, G.N., 2008. A microarray-based transcriptomic time-course of hyper- and hypo-osmotic stress signaling events in the euryhaline fish Gillichthys mirabilis: osmosensors to effectors. J Exp Biol 211, 3636-3649.
Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu Rev Physiol 61, 243-282.
Fiol, D.F., Kueltz, D., 2007. Osmotic stress sensing and signaling in fishes. FEBS J 274, 5790-5798.
Franklin, C.E., 1990. Surface ultrastructural changes in the gills of sockeye salmon (Teleostei: Oncorhynchus nerka) during seawater transfer: comparison of successful and unsuccessful seawater adaptation. J Morphol 206, 13-23.
Franson, M.A.H., 1985. Standard methods for the examination of water and waste water. 16th ed. American Public Health Association, Washington, DC.
Georgopoulos, C., Welch, W., 1993. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9, 601-634.
Goldenberg, H., 1977. Organization of purine degradation in the liver of a teleost (Carp; Cyprinus carpio L.). A study of its subcellular distribution. Mol Cell Biochem 16, 17-21.
Goloubinoff, P., Gatenby, A.A., Lorimer, G.H., 1989. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337, 44-47.
Goswami, S.V., Parwez, I., Sundararaj, B.I., 1983. Some aspects of osmoregulation in a stenohaline freshwater catfish, Heteropneustes fossilis (Bloch), in different salinities. J Fish Biol 23, 475-487.
Guo, R., Mather, P., Capra, M., 1995. Salinity tolerance and osmoregulation in the silver perch, Bidyanus bidyanus, Mitchell (Teraponidae), an endemic Australian freshwater teleost. Mar Freshwater Res 46, 947-952.
Gupta, R.S., 1995. Evolution of the chaperonin families (HSP60, HSP 10 and TCP-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15, 1-11.
Gupta, S., Knowlton, A.A., 2005. HSP60, bax, apoptosis and the heart. J Cell Mol Med 9, 51-58.
Haynes, C.M., Petrova, K., Benedetti, C., Yang, Y., Ron, D., 2007. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13, 467-480.
Haynes, C.M., Ron, D., 2010. The mitochondrial UPR-protecting organelle protein homeostasis. J Cell Sci 123, 3849-3855.
Hayoun, D., Kapp, T., Edri‐Brami, M., Ventura, T., Cohen, M., Avidan, A., Lichtenstein, R.G., 2012. HSP60 is transported through the secretory pathway of 3‐MCA‐induced fibrosarcoma tumour cells and undergoes N‐glycosylation. FEBS J 279, 2083-2095.
Hemmingsen, S.M., Woolford, C., van der Vies, S.M., Tilly, K., Dennis, D.T., Georgopoulos, C.P., Hendrix, R.W., Ellis, R.J., 1988. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333, 330-334.
Hendrix, R.W., 1979. Purification and properties of groE, a host protein involved in bacteriophage assembly. J Mol Biol 129, 375-392.
Hiroi, J., McCormick, S.D., 2007. Variation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl– cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar. J Exp Biol 210, 1015-1024.
Hiroi, J., Yasumasu, S., McCormick, S.D., Hwang, P.P., Kaneko, T., 2008. Evidence for an apical Na–Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211:2584-2599.
Hirose, S., Kaneko, T., Naito, N., Takei, Y., 2003. Molecular biology of major components of chloride cells. Comp Biochem Physiol B 136:593-620.
Hohn, T., Hohn, B., Engel, A., Wurtz, M., Smith, P.R., 1979. Isolation and characterization of the host protein groE involved in bacteriophage lambda assembly. J Mol Biol 129, 359-373.
Hootman, S.R., Philpott, C.W., 1979. Ultracytochemical localization of Na+, K+‐activated ATPase in chloride cells from the gills of a euryhaline teleost. Anat Rec 193, 99-129.
Hossler, F.E., Ruby, J.R., McIlwain, T.D., 1979. The gill arch of the mullet, Mugil cephalus. II. Modification in surface ultrastructure and Na, K‐ATPase content during adaptation to various salinities. J Exp Zool 208, 399-405.
Hsu, H.H., Lin, L.Y., Tseng, Y.C., Horng, J.L., Hwang, P.P., 2014. A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res 357, 225-243.
Huang, C.Y., Chao, P.L., Lin, H.C., 2010. Na+/K+-ATPase and vacuolar-type H+-ATPase in the gills of the aquatic air-breathing fish Trichogaster microlepis in response to salinity variation. Comp Biochem Physiol A 155, 309-318.
Hwang, P., 1987. Tolerance and ultrastructural responses of branchial chloride cells to salinity changes in the euryhaline teleost Oreochromis mossambicus. Mar. Biol. 94, 643-649.
Hwang, P.P., Hirano, R., 1985. Effects of environmental salinity on intercellular organization and junctional structure of chloride cells in early stages of teleost development. J Exp Zool 236, 115-126.
Hwang, P.P., Lee, T.H., 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148, 479-497.
Hwang, P.P., Lee, T.H., Lin, L.Y., 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301, R28-R47.
Hwang, P.P., Sun, C.M., Wu, S.M., 1989. Changes of plasma osmolality, chloride concentration and gill Na−K-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Mar Biol 100:295-299.
Inoue, K., Takei, Y., 2002. Diverse adaptability in Oryzias species to high environmental salinity. Zool Sci 19, 727-734.
Inoue, K., Takei, Y., 2003. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp Biochem Physiol B Biochem Mol Biol 136, 635-645.
Jindal, S., Dudani, A.K., Singh, B., Harley, C.B., Gupta, R.S., 1989. Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol 9, 2279-2283.
Johnson, R.B., Fearon, K., Mason, T., Jindal, S., 1989. Cloning and characterization of the yeast chaperonin HSP60 gene. Gene 84, 295-302.
Jonckheere, A., Smeitink, J.M., Rodenburg, R.T., 2012. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 35, 211-225.
Jung, D., Di Giulio, R.T., 2010. Identification of mitochondrial cytochrome P450 induced in response to polycyclic aromatic hydrocarbons in the mummichog (Fundulus heteroclitus). Comp Biochem Physiol C Toxicol Pharmacol 151, 107-112.
Kültz, D., Jürss, K., Jonas, L., 1995. Cellular and epithelial adjustments to altered salinity in the gill and opercular epithelium of a cichlid fish (Oreochromis mossambicus). Cell Tissue Res 279, 65-73.
Kültz, D., Li, J., Gardell, A., Sacchi, R., 2013. Quantitative molecular phenotyping of gill remodeling in a cichlid fish responding to salinity stress. Mol Cell Proteomics 12, 3962-3975.
Kalderon, B., Kogan, G., Bubis, E., Pines, O., 2015. Cytosolic Hsp60 can modulate proteasome activity in yeast. J Biol Chem 290, 3542-3551.
Kaneko, T., Watanabe, S., Lee, K.M., 2008. Functional morphology of mitochondrion-rich cells in euryhaline and stenohaline teleosts. Aqua BioSci Monogr 1, 1-62.
Kang, C.K., Lee, T.H., 2014. Medaka villin 1-like protein (VILL) is associated with the formation of microvilli induced by decreasing salinities in the absorptive ionocytes. Front Zool 11, 2.
Kang, C.K., Liu, F.C., Chang, W.B., Lee, T.H., 2012. Effects of low environmental salinity on the cellular profiles and expression of Na+, K+-ATPase and Na+, K+, 2Cl− cotransporter 1 of branchial mitochondrion-rich cells in the juvenile marine fish Monodactylus argenteus. Fish Physiol Biochem 38, 665-678.
Kang, C.K., Tsai, H.J., Liu, C.C., Lee, T.H., Hwang, P.P., 2010. Salinity-dependent expression of a Na+, K+, 2Cl− cotransporter in gills of the brackish medaka Oryzias dancena: A molecular correlate for hyposmoregulatory endurance. Comp Biochem Physiol A Mol Integr Physiol 157, 7-18.
Kang, C.K., Tsai, S.C., Lee, T.H., Hwang, P.P., 2008. Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comp Biochem Physiol A Mol Integr Physiol 151, 566-575.
Kang, C.K., Yang, S.Y., Lin, S.T., Lee, T.H., 2015. The inner opercular membrane of the euryhaline teleost: a useful surrogate model for comparisons of different characteristics of ionocytes between seawater-and freshwater-acclimated medaka. Histochem Cell Biol 143, 69-81.
Karnaky, K.J., Kinter, L.B., Kinter, W.B., Stirling, C.E., 1976. Teleost chloride cell. II. Autoradiographic localization of gill Na,K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. J Cell Biol 70, 157-177.
Katoh, F., Cozzi, R.F., Marshall, W., Goss, G., 2008. Distinct Na+/K+/2Cl- cotransporter localization in kidneys and gills of two euryhaline species, rainbow trout and killifish. Cell Tissue Res 334, 265-281.
Katoh, F., Hasegawa, S., Kita, J., Takagi, Y., Kaneko, T., 2001. Distinct seawater and freshwater types of chloride cells in killifish, Fundulus heteroclitus. Can J Zool 79, 822-829.
Katoh, F., Kaneko, T., 2003. Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established `time-differential double fluorescent staining'' technique. J Exp Biol 206, 4113-4123.
Kaufman, B.A., Kolesar, J.E., Perlman, P.S., Butow, R.A., 2003. A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae. J Cell Biol 163, 457-461.
Kennedy, D., Jager, R., Mosser, D.D., Samali, A., 2014. Regulation of apoptosis by heat shock proteins. IUBMB life 66, 327-338.
King, J.A., Hossler, F.E., 1991. The gill arch of the striped bass (Morone saxatilis). IV. Alterations in the ultrastructure of chloride cell apical crypts and chloride efflux following exposure to seawater. J Morphol 209, 165-176.
Kinoshita, M., Murata, K., Naruse, K., Tanaka, M., 2009. Medaka: biology, management, and experimenta protocols. Wiley-Blackwell, Ames, IA.
Kolbadinezhad, S.M., Hajimoradloo, A., Ghorbani, R., Joshaghani, H., Wilson, J.M., 2012. Effects of gradual salinity increase on osmoregulation in Caspian roach Rutilus caspicus. J Fish Biol 81, 125-134.
Koll, H., Guiard, B., Rassow, J., Ostermann, J., Horwich, A.L., Neupert, W., Hartl, F.-U., 1992. Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell 68, 1163-1175.
Laiz-Carrión, R., Sangiao-Alvarellos, S., Guzmán, J.M., Martín del Río, M.P., Soengas, J.L., Mancera, J.M., 2005. Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: Implications for osmoregulation and energy metabolism. Aquaculture 50, 849-861.

Lee, T.H., Feng, S.H., Lin, C.H., Hwang, Y.H., Huang, C.L., Hwang, P.P., 2003. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus. Zool Sci 20:29-36.
Lee, T.H., Hwang, P.P., Shieh, Y.E., Lin, C.H., 2000. The relationship between “deep-hole” mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus. Fish Physiol Biochem 23, 133-140.
Lee, T.H., Hwang, P.P., Feng, S.H., 1996a. Morphological studies of gill and mitochondria-rich cells in the stenohaline cyprinid teleosts, Cyprinus carpio and Carassius auratus, adapted to various hypotonic environments. Zool Stud 35, 272-278.
Lee, T.H., Hwang, P.P., Lin, H.C., Huang, F.L., 1996b. Mitochondria-rich cells in the branchial epithelium of the teleost, Oreochromis mossambicus, acclimated to various hypotonic environments. Fish Physiol Biochem 15, 513-523.
Licht, M., Schmuecker, K., Huelsken, T., Hanel, R., Bartsch, P., Paeckert, M., 2012. Contribution to the molecular phylogenetic analysis of extant holocephalan fishes (Holocephali, Chimaeriformes). Org Divers Evol 12, 421-432.
Li, L., Nan, P., Zhai, S., Wang, L., Si, S., Chang, Z., 2014a. Molecular cloning, characterization, and expression of hsp60 in caudal fin regeneration of Misgurnus anguillicaudatus. Mol Cell Biochem 387, 143-150.
Li, L., Zhai, S., Wang, L., Si, S., Wu, H., Chang, Z., 2014b. Hsp60 in caudal fin regeneration from Paramisgurnus dabryanus: Molecular cloning and expression characterization. Fish Shellfish Immunol 36, 401-408.
Li, Y., Park, J.S., Deng, J.H., Bai, Y., 2006. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 38, 283-291.
Lin, C.H., Huang, C.L., Yang, C.H., Lee, T.H., Hwang, P.P., 2004a. Time-course changes in the expression of Na, K-ATPase and the morphometry of mitochondrion-rich cells in gills of euryhaline tilapia (Oreochromis mossambicus) during freshwater acclimation. J Exp Zool A Comp Exp Biol 301, 85-96.
Lin, C.H., Tsai, R.S., Lee, T.H., 2004b. Expression and distribution of Na, K-ATPase in gill and kidney of the spotted green pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp Biochem Physiol A 138, 287-295.
Lin, Y.M., Chen, C.N., Lee, T.H., 2003. The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp Biochem Physiol A 135:489-497.
Lorin-Nebel, C., Boulo, V., Bodinier, C., Charmantier, G., 2006. The Na+/K+/2Cl- cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation. J Exp Biol 209:4908-4922.
Linares‐Casenave, J., Werner, I., Eenennaam, J., Doroshov, S., 2013. Temperature stress induces notochord abnormalities and heat shock proteins expression in larval green sturgeon (Acipenser medirostris Ayres 1854). J Appl Ichthyol 29, 958-967.
Lingrel, J.B., Kuntzweiler, T., 1994. Na+,K(+)-ATPase. J Biol Chem 269, 19659-19662.
Little, A.G., Kocha, K.M., Lougheed, S.C., Moyes, C.D., 2010. Evolution of the nuclear-encoded cytochrome oxidase subunits in vertebrates. Physiol Genomics 42, 76-84.
Lytle, C., Xu, J.C., Biemesderfer, D., Forbush, B., 1995. Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am J Physiol 269, C1496-C1505.
Maceina, M.J., Nordlie, F.G., Shireman, J.V., 1980. The influence of salinity on oxygen consumption and plasma electrolytes in grass carp, Ctenopharyngodon idella Val. J Fish Biol 16: 613-619.
Makino, S., Whitehead, G.G., Lien, C. L., Kim, S., Jhawar, P., Kono, A., Kawata, Y., Keating, M.T., 2005. Heat-shock protein 60 is required for blastema formation and maintenance during regeneration. Proc Natl Acad Sci U S A 102, 14599-14604.
Marshall, W.S., 2002. Na+, Cl−, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293:264-283.
Marshall, W.S., Bryson, S.E., 1998. Transport mechanisms of seawater teleost chloride cells: An inclusive model of a multifunctional cell. Comp Biochem Physiol A 119:97-106.
Marshall, W.S., Bryson, S.E., Luby, T., 2000. Control of epithelial Cl(-) secretion by basolateral osmolality in the euryhaline teleost Fundulus heteroclitus. J Exp Biol 203, 1897-1905.
Marshall, W.S., Lynch, E.A., Cozzi, R.R.F., 2002. Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to sea water. J Exp Biol 205, 1265-1273.
Marshall, W.S., Ossum, C.G., Hffmann, E.K., 2005. Hypotonic shock mediation by p38, MAPK, JNK, PKC, FAK, OSR1 and SPAK in osmosensing chloride secreting cells of killifish opercular epithelium. J Exp Biol 208, 1063-1077.
Martı́n, M., Hernández, C., Bodega, G., Suárez, I., del Carmen Boyano, M.a., Fernández, B.n., 1998. Heat-shock proteins expression in fish central nervous system and its possible relation with water acidosis resistance. Neurosci Res 31, 97-106.
Martos-Sitcha, J.A., MartínezRodríguez, G., Mancera, J.M., Fuertes, J., 2015. AVT and IT regulate ion transport across the opercular epithelium of killifish (Fundulus heteroclitus) and gilthead sea bream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 182, 93-101.

Mazon, A., Nolan, D., Lock, R., Fernandes, M., Bonga, S.W., 2004. A short-term in vitro gill culture system to study the effects of toxic (copper) and non-toxic (cortisol) stressors on the rainbow trout, Oncorhynchus mykiss (Walbaum). Toxicol In Vitro 18, 691-701.
McCormick, S.D., Bern, H.A., 1989. In vitro stimulation of Na+-K+-ATPase activity and ouabain binding by cortisol in coho salmon gill. Am J Physiol Regul Integr Comp Physiol 256, R707-R715.
McCormick, S.D., Farrell, A.P., Brauner, C.J., 2013. Glossary of terms, in: S.D. McCormick, A.P. Farrell, C.J. Brauner (Eds.), Euryhaline fishes. Academic Press, Waltham, MA, xiii-xv.
Mickle, J., Karnaky Jr, K.J., Jensen, T., Miller, D.S., Terlouw, S., Gross, A., Corrigan, B., Riordan, J.R., Cutting, G.R., 1998. Processing and localization of the cystic fibrosis transmembrane conductance regulator in gill and operculum from Fundulus heteroclitus. Am J Physiol 43, C715-C723.
Mitchell, P., 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41, 445-501.
Mitchell, P., 2011. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochim Biophys Acta 1807, 1507-1538.
Nelson, J.S., 2006. Fishes of the world. John Wiley & Sons, Hoboken, NJ.
Ngamniyom, A., Phowan, N., 2014. Specific primers of Oryzias javanicus, O. dancena, O. minutillus and O. woworae and molecular phylogeny using partial mitochondrial DNA sequences. J Fish Aquat Sci 9, 33-39.
Nilsen, T.O., Ebbesson, L.O.E., Madsen, S.S., McCormick, S.D., Andersson, E., Björnsson, B.T., Prunet, P., Stefansson, S.O., 2007. Differential expression of gill Na+,K+-ATPase α - and β-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J Exp Biol 210, 2885-2896.
Ostermann, J., Horwich, A., Neupert, W., Hartl, F.-U., 1989. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature, 125-130.
Parenti, L.R., Hadiaty, R.K., 2010. A new, remarkably colorful, small ricefish of the genus Oryzias (Beloniformes, Adrianichthyidae) from Sulawesi, Indonesia. Copeia 2010, 268-273.
Pelis, R.M., Zydlewski, J., McCormick, S.D., 2001. Gill Na+-K+-2Cl− cotransporter abundance and location in Atlantic salmon: effects of seawater and smolting. Am J Physiol Regul Integr Comp Physiol 280, R1844-R1852.
Perry, S.F., 1997. The chloride cell: Structure and function in the gills of freshwater fishes. Annu Rev Physiol 59, 325-347.
Picketts, D.J., Mayanil, C.S., Gupta, R.S., 1989. Molecular cloning of a Chinese hamster mitochondrial protein related to the "chaperonin" family of bacterial and plant proteins. J Biol Chem 264, 12001-12008.
Pisam, M., 1981. Membranous systems in the “chloride cell” of teleostean fish gill; their modifications in response to the salinity of the environment. Anat Rec 200, 401-414.
Pisam, M., Caroff, A., Rambourg, A., 1987. Two types of chloride cells in the gill epithelium of a freshwater‐adapted euryhaline fish: Lebistes reticulatus; their modifications during adaptation to saltwater. Am J Anat 179, 40-50.
Qin, Z., Barthel, L.K., Raymond, P.A., 2009. Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish. Proc Natl Acad Sci U S A 106, 9310-9315.
Ray, K., Heims, F., Schwalbe, M., Nam, W., 2015. High-valent metal-oxo intermediates in energy demanding processes: from dioxygen reduction to water splitting. Curr Opin Chem Biol 25, 159-171.
Rodriguez, M.S., Ortega, H., Covain, R., 2011. Intergeneric phylogenetic relationships in catfishes of the Loricariinae (Siluriformes: Loricariidae), with the description of Fonchiiloricaria nanodon: a new genus and species from Peru. J. Fish Biol 79, 875-895.
Saibil, H., 2013. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14, 630-642.
Sakamoto, T., Uchida, K., Yokota, S., 2001. Regulation of the ion-transporting mitochondrion-rich cell during adaptation of teleost fishes to different salinities. Zool Sci 18, 1163-1174.
Sarangi, U., Singh, M.K., Abhijnya, K.V., Reddy, L.P., Prasad, B.S., Pitke, V.V., Paithankar, K., Sreedhar, A.S., 2013. Hsp60 chaperonin acts as barrier to pharmacologically induced oxidative stress mediated apoptosis in tumor cells with differential stress response. Drug target insights 7, 35-51.
Sardella, B., Kültz, D., 2009. Osmo- and ionoregulatory responses of green sturgeon (Acipenser medirostris) to salinity acclimation. J Comp Physiol B 179, 383-390.
Scheiner-Bobis, G., 2002. The sodium pump. Eur J Biochem 269, 2424-2433.
Schreiber, A.M., Specker, J.L., 1999. Metamorphosis in the summer flounder Paralichthys dentatus: Changes in gill mitochondria-rich cells. J Exp Biol 202, 2475-2484.
Scorrano, L., 2013. Keeping mitochondria in shape: a matter of life and death. Eur J Clin Invest 43, 886-893.
Scott, G.R., Richards, J.G., Forbush, B., Isenring, P., Schulte, P.M., 2004. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am J Physiol 287, C300-C309.
Seo, M.Y., Mekuchi, M., Teranishi, K., Kaneko, T., 2013. Expression of ion transporters in gill motochandrion-rich cells in Japanese eel acclimated to a wide range of environmental salinity. Comp Biochem Physiol A 166, 323-332.
Shao, J., Qian, X., Zhang, C., Xu, Z., 2009. Fin regeneration from tail segment with musculature, endoskeleton, and scales. J Exp Zool B Mol Dev Evol 312, 762-769.
Shikano, T., Fujio, Y., 1998. Immunolocalization of Na+, K+-ATPase and morphological changes in two types of chloride cells in the gill epithelium during seawater and freshwater adaptation in a euryhaline teleost, Poecilia reticulata. J Exp Zool 281, 80-89.
Shirai, N., Utida, S., 1970. Development and degeneration of the chloride cell during seawater and freshwater adaptation of the Japanese eel, Anguilla japonica. Z Zellforsch Mik Ana 103, 247-264.
Shiraishi, K., Kaneko, T., Hasegawa, S., Hirano, T., 1997. Development of multicellular complexes of chloride cells in the yolk-sac membrane of tilapia (Oreochromis mossambicus) embryos and larvae in seawater. Cell Tissue Res 288, 583-590.
Stackley, K.D., Beeson, C.C., Rahn, J.J., Chan, S.S., 2011. Bioenergetic profiling of zebrafish embryonic development. PLoS One 6, e25652.
Starremans, P.G.J.F., Kersten, F.F.J., van den Heuvel, L.P.W.J., Knoers, N.V.A.M., Bindels, R.J.M., 2003. Dimeric architecture of the human bumetanide-sensitive Na-K-Cl co-transporter. J Am Soc Nephrol 14, 3039-3046.
Sumpter, J., 1997. The endocrinology of stress. In: Iwama, G.K., Pickering, AD., Sumpter, J.P., Schreck, C.B. (Eds.), Fish Stress and Health in Aquaculture. Cambridge University Press, Cambridge, pp. 95-118.
Takada, M., Otaka, M., Takahashi, T., Izumi, Y., Tamaki, K., Shibuya, T., Sakamoto, N., Osada, T., Yamamoto, S., Ishida, R., Odashima, M., Itoh, H., Watanabe, S., 2010. Overexpression of a 60-kDa heat shock protein enhances cytoprotective function of small intestinal epithelial cells. Life Sciences 86, 499-504.
Takehana, Y., Naruse, K., Sakaizumi, M., 2005. Molecular phylogeny of the medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol 36, 417-428.
Takei, Y., Hiroi, J., Takahashi, H., Sakamoto, T., 2014. Diverse mechanisms for body fluid regulation in teleost fishes. Am J Physiol Regul Integr Comp Physiol 307, R778-R792.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739.
Tang, C.H., Hwang, L.Y., Shen, I.D., Chiu, Y.H., Lee, T.H., 2011. Immunolocalization of chloride transporters to gill epithelia of euryhaline teleosts with opposite salinity-induced Na+/K+-ATPase responses. Fish Physiol biochem 37, 709-724.
Tang, C.H., Lee, T.H., 2007. The effect of environmental salinity on the protein expression of Na+/K+-ATPase, Na+/K+/2Cl(-) cotransporter, cystic fibrosis transmembrane conductance regulator, anion, exchanger 1, and chloride channel 3 in gills of a euryhaline teleost, Tetraodon nigroviridis. Comp Biochem Physiol A 147, 521-528.
Tang, C.H., Lee, T.H., 2013. Freshwater acclimation induces stress responses and expression of brachial Na+/K+-ATPase and proliferating cell nuclear antigen in Takifugu niphobles. J Exp Zool A Ecol Genet Physiol 319, 409-421.
Tang, C.H., Leu, M.Y., Shao, K., Hwang, L.Y., Chang, W.B., 2014a. Short-term effects of thermal stress on the responses of branchial protein quality control and osmoregulation in a reef-associated fish, Chromis viridis. Zool Stud 53, 21.
Tang, C.H., Leu, M.Y., Yang, W.K., Tsai, S.C., 2014b. Exploration of the mechanisms of protein quality control and osmoregulation in gills of Chromis viridis in response to reduced salinity. Fish Physiol Biochem 40, 1533-1546.
Tine, M. , Bonhomme, F., McKenzie, D.J., Durand, J.D., 2010. Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia, Sarotherodon melanotheron, acclimatised to a range of environmental salinities. BMC Ecol 10, 11.
Tipsmark, C.K., Baltzegar, D.A., Ozden, O., Grubb, B.J., Borski, R.J., 2008. Salinity regulates claudin mRNA and protein expression in the teleost gill. Am J Physiol Regul Integr Comp Physiol 194, R1004-R1014.
Tipsmark, C.K., Madsen, S.S., Borski, R.J., 2004. Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis). J Exp Zoolog A Comp Exp Biol 301, 979-991.
Tipsmark, C.K., Madsen, S.S., Seidelin, M., Christensen, A.S., Cutler, C.P., Cramb, G., 2002. Dynamics of Na+,K+,2Cl− cotransporter and Na+,K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and atlantic salmon (Salmo salar). J Exp Zool 293:106-118.
Tseng, Y.C., Hwang, P.P., 2008. Some insights into energy metabolism for osmoregulation in fish. Comp Biochem Physiol C Toxicol Pharmacol 148, 419-429.
Uchida, K., Kaneko, T., Miyazaki, H., Hasegawa, S., Hirano, T., 2000. Excellent salinity tolerance of Mozambique tilapia (Oreochromis mossambicus): elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zool Sci 17, 149-160.
Uchida, K., Kaneko, T., Yamauchi, K., Hirano, T., 1996. Morphometrical analysis chloride cell activity in the gill filaments and lamellae and changes in Na+, K+‐ATPase activity during seawater adaptation in chum salmon fry. J Exp Zool 276, 193-200.
Uraga-Tovar, D.I., Domínguez-López, M.L., Madera-Sandoval, R.L., Nájera-Martínez, M., García-Latorre, E., Vega-López, A., 2014. Generation of oxyradicals (and H2O2), mitochondrial activity and induction of apoptosis of PBMC of Cyprinus carpio carpio treated in vivo with halomethanes and with recombinant HSP60 kDa and with LPS of Klebsiella pneumoniae. Immunopharm Immunot 36, 329-340.
Varsamos, S., Diaz, J.P., Charmantier, G., Flik, G., Blasco, C., Connes, R., 2002. Branchial chloride cells in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated seawater. J Exp Zool 293, 12-26.
Walsh, P., 1995. Subcellular localization and biochemical properties of the enzymes of carbamoyl phosphate and urea synthesis in the batrachoidid fishes Opsanus beta, Opsanus tau and Porichthys notatus. J Exp Biol 198, 755-766.
Wan, J., Ge, X., Liu, B., Xie, J., Cui, S., Zhou, M., Xia, S., Chen, R., 2014. Effect of dietary vitamin C on non-specific immunity and mRNA expression of three heat shock proteins (HSPs) in juvenile Megalobrama amblycephala under pH stress. Aquaculture 434, 325-333.
Werner, I., Viant, M., Rosenblum, E., Gantner, A., Tjeerdema, R., Johnson, M., 2006. Cellular responses to temperature stress in steelhead trout (Onchorynchus mykiss) parr with different rearing histories. Fish Physiol Biochem 32, 261-273.
Whittaker, V., Greengard, P., 1971. The isolation of synaptosomes from the brain of a teleost fish, Centriopristes striatus. J Neurochem 18, 173-176.
Wikstrom, M., Sharma, V., Kaila, V.R.I., Hosler, J.P., Hummer, G., 2015. New perspectives on proton pumping in cellular respiration. Chem Rev 115, 2196-2221.
Wilson, J.M., Laurent, P., 2002. Fish gill morphology: Inside out. J Exp Zool 293, 192-213.
Wittbrodt, J., Shima, A., Schartl, M., 2002. Medaka - a model organism from the far east. Nat Rev Genet 3, 53-64.
Woese, C.R., 2000. Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97, 8392-8396.
Wong, C.K., Chan, D.K., 1999. Isolation of viable cell types from the gill epithelium of Japanese eel Anguilla japonica. Am J Physiol 276, R363-R372.
Wong, C.K., Wong, M., 2000. Morphological and biochemical changes in the gills of Tilapia (Oreochromis mossambicus) to ambient cadmium exposure. Aquat Toxicol 48, 517-527.
Wu, J., Mlodzik, M., 2009. A quest for the mechanism regulating global planar cell polarity of tissues. Trends Cell Biol 19, 295-305.
Wu, Y.C., Lin, L.Y., Lee, T.H., 2003. Na+,K+,2Cl--cotransporter: A novel marker for identifying freshwater- and seawater-type mitochondria-rich cells in gills of the euryhaline tilapia, Oreochromis mossambicus. Zool Stud 42, 186-192.
Xie, Y., Song, L., Weng, Z., Liu, S., Liu, Z., 2015. Hsp90, Hsp60 and sHsp families of heat shock protein genes in channel catfish and their expression after bacterial infections. Fish Shellfish Immunol 44, 642-651.
Xu, Q., Schett, G., Seitz, C.S., Hu, Y., Gupta, R.S., Wick, G., 1994. Surface staining and cytotoxic activity of heat-shock protein 60 antibody in stressed aortic endothelial cells. Circ Res 75, 1078-1085.
Xu, X.Y., Shen, Y.B., Fu, J.J., Liu, F., Guo, S.Z., Yang, X.M., Li, J.L., 2011. Molecular cloning, characterization and expression patterns of HSP60 in the grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 31, 864-870.
Yang, W.K., Hseu, J.R., Tang, C.H., Chung, M.J., Wu, S.M., Lee, T.H., 2009. Na+/K+-ATPase expressionin gills of the euryhaline sailfin molly, Poecilia latipinna, is altered in response to salinity challenge. J Exp Mar Biol Ecol 375, 41-50.
Yoshikawa, S., Shimada, A., 2015. Reaction mechanism of cytochrome c oxidase. Chem Rev 115, 1936-1989.
Zeilstra-Ryalls, J., Fayet, O., Georgopoulos, C., 1991. The universally conserved GroE (Hsp60) chaperonins. Annu Rev Microbiol 45, 301-325.
Zikos, A., Seale, A.P., Lerner, D.T., Grau, E.G., Korsmeyer, K.E., 2014. Effects of salinity on metabolic rate and branchial expression of genes involved in ion transport and metabolism in Mozambique tilapia (Oreochromis mossambicus). Comp Biochem Physiol A Mol Integr Physiol 178, 121-131.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top