跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/22 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龔泓睿
研究生(外文):Hung-Jui Kung
論文名稱:十字花科黑腐菌第三型致病蛋白之抗體製備與植物菌質體分泌蛋白之重要胺基酸與蛋白功能區域鑑定
論文名稱(外文):Generation of antibodies against Xanthomonas campestris pv. campestris type III effectors and functional characterizations of the phytoplasma effector in determining critical amino acids and protein domains
指導教授:楊俊逸
口試委員:賴建成林詩舜
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:104
中文關鍵詞:黑腐菌第三型分泌系統第三型致病蛋白
外文關鍵詞:Xanthomonastype III secretion systemtype III effector proteins
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
十字花科黑腐菌 (Xanthomonas campestris pv. campestris, Xcc) 是一種革蘭氏陰性菌,其可感染多種十字花科作物,包含花椰菜、芥末、甘藍以及模式植物擬南芥。黑腐菌主要的致病力是透過第三型分泌系統 (type III secretion system) 將第三型致病蛋白 (type III effector proteins, T3Es) 注射至宿主細胞,進而能影響宿主免疫反應。目前為止,已有超過25種的十字花科黑腐菌第三型致病性蛋白分子,藉由分子遺傳及基因體分析而被選殖出,但絕大多數致病性蛋白是否能夠分泌至宿主細胞仍未知。本篇研究共製備5種十字花科黑腐菌第三型致病蛋白兔子多株抗體,分別為:XopJXcc8004、AvrBs1Xcc8004、XopE2Xcc8004、XopQXcc8004、XopHXcc8004。並以菸草短暫性表現之農桿菌注射法檢測致病蛋白兔子多株抗體之專一性,未來將利用這些抗體檢測十字花科黑腐菌第三型致病蛋白之分泌機制。

Xanthomonas campestris pv. campestrisis (Xcc) a gram-negative phytopathogenic bacteria, causing the black rot of cruciferous plants. Xcc infects numerous species of crucifers including mustard, cabbage, cauliflowers as well as the model plant Arabidopsis thaliana. Generally, the virulence of Xcc depends on the type III effectors which were translocated into plant cells to influence the plant immune system. Although more than 25 effectors have been identified by molecular genetics and genomic analysis, it is still unknown whether all of the type III effectors could be translocated into host cells. In this study, anti-bodies against XopJXcc8004, AvrBs1Xcc8004, XopE2Xcc8004, XopQXcc8004 and XopHXcc8004 were generated and the specificity of antibodies were examined. These anti-bodies will be useful to investigate the secretion mechanism of Xcc in the future.

目錄
謝誌 i
中文摘要 (一) ii
Abstract (I) iii
目錄 iv
圖目錄 vi
附圖目錄 vii

第一部分
第一章 前言 1
一、Xanthomonas 之簡介 1
二、第三型分泌系統 (Type III secretion system) 1
三、Xanthomonas之第三型致病蛋白 2
四、植物免疫反應 4
五、研究策略與目的 5
第二章 材料與方法 6
材料 6
方法 6
一、載體之構築 6
二、重組蛋白表現及純化 8
三、抗體製備與純化 11
四、菸草短暫性表現系統之農桿菌注射法 (Agroinfiltration) 12
第三章 結果與討論 14
一、 Anti-XopJXcc8004抗體之製備 14
二、 Anti-AvrBs1Xcc8004抗體之製備 14
三、 Anti-XopHXcc8004抗體之製備 15
四、 Anti-XopE2Xcc8004抗體之製備 15
五、 Anti-XopQXcc8004抗體之製備 16
第四章 參考文獻 17
第五章 圖 19
第六章 附錄 24





第二部分
摘要 (二) 41
Abstract (II) 42
第一章 前言 43
一、植物菌質體(Phytoplasma)之介紹 43
二、植物菌質體之分類 44
三、翠菊黃萎病菌質體致病蛋白之致病機制 44
四、其他植物菌質體致病蛋白致病機制 45
五、TCP之介紹 46
六、研究策略與目的 47
第二章 材料與方法 48
材料 48
方法 48
一、載體之構築 48
二、重組蛋白表現及純化 51
三、擬南芥轉殖株之建立 53
四、菸草短暫性表現系統之農桿菌注射法 (Agroinfiltration) 54
五、純化植物內生性蛋白 55
六、擬南芥RNA萃取 56
七、反轉錄酶反應(Reverse transcription) 57
八、即時定量聚合酶連鎖反應(Quantitative Real-time PCR) 57
第三章 結果 58
一、 不同胺基酸之點突變造成不同程度之葉片捲曲 58
二、 不同胺基酸之點突變影響SAP11AYWB之活性 58
三、 不同胺基酸之點突變影響SAP11AYWB 對缺磷反應、免疫反應相關 基因之基因表現量 59
四、 SAP11AYWB轉基因擬南芥在植物體中為C端受到修飾 60
第四章 討論 62
一、 SAP11AYWB之點突變轉殖株外表型與其功能活性之關聯 62
二、 SAP11AYWB之C端修飾 63
第五章 參考文獻 64
第六章 圖 66
第七章 附錄 73


Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379-406.
Buttner, D., and Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34, 107-133.
Cornelis, G.R. (2006). The type III secretion injectisome. Nat Rev Microbiol 4, 811-825.
Gurlebeck, D., Jahn, S., Gurlebeck, N., Szczesny, R., Szurek, B., Hahn, S., Hause, G., and Bonas, U. (2009). Visualization of novel virulence activities of the Xanthomonas type III effectors AvrBs1, AvrBs3 and AvrBs4. Mol Plant Pathol 10, 175-188.
Ho, Y.P., Tan, C.M., Li, M.Y., Lin, H., Deng, W.L., and Yang, J.Y. (2013). The AvrB_AvrC domain of AvrXccC of Xanthomonas campestris pv. campestris is required to elicit plant defense responses and manipulate ABA homeostasis. Mol Plant Microbe Interact 26, 419-430.
Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329.
Kay, S., and Bonas, U. (2009). How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12, 37-43.
Lin R-H, P.C.-W., Lin Y-C, Peng H-L, and Huang H-C. (2011). The XopE2 effector protein of Xanthomonas campestris pv. vesicatoria is involved in virulence and in the suppression of the hypersensitive response. Botanical Studies, 55-72.
Melech-Bonfil, S., and Sessa, G. (2010). Tomato MAPKKKε is a positive regulator of cell-death signaling networks associated with plant immunity. The Plant Journal 64, 379-391.
Oh, C.S., and Martin, G.B. (2011). Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins. J Biol Chem 286, 14129-14136.
Oh, C.S., Pedley, K.F., and Martin, G.B. (2010). Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK {alpha}. Plant Cell 22, 260-272.
Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, M.D. (1996). Systemic acquired resistance. Plant Cell 8, 1809-1819.
Ryan, R.P., Vorholter, F.J., Potnis, N., Jones, J.B., Van Sluys, M.A., Bogdanove, A.J., and Dow, J.M. (2011). Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 9, 344-355.
Tan, C.M., Li, M.Y., Yang, P.Y., Chang, S.H., Ho, Y.P., Lin, H., Deng, W.L., and Yang, J.Y. (2015). Arabidopsis HFR1 is a potential nuclear substrate regulated by the Xanthomonas type III effector XopD(Xcc8004). PLoS One 10, e0117067.
Teper, D., Salomon, D., Sunitha, S., Kim, J.G., Mudgett, M.B., and Sessa, G. (2014). Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14-3-3 isoforms to suppress effector-triggered immunity. Plant J 77, 297-309.
Ustun, S., and Bornke, F. (2014). Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Front Plant Sci 5, 736.
Ustun, S., and Bornke, F. (2015). The Xanthomonas campestris type III effector XopJ proteolytically degrades proteasome subunit RPT6. Plant Physiol 168, 107-119.
Ustun, S., Bartetzko, V., and Bornke, F. (2013). The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence. PLoS Pathog 9, e1003427.
Bai, X., Correa, V.R., Toruno, T.Y., Ammar el, D., Kamoun, S., and Hogenhout, S.A. (2009). AY-WB Phytoplasma Secretes a protein that targets plant cell nuclei. MPMI 22, 18-30.
Bertaccini, A., and Duduk, B. (2009). Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol Mediterr 48, 355-378.
Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Komatsu, K., Kagiwada, S., Yamaji, Y., and Namba, S. (2009). A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A 106, 6416-6421.
Hung, T.-H., and Lin, C.P. (2011). 台灣農作物重要植物菌質體病害研究現況. 農作物害蟲及其媒介病害整合防治技術研討會專刊, 63-72.
Lopez, J.A., Sun, Y., Blair, P.B., and Mukhtar, M.S. (2015). TCP three-way handshake: linking developmental processes with plant immunity. Trends Plant Sci 20, 238-245.
Lu, Y.-T., Cheng, K.-T., Jiang, S.-Y., and Yang, J.-Y. (2014a). Post-translational cleavage and self-interaction of the phytoplasma effector SAP11. Plant Signaling & Behavior 9, e28991.
Lu, Y.T., Li, M.Y., Cheng, K.T., Tan, C.M., Su, L.W., Lin, W.Y., Shih, H.T., Chiou, T.J., and Yang, J.Y. (2014b). Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiol 164, 1456-1469.
MacLean, A.M., Sugio, A., Makarova, O.V., Findlay, K.C., Grieve, V.M., Toth, R., Nicolaisen, M., and Hogenhout, S.A. (2011). Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol 157, 831-841.
Martin-Trillo, M., and Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends Plant Sci 15, 31-39.
Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36, 27-29.
Sugawara, K., Honma, Y., Komatsu, K., Himeno, M., Oshima, K., and Namba, S. (2013). The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. Plant Physiol 162, 2005-2014.
Sugio, A., MacLean, A.M., and Hogenhout, S.A. (2014). The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol 202, 838-848.
Sugio, A., Kingdom, H.N., MacLean, A.M., Grieve, V.M., and Hogenhout, S.A. (2011a). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci U S A 108, E1254-1263.
Sugio, A., MacLean, A.M., Kingdom, H.N., Grieve, V.M., Manimekalai, R., and Hogenhout, S.A. (2011b). Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol 49, 175-195.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文