|
1.Wang, J.H., et al., Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis, 1998. 26(6): p. 1434-8. 2.Chung, D.R., et al., Emerging invasive liver abscess caused by K1 serotype Klebsiella pneumoniae in Korea. J Infect, 2007. 54(6): p. 578-83. 3.Nadasy, K.A., R. Domiati-Saad, and M.A. Tribble, Invasive Klebsiella pneumoniae syndrome in North America. Clin Infect Dis, 2007. 45(3): p. e25-8. 4.Karama, E.M., et al., Endogenous endophthalmitis complicating Klebsiella pneumoniae liver abscess in Europe: case report. Int Ophthalmol, 2008. 28(2): p. 111-3. 5.Fang, C.T., et al., Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis, 2007. 45(3): p. 284-93. 6.Korrapati, M.C., et al., Diabetes-induced renal injury in rats is attenuated by suramin. J Pharmacol Exp Ther, 2012. 343(1): p. 34-43. 7.Yang, C.S., et al., Endogenous Klebsiella endophthalmitis associated with pyogenic liver abscess. Ophthalmology, 2007. 114(5): p. 876-80. 8.Fung, C.P., et al., A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut, 2002. 50(3): p. 420-4. 9.Tang, H.L., et al., Correlation between Klebsiella pneumoniae carrying pLVPK-derived loci and abscess formation. Eur J Clin Microbiol Infect Dis, 2010. 29(6): p. 689-98. 10.Fang, C.T., et al., A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med, 2004. 199(5): p. 697-705. 11.Hsieh, P.F., et al., Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis, 2008. 197(12): p. 1717-27. 12.Ma, L.C., et al., Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection. J Infect Dis, 2005. 192(1): p. 117-28. 13.Yu, W.L., et al., Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis, 2006. 42(10): p. 1351-8. 14.Jeong, S.W., et al., Cryptogenic pyogenic liver abscess as the herald of colon cancer. J Gastroenterol Hepatol, 2012. 27(2): p. 248-55. 15.Kao, W.Y., et al., Cancer risk in patients with pyogenic liver abscess: a nationwide cohort study. Aliment Pharmacol Ther, 2012. 36(5): p. 467-76. 16.Lai, H.C. and H.C. Lin, Cryptogenic pyogenic liver abscess as a sign of colorectal cancer: a population-based 5-year follow-up study. Liver Int, 2010. 30(9): p. 1387-93. 17.Lim, W.C. and C.C. Lim, Silent colorectal carcinoma and pyogenic liver abscess. J Gastroenterol Hepatol, 2004. 19(8): p. 945-6. 18.Huang, W.K., et al., Higher rate of colorectal cancer among patients with pyogenic liver abscess with Klebsiella pneumoniae than those without: an 11-year follow-up study. Colorectal Dis, 2012. 14(12): p. e794-801. 19.Ochman, H., J.G. Lawrence, and E.A. Groisman, Lateral gene transfer and the nature of bacterial innovation. Nature, 2000. 405(6784): p. 299-304. 20.Lin, T.L., et al., Characterization of integrative and conjugative element ICEKp1-associated genomic heterogeneity in a Klebsiella pneumoniae strain isolated from a primary liver abscess. J Bacteriol, 2008. 190(2): p. 515-26. 21.van Aartsen, J.J., et al., Characterization of a novel chaperone/usher fimbrial operon present on KpGI-5, a methionine tRNA gene-associated genomic island in Klebsiella pneumoniae. BMC Microbiol, 2012. 12: p. 59. 22.Hsu, W.H., et al., Occult colon cancer in a patient with diabetes and recurrent Klebsiella pneumoniae liver abscess. Kaohsiung J Med Sci, 2009. 25(2): p. 98-103. 23.Lagos, R., J.E. Villanueva, and O. Monasterio, Identification and properties of the genes encoding microcin E492 and its immunity protein. J Bacteriol, 1999. 181(1): p. 212-7. 24.Lin, A.C., et al., Complete genome sequence of Klebsiella pneumoniae 1084, a hypermucoviscosity-negative K1 clinical strain. J Bacteriol, 2012. 194(22): p. 6316. 25.Lai, Y.C., et al., Genotoxic Klebsiella pneumoniae in Taiwan. PLoS One, 2014. 9(5): p. e96292. 26.Nougayrede, J.P., et al., Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science, 2006. 313(5788): p. 848-51. 27.Paauw, A., et al., Evolution in quantum leaps: multiple combinatorial transfers of HPI and other genetic modules in Enterobacteriaceae. PLoS One, 2010. 5(1): p. e8662. 28.Schubert, S., et al., A novel integrative and conjugative element (ICE) of Escherichia coli: the putative progenitor of the Yersinia high-pathogenicity island. Mol Microbiol, 2004. 51(3): p. 837-48. 29.Staunton, J. and K.J. Weissman, Polyketide biosynthesis: a millennium review. Nat Prod Rep, 2001. 18(4): p. 380-416. 30.Finking, R. and M.A. Marahiel, Biosynthesis of nonribosomal peptides1. Annu Rev Microbiol, 2004. 58: p. 453-88. 31.Crosa, J.H. and C.T. Walsh, Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev, 2002. 66(2): p. 223-49. 32.Putze, J., et al., Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun, 2009. 77(11): p. 4696-703. 33.Johnson, J.R., et al., Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J Clin Microbiol, 2008. 46(12): p. 3906-11. 34.Cuevas-Ramos, G., et al., Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A, 2010. 107(25): p. 11537-42. 35.Arthur, J.C., et al., Intestinal inflammation targets cancer-inducing activity of the microbiota. Science, 2012. 338(6103): p. 120-3. 36.Olier, M., et al., Genotoxicity of Escherichia coli Nissle 1917 strain cannot be dissociated from its probiotic activity. Gut Microbes, 2012. 3(6): p. 501-9. 37.Copp, J.N. and B.A. Neilan, The phosphopantetheinyl transferase superfamily: phylogenetic analysis and functional implications in cyanobacteria. Appl Environ Microbiol, 2006. 72(4): p. 2298-305. 38.Lambalot, R.H., et al., A new enzyme superfamily - the phosphopantetheinyl transferases. Chem Biol, 1996. 3(11): p. 923-36. 39.Gao, Q., et al., Roles of iron acquisition systems in virulence of extraintestinal pathogenic Escherichia coli: salmochelin and aerobactin contribute more to virulence than heme in a chicken infection model. BMC Microbiol, 2012. 12: p. 143. 40.Garenaux, A., M. Caza, and C.M. Dozois, The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli. Vet Microbiol, 2011. 153(1-2): p. 89-98. 41.Gehring, A.M., K.A. Bradley, and C.T. Walsh, Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochemistry, 1997. 36(28): p. 8495-503. 42.Fischbach, M.A., et al., In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc Natl Acad Sci U S A, 2005. 102(3): p. 571-6. 43.Bobrov, A.G., V.A. Geoffroy, and R.D. Perry, Yersiniabactin production requires the thioesterase domain of HMWP2 and YbtD, a putative phosphopantetheinylate transferase. Infect Immun, 2002. 70(8): p. 4204-14. 44.Martin, P., et al., Interplay between siderophores and colibactin genotoxin biosynthetic pathways in Escherichia coli. PLoS Pathog, 2013. 9(7): p. e1003437. 45.de Lorenzo, V., Isolation and characterization of microcin E492 from Klebsiella pneumoniae. Arch Microbiol, 1984. 139(1): p. 72-5. 46.Pons, A.M., et al., Microcin E492 is an unmodified peptide related in structure to colicin V. Antimicrob Agents Chemother, 2002. 46(1): p. 229-30. 47.Lagos, R., et al., Microcin E492 forms ion channels in phospholipid bilayer membrane. FEBS Lett, 1993. 321(2-3): p. 145-8. 48.Destoumieux-Garzon, D., et al., Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol Microbiol, 2003. 49(4): p. 1031-41. 49.de Lorenzo, V. and A.P. Pugsley, Microcin E492, a low-molecular-weight peptide antibiotic which causes depolarization of the Escherichia coli cytoplasmic membrane. Antimicrob Agents Chemother, 1985. 27(4): p. 666-9. 50.Thomas, X., et al., Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem, 2004. 279(27): p. 28233-42. 51.Lagos, R., et al., Structure, organization and characterization of the gene cluster involved in the production of microcin E492, a channel-forming bacteriocin. Mol Microbiol, 2001. 42(1): p. 229-43. 52.Destoumieux-Garzon, D., et al., Parasitism of iron-siderophore receptors of Escherichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart. Biometals, 2006. 19(2): p. 181-91. 53.Nolan, E.M. and C.T. Walsh, Investigations of the MceIJ-catalyzed posttranslational modification of the microcin E492 C-terminus: linkage of ribosomal and nonribosomal peptides to form "trojan horse" antibiotics. Biochemistry, 2008. 47(35): p. 9289-99. 54.Patzer, S.I., et al., The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology, 2003. 149(Pt 9): p. 2557-70. 55.Strahsburger, E., et al., Cooperative uptake of microcin E492 by receptors FepA, Fiu, and Cir and inhibition by the siderophore enterochelin and its dimeric and trimeric hydrolysis products. Antimicrob Agents Chemother, 2005. 49(7): p. 3083-6. 56.Pugsley, A.P., F. Moreno, and V. de Lorenzo, Microcin-E492-insensitive mutants of Escherichia coli K12. J Gen Microbiol, 1986. 132(12): p. 3253-9. 57.Hetz, C., et al., Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci U S A, 2002. 99(5): p. 2696-701. 58.Lawlor, M.S., C. O''Connor, and V.L. Miller, Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun, 2007. 75(3): p. 1463-72. 59.Carniel, E., The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect, 2001. 3(7): p. 561-9. 60.Lai, Y.C., H.L. Peng, and H.Y. Chang, Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infect Immun, 2001. 69(11): p. 7140-5. 61.Chen, Y.T., et al., Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene, 2004. 337: p. 189-98. 62.Michener, J.K. and C.J. Marx, After Horizontal Gene Transfers, Metabolic Pathways May Need Further Optimization. Microbe Magazine, 2015. 10(2): p. 61-67. 63.Gao, H., et al., The iron-responsive Fur regulon in Yersinia pestis. J Bacteriol, 2008. 190(8): p. 3063-75.
|