1.Schirmer, T. and U. Jenal, Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol, 2009. 7(10): p. 724-35.
2.Romling, U., M. Gomelsky, and M.Y. Galperin, C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol, 2005. 57(3): p. 629-39.
3.Romling, U. and D. Amikam, Cyclic di-GMP as a second messenger. Curr Opin Microbiol, 2006. 9(2): p. 218-28.
4.Jenal, U. and J. Malone, Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet, 2006. 40: p. 385-407.
5.Hengge, R., Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol, 2009. 7(4): p. 263-73.
6.Ryan, R.P., et al., Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A, 2006. 103(17): p. 6712-7.
7.Simm, R., et al., GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol, 2004. 53(4): p. 1123-34.
8.Slater, H., et al., A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol, 2000. 38(5): p. 986-1003.
9.Tal, R., et al., Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol, 1998. 180(17): p. 4416-25.
10.Tischler, A.D. and A. Camilli, Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol, 2004. 53(3): p. 857-69.
11.Chin, K.H., et al., The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol, 2010. 396(3): p. 646-62.
12.Leduc, J.L. and G.P. Roberts, Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol, 2009. 191(22): p. 7121-2.
13.Tao, F., et al., The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol, 2010. 192(4): p. 1020-9.
14.Hickman, J.W. and C.S. Harwood, Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol, 2008. 69(2): p. 376-89.
15.Krasteva, P.V., et al., Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science, 2010. 327(5967): p. 866-8.
16.Tuckerman, J.R., G. Gonzalez, and M.A. Gilles-Gonzalez, Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J Mol Biol, 2011. 407(5): p. 633-9.
17.Navarro, M.V., et al., Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure, 2009. 17(8): p. 1104-16.
18.Navarro, M.V., et al., Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLoS Biol, 2011. 9(2): p. e1000588.
19.Amikam, D. and M.Y. Galperin, PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics, 2006. 22: p. 3-6.
20.Benach, J., et al., The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J., 2007. 26: p. 5153-5166.
21.Habazettl, J., et al., Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies change clustering as molecular readout. J. Biol. Chem., 2011. 286: p. 14304-14314.
22.Chin, K.-H., et al., The c-AMP receptor-like protein Clp is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J. Mol. Biol., 2010. 396: p. 646-662.
23.Li, T.-N., et al., A novel tetrameric PilZ domain structure from Xanthomonads. PLoS ONE, 2011. 6: p. e22036.
24.Li, T.-N., et al., XC1028 from Xanthomonas campestris adopts a PilZ domain-like structure without a c-di-GMP switch. Proteins: Structure, Function and Bioinformatics, 2009. 75: p. 282-288.
25.Liao, Y.-T., et al., On the crystallization and preliminary X-ray diffraction characterization of FimXEAL-c-di-GMP and FimXEAL-c-di-GMP-PilZ complexes from Xanthomonas campestris. Acta Crystallogr., 2012. F68: p. 301-305.
26.Chabrol, H., et al., Hyperfrontality of cerebral blood flow in depressed adolescents. Am J Psychiatry, 1986. 143(2): p. 263-4.
27.許涵鈞、吳雅芳、謝明憲、鄭安秀, 十字花科蔬菜品種抗黑腐病篩選之研究. 臺南區農業改良場研究彙報, 2011. 57: p. 11-19.
28.Weiss, B.D., et al., Isolation and characterization of a generalized transducing phage for Xanthomonas campestris pv. campestris. J Bacteriol, 1994. 176(11): p. 3354-9.
29.Vorholter, F.J., et al., The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol, 2008. 134(1-2): p. 33-45.
30.Cardoso, P.F., et al., Plasma atrial natriuretic factor concentrations in a canine model of right heart pressure overload. Clin Invest Med, 1991. 14(4): p. 310-9.
31.Ryan, R.P. and J.M. Dow, Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol, 2011. 19(3): p. 145-52.
32.Harding, N.E., et al., Genetic and physical analyses of a cluster of genes essential for xanthan gum biosynthesis in Xanthomonas campestris. J Bacteriol, 1987. 169(6): p. 2854-61.
33.Ryan, R.P., et al., Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol, 2007. 63(2): p. 429-42.
34.Sondermann, H., N.J. Shikuma, and F.H. Yildiz, You''ve come a long way: c-di-GMP signaling. Curr Opin Microbiol, 2012. 15(2): p. 140-6.
35.Solomon, E.I., et al., Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev, 2000. 100(1): p. 235-350.
36.Simpson, A.J., et al., The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature, 2000. 406(6792): p. 151-9.
37.da Silva, A.C., et al., Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002. 417(6887): p. 459-63.
38.An, S.Q., et al., Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence. PLoS Pathog, 2014. 10(10): p. e1004429.
39.Teplyakov, A., et al., Crystal structure of the YajQ protein from Haemophilus influenzae reveals a tandem of RNP-like domains. J Struct Funct Genomics, 2003. 4(1): p. 1-9.
40.Murzin, A.G., et al., SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 1995. 247(4): p. 536-40.
41.Lindahl, M., et al., Crystal structure of the ribosomal protein S6 from Thermus thermophilus. EMBO J, 1994. 13(6): p. 1249-54.
42.Wilson, K.S., et al., Crystal structure of a prokaryotic ribosomal protein. Proc Natl Acad Sci U S A, 1986. 83(19): p. 7251-5.
43.Shamoo, Y., et al., Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 A resolution. Nat Struct Biol, 1997. 4(3): p. 215-22.
44.Oubridge, C., et al., Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature, 1994. 372(6505): p. 432-8.
45.Price, S.R., P.R. Evans, and K. Nagai, Crystal structure of the spliceosomal U2B"-U2A'' protein complex bound to a fragment of U2 small nuclear RNA. Nature, 1998. 394(6694): p. 645-50.
46.Vidaver, A.K., R.K. Koski, and J.L. Van Etten, Bacteriophage phi6: a Lipid-Containing Virus of Pseudomonas phaseolicola. J Virol, 1973. 11(5): p. 799-805.
47.Qiao, X., et al., The role of host protein YajQ in the temporal control of transcription in bacteriophage Phi6. Proc Natl Acad Sci U S A, 2008. 105(41): p. 15956-60.
48.Qiao, X., et al., Interaction of a host protein with core complexes of bacteriophage phi6 to control transcription. J Virol, 2010. 84(9): p. 4821-5.
49.Kellogg, B.A. and C.D. Poulter, Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol, 1997. 1(4): p. 570-8.
50.Ogura, K. and T. Koyama, Enzymatic Aspects of Isoprenoid Chain Elongation. Chem Rev, 1998. 98(4): p. 1263-1276.
51.Soballe, B. and R.K. Poole, Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology, 1999. 145 ( Pt 8): p. 1817-30.
52.Liang, P.H., T.P. Ko, and A.H. Wang, Structure, mechanism and function of prenyltransferases. Eur J Biochem, 2002. 269(14): p. 3339-54.
53.Wallrapp, F.H., et al., Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily. Proc Natl Acad Sci U S A, 2013. 110(13): p. E1196-202.
54.Aussel, L., et al., Biosynthesis and physiology of coenzyme Q in bacteria. Biochim Biophys Acta, 2014. 1837(7): p. 1004-11.
55.Finkel, T. and N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature, 2000. 408(6809): p. 239-47.
56.Okada, K., et al., The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli. J Bacteriol, 1997. 179(9): p. 3058-60.
57.Zhang, J., et al., Expression, crystallization and preliminary crystallographic study of octaprenyl pyrophosphate synthase from Helicobacter pylori. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2011. 67(Pt 2): p. 263-5.
58.Guo, R.T., et al., Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis. J Biol Chem, 2005. 280(21): p. 20762-74.
59.Hosfield, D.J., et al., Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis. J Biol Chem, 2004. 279(10): p. 8526-9.
60.Guo, R.T., et al., Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases. Proc Natl Acad Sci U S A, 2007. 104(24): p. 10022-7.
61.Guo, R.T., et al., Crystal structure of octaprenyl pyrophosphate synthase from hyperthermophilic Thermotoga maritima and mechanism of product chain length determination. J Biol Chem, 2004. 279(6): p. 4903-12.
62.Zhang, J., et al., Modeling studies with Helicobacter pylori octaprenyl pyrophosphate synthase reveal the enzymatic mechanism of trans-prenyltransferases. Int J Biochem Cell Biol, 2012. 44(12): p. 2116-23.
63.Aslanidis, C. and P.J. de Jong, Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res, 1990. 18(20): p. 6069-74.
64.Boivin, S., S. Kozak, and R. Meijers, Optimization of protein purification and characterization using Thermofluor screens. Protein Expr Purif, 2013. 91(2): p. 192-206.
65.Ericsson, U.B., et al., Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem, 2006. 357(2): p. 289-98.
66.Zeng, S., et al., Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev, 2014. 43(10): p. 3426-52.
67.Luft, J.R. and G.T. DeTitta, A method to produce microseed stock for use in the crystallization of biological macromolecules. Acta Crystallogr D Biol Crystallogr, 1999. 55(Pt 5): p. 988-93.
68.鄭有舜, X-光小角度散射在軟物質上的應用. 物理雙月刊, 2004. 二十六卷二期.69.Skou, S., R.E. Gillilan, and N. Ando, Synchrotron-based small-angle X-ray scattering of proteins in solution. Nat Protoc, 2014. 9(7): p. 1727-39.
70.Putnam, C.D., et al., X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys, 2007. 40(3): p. 191-285.
71.https://www.lifetechnologies.com/order/catalog/product/E6645.
72.Han, X., et al., Crystal structures of ligand-bound octaprenyl pyrophosphate synthase from Escherichia coli reveal the catalytic and chain-length determining mechanisms. Proteins, 2015. 83(1): p. 37-45.