跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李貞穎
研究生(外文):Jen-Ying Li
論文名稱:探討百合B function MADS Box蛋白質之相互作用以調控花瓣及雄蕊之發育
論文名稱(外文):Investigation of the interactions for lily (Lilium longiflorum) B function MADS box proteins in regulating petals and stamens development
指導教授:楊長賢楊長賢引用關係
口試委員:呂維茗陳良築林彩雲余天心
口試日期:2015-07-24
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:110
中文關鍵詞:鐵炮百合
外文關鍵詞:Lilium longiflorum
相關次數:
  • 被引用被引用:1
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
ABCDE model說明了植物花器的形成是由model中的五群基因互相作用調控形成的,而大部份的”ABCDE”功能性基因屬於MADS box基因,其包含了具有能結合DNA的保守區域(MADS box domain)和與protein相互作用有關的K domain。為了更深入的了解百合花器的形成機制,本研究進行了百合中屬於B功能的MADS Box蛋白質(LMADS1/8/9)之間相互作用之探討。百合(lily,Lilium longiflorum)中選殖出來的LMADS1經序列的比對,發現其和阿拉伯芥B class的AP3基因具有高度之相似性;LMADS8和LMADS9則和阿拉伯芥B class的PI基因具有高度之相似性。首先利用酵母菌雙雜交系統(yeast two-hybrid)觀察,LMADS1可以自行形成同質二聚體外,LMADS1與LMADS8及LMADS9也會形成異質二聚體,AP3同源之LMADS1與阿拉伯芥PI具有形成異質二聚體的能力,而PI同源之LMADS8、LMADS9與阿拉伯芥AP3可形成異質二聚體。進一步了解蛋白於植物細胞中的確實表現情形,以螢光共振能量轉移(fluorescence resonance energy transfer,FRET)的實驗來驗證LMADS1、LMADS8和LMADS9與阿拉伯芥AP3和PI蛋白彼此之間的交互作用關係,結果發現LMADS1蛋白具有形成同質二聚體的能力,而LMADS8和LMADS9蛋白可以有效增加LMADS1的進核效率;LMADS8和LMADS9蛋白同時也具有形成同質二聚體的能力,且進核時不需要LMADS1的存在。更進一步分析指出LMADS1蛋白不會與阿拉伯芥PI蛋白有交互作用,但LMADS8和LMADS9蛋白可與阿拉伯芥AP3蛋白有交互作用。此結果顯示LMADS1蛋白可經由形成同質二聚體或者與LMADS8和LMADS9蛋白形成異質二聚體才具有功能性,而LMADS8和LMADS9蛋白可經由形成同質二聚體或者與LMADS1/AP3形成異質二聚體來執行其生理功能(第二章)。
在第二章當中我們已經初步了解百合B功能MADS box蛋白質的交互作用,接著我們要用互補的實驗與螢光共振能量轉移來更進一步以蛋白質的交互作用之角度來探討在百合中花瓣雄蕊發育的調控。而在互補實驗當中發現,p5D3::LMADS1/ap3轉殖株無法挽救ap3突變株的性狀;p5D3::LMADS8/pi轉殖株可以挽救pi突變株的花瓣性狀,及部分雄蕊的的性狀;p5D3::LMADS9/pi轉殖株只能部分挽救pi突變株的花瓣性狀,且花瓣短小。此外p5D3::LMADS1+p5D3::LMADS8/ap3xpi和p5D3::LMADS1+p5D3::LMADS9/ap3xpi轉殖株皆無法挽救ap3/pi雙突變株的性狀。接著以螢光共振能量轉移實驗觀察各種可能在阿拉伯芥轉殖株花瓣及雄蕊中出現的MADS box四聚體組合之間的交互作用。發現在花瓣中LMADS8-AP3-AP1-SEP3和LMADS9-AP3-AP1-SEP3可以形成完整的四聚體結構,LMADS8-LMADS8-AP1-
SEP3、LMADS9-LMADS9-AP1-SEP3與LMADS1-LMADS9-AP1-SEP3四聚體結構不存在,而LMADS1-LMADS8-AP1-SEP3可能形成結構較鬆散的四聚體,因此也可能影響與DNA結合的狀況;在雄蕊中則發現,LMADS8-AP3-AG-SEP3和LMADS9-AP3-AG-SEP3四聚體不容易形成,LMADS8-LMADS8-AG-SEP3、LMADS9-LMADS9-AG-SEP3、LMADS1-LMADS8-AG-SEP3和LMADS1-LMADS9-
AG-SEP3四聚體結構皆不存在。由以上結果證實LMADS8與LMADS9可以和AP3形成異質二聚體且可和AP1-SEP3交互作用,使得p5D3::LMADS8/pi和p5D3::LMADS9/pi轉植株花瓣可以被挽救;但LMADS8、LMADS9與AG交互作用不佳,使得p5D3::LMADS8/pi和p5D3::LMADS9/pi轉植株雄蕊不易被挽救。最後發現參與花器早期發育以及花瓣形成相關的基因AP1,在p5D3::LMADS8/pi和p5D3::LMADS9/pi轉植株中都有恢復到接近野生型表達狀況,因此轉殖株中的花瓣才能順利形成,而無法挽救性狀的p5D3::LMADS1/ap3轉殖株則與ap3突變株的表現量相同。調控花瓣及雄蕊晚期的細胞擴增與分化的基因NAP於ap3或pi突變株的表現量會下降,僅在p5D3::LMADS8/pi轉植株中NAP的表現量有回到與野生型阿拉伯芥相當的情況,說明了p5D3::LMADS8/pi轉植株中可以將花瓣挽救回與野生型相同的性狀。(第三章)

ABCDE model predicts the formation of any flower organs by the interaction of five classes of homeotic genes in plants. Most "ABCDE" functional genes are MADS box proteins which contained a conserved DNA-binding domain (the MADS box domain) and a putative protein interaction domain (K domain). To study the flower formation in lily (Lilium longiflorum), one AP3 gene, Lily MADS Box Gene 1 (LMADS1) and two PI genes, Lily MADS Box Genes 8 and 9 (LMADS8/9) are characterized in this study. To verify the relationship of LMADS1, LMADS8 and LMADS9, fluorescence resonance energy transfer (FRET) technique was applied to investigate the protein interaction for these proteins. The results indicated LMADS1 protein could form homodimer and its nuclear localization efficiency was greatly enhanced by LMADS8 or LMADS9 proteins. LMADS8 and LMADS9 also could form homodimer and enter to the nucleus in the absence of LMADS1. Further analysis indicated that LMADS1 could not interact with AtPI protein whereas LMADS8 or LMADS9 could interact with AtAP3 protein. These results revealed that LMADS1 needs to form heterodimer with LMADS8 or LMADS9 to perform its function. By contrast, LMADS8 and LMADS9 were able to carry out their physiological function through either their homodimer or heterodimer with LMADS1/AtAP3 (Chapter 2).
Functional complementary and FRET experiments were further used to study lily MADS box protein interaction in regulating petals and stamens development. In the complementation test, p5D3::LMADS1 was unable to rescue ap3 mutation. The p5D3::LMADS8 completely rescued petal formation in the second whorl and partially recued stamens development in the third whorl of Arabidopsis pi-1 mutant flowers. The p5D3::LMADS9 can only partially rescues petal formation in the second whorl of Arabidopsis pi-1 mutant flowers. Neither p5D3::LMADS1+p5D3::LMADS8/ap3xpi nor p5D3::LMADS1+p5D3::LMADS9 could rescue the defects in petal/stamen in ap3/pi double mutants. Further FRET analysis indicated that LMADS8-AP3-AP1-SEP3 and LMADS9-AP3-AP1-SEP3 were able to form complete tetramer in petals. In contrast, LMADS1-LMADS8-AP1-SEP3 formed loose tetramer LMADS8-LMADS8-AP1-SEP3 whereas LMADS9-LMADS9-AP1-SEP3 and LMADS1-LMADS9-AP1-SEP3 tetramers were not likely formed in petals. In stamens, LMADS8-AP3-AG-SEP3 and LMADS9-AP3-AG-SEP3 could form difficult tetramer with very low efficiency whereas the tetramers for LMADS8-LMADS8-AG-SEP3, LMADS9-LMADS9-AG-SEP3, LMADS1-LMADS8-AG-SEP3 and LMADS1-LMADS9-AG-SEP3 were unable to form. These results confirm that LMADS8 or LMADS9 could form heterodimer with AP3 and interact with AP1-SEP3 to rescue the petal formation in p5D3::LMADS8/pi or p5D3::LMADS9/pi plants. In contrast, LMADS8 or LMADS9 had difficulty to form tetramers with AP3-AG-SEP3 and was unable to rescue the stamen formation in p5D3::LMADS8/pi or p5D3::LMADS9/pi plants. Finally, the AP1 and NAP expression was up-regulated in the p5D3::LMADS8/pi or p5D3::LMADS9/pi plants to a level similar to that in wild type plants. In contrast, the AP1 and NAP expression in p5D3::LMADS1/ap3 plants was similar to that in ap3 mutant. (Chapter 3).


中文摘要 i
英文摘要 iii
目次 v

第一章 緒言
緒言 1
鐵炮百合(Lilium longiflorum) 1
MADS box基因 1
ABCDE模式的建立 2
非禾本科單子葉植物的 “modified ABC模式” 3
MADS box基因功能從基因層次到蛋白質層次的演進 3
MIKC型MADS box蛋白質 4
MIKC-type MADS-box蛋白的演化 5
參考文獻 7
附錄
附圖1-1、阿拉伯芥中花器形成之“ABCDE”model 10
附圖1-2、modified ABC模式 11
附圖1-3、花器形成之四聚體模式(Quartet model) 12
附圖1-4、植物MADS box基因MIKC-type蛋白質結構圖 13

第二章 百合B function MADS Box蛋白質之相互作用

前言 14
材料與方法 18
結果 29
一、鐵砲百合中ABCDE功能基因在各花器之表現 29
二、鐵砲百合中B功能基因序列分析 29
三、利用酵母菌雙雜交方法探討鐵砲百合中LMADS1、LMADS8、LMADS9與
阿拉伯芥中AP3與PI蛋白間相互作用關係 30
四、以螢光共振能量轉移探討鐵砲百合中LMADS1、LMADS8、LMADS9與阿
拉伯芥中AP3與PI蛋白間相互作用關係 31
討論 33
參考文獻 36
圖表
表2-1、本研究所使用之核酸引子(primer)序列 38
圖2-1、鐵砲百合中ABCDE 功能基因在各花器之表現 40
圖2-2、百合LMADS1與其他物種AP3同源基因之胺基酸序列比對 42
圖2-3、百合LMADS8、LMADS9與其他物種PI同源基因之胺基酸序列比對
43
圖2-4、AtAP3-ΔM與AtPI-ΔM序列選殖與構築 44
圖2-5、以酵母菌雙雜交 β-galactosidase活性試驗探討鐵砲百合中LMADS1、
MADS8與LMADS9蛋白間相互作用關係 45
圖2-6、以酵母菌雙雜交 β-galactosidase活性試驗探討鐵砲百合中LMADS1、
MADS8、LMADS9與阿拉伯芥中AP3與PI蛋白間相互作用關係 46
圖2-7、AtAP3、AtPI、LMADS1、LMADS8與LMADS9不具終止密碼子序列選殖
與構築 47
圖2-8、AtAP3、AtPI具終止密碼子序列選殖與構築 48
圖2-9、以螢光共振能量轉移探討活體細胞中鐵砲百合LMADS1、LMADS8、
LMADS9蛋白間相互作用關係 49
圖2-10、以螢光共振能量轉移探討活體細胞中鐵砲百合LMADS1、LMADS8、
LMADS9與阿拉伯芥中AP3與PI蛋白間相互作用關係 50
附錄
附圖2-1、不同物種花器形成之“ABCDE”model 51
附圖2-2、酵母菌雙雜交系統原理示意圖 52
附圖2-3、pGEM®-T Easy載體圖譜及限制酶切位 53
附圖2-4、pGADT7之載體圖譜(8.0 kb) 54
附圖2-5、pGBKT7之載體圖譜(7.3 kb) 55
附圖2-6、pEpyon-32K載體圖譜及限制酶切位 (載體大小10624 bp ) 56
附圖2-7、pEpyon-36K載體圖譜及限制酶切位 (載體大小10570 bp ) 57
附圖2-8、pEpyon-37K載體圖譜及限制酶切位 (載體大小10570 bp ) 58

第三章 百合B function MADS Box蛋白質之相互作用以調控花瓣及雄蕊之發育
前言 59
材料與方法 63
結果 67
一、p5D3::LMADS1之分子選殖、載體構築與大量表現鐵砲百合LMADS1於阿
拉伯芥ap3突變株之互補實驗分析 67
二、p5D3::LMADS8、p5D3:: LMADS9之分子選殖、載體構築與大量表現鐵砲
百合LMADS8、LMADS9於阿拉伯芥pi突變株之互補實驗分析 68
三、共同大量表現鐵砲百合LMADS1/LMADS8與LMADS1/LMADS9於阿拉伯芥
ap3/pi雙突變株之互補實驗分析 69
四、以螢光共振能量轉移探討p5D3::LMADS8/pi與p5D3::LMADS9/pi轉殖株其
花瓣中可能形成之MADS box四聚體的相互作用關係 69
五、以螢光共振能量轉移探討p5D3::LMADS8/pi與p5D3::LMADS9/pi轉殖株其
雄蕊中可能形成之MADS box四聚體的相互作用關係 72
六、以螢光共振能量轉移探討LMADS1/LMADS8與LMADS1/LMADS9於阿拉伯
芥ap3/pi雙突變株之花瓣、雄蕊中可能形成之MADS box四聚體的相互作
用關係 73
七、利用Real-time PCR偵測AP3/PI下游基因的表現 74
討論 76
參考文獻 80
圖表
表3-1、本實驗中所使用之核酸引子(primer)序列 85
表3-2、互補突變株之基因型鑑定統計 87
圖3-1、p5D3::LMADS1序列選殖與構築 88
圖3-2、p5D3::LMADS1/ap3轉基因植物鑑定及阿拉伯芥基因型分析 89
圖3-3、阿拉伯芥野生型與ap3突變株之性狀 90
圖3-4、p5D3::LMADS8 、 p5D3::LMADS9序列選殖與構築 91
圖3-5、p5D3::LMADS8/pi、p5D3::LMADS9/pi轉基因植物鑑定及阿拉伯芥基因型分析 92
圖3-6、p5D3::LMADS8、p5D3::LMADS9轉殖pi突變株之性狀分析 93
圖3-7、p5D3::LMADS8/pi轉植株花粉活性測試 94
圖3-8、p5D3::LMADS1+p5D3::LMADS8與p5D3::LMADS1+p5D3::LMADS9共同大
量表現於ap3/pi雙突變株之轉基因植物鑑定 95
圖3-9、AtSEP3與AtAP1具終止密碼子序列選殖與構築 96
圖3-10、AtSEP3、 AtAP1、AtAG不具終止密碼子序列選殖與構築 97
圖3-11、PI-AP3-AP1-SEP3、LMADS8-AP3-AP1-SEP3、LMADS9-AP3-AP1-SEP3四聚體間蛋白交互作用之分析 98
圖3-12、LMADS8-LMADS8-AP1-SEP3、LMADS9-LMADS9-AP1-SEP3四聚體間蛋白交互作用之分析 99
圖3-13、PI-AP3-AG-SEP3、LMADS8-AP3-AG-SEP3、LMADS9-AP3-AG-SEP3四聚體間蛋白交互作用之分析 100
圖3-14、LMADS8-LMADS8-AG-SEP3、LMADS9-LMADS9-AG-SEP3四聚體間蛋白交互作用之分析 101
圖3-15、LMADS1-LMADS8-AP1-SEP3、LMADS1-LMADS9-AP1-SEP3四聚體間蛋白交互作用之分析 102
圖3-16、LMADS1-LMADS8-AG-SEP3、LMADS1-LMADS9-AG-SEP3四聚體間蛋白交互作用之分析 103
圖3-17、以Real-time PCR偵測p5D3::LMADS1/ap3、p5D3::LMADS8/pi與p5D3::LMADS9/pi 轉殖株中AP3/PI下游基因NAP與AP1的表現 104
圖3-18、SEP3同質二聚體與百合及阿拉伯芥B功能蛋白四聚體間交互作用之分析 105
附錄
附圖3-1、不同物種B群基因經重組事件之演化相關性 106
附圖3-2、FRET efficiency曲線圖 107
附圖3-3、pEpyon-12K載體圖譜及限制酶切位 (載體大小10628 bp ) 108
附圖3-4、pEpyon-12H載體圖譜及限制酶切位 (載體大小10844 bp ) 109
附圖3-5、一些種子植物在系統發育中主要的B功能基因演化和蛋白形成二聚體的能力 110


Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24: 457-466
Asada Y, Kasai N, Adachi Y, Kanno A, Ito N, Yun PY, Masuda K (2006) A vegetative line of asparagus (Asparagus officinalis) with a homeotic change in flower development is correlated with a functional deficiency in class-B MADS-box genes. J Hortic Sci Biotech 81: 874-882
Burgeff C, Liljegren SJ, Tapia-Lopez R, Yanofsky MF, Alvarez-Buylla ER (2002) MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta 214: 365-372
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14: 1935-1940
Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18: 5370-5379
Fan HY, Hu Y, Tudor M, Ma H (1997) Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J 12: 999-1010
Gutierrez-Cortines ME, Davies B (2000) Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci 5: 471-476
Henschel K, Kofuji R, Hasebe M, Saedler H, Munster T, Theissen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 19: 801-814
Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529
Huang K, Louis JM, Donaldson L, Lim FL, Sharrocks AD, Clore GM (2000) Solution structure of the MEF2A-DNA complex: structural basis for the modulation of DNA bending and specificity by MADS-box transcription factors. EMBO J 19: 2615-2628
Immink RG, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent GC (2003) Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics 268: 598-606
Immink RG, Kaufmann K, Angenent GC (2010) The ''ABC'' of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 21: 87-93
Kanno A, Nakada M, Akita Y, Hirai M (2007) Class B gene expression and the modified ABC model in nongrass monocots. ScientificWorldJournal 7: 268-279
Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183-198
Lee S, Jeon JS, An K, Moon YH, Lee S, Chung YY, An G (2003) Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta 217: 904-911
Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404: 766-770
Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2: 186-195
Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55: 989-1003
Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15: 1538-1551
Passmore S, Maine GT, Elble R, Christ C, Tye BK (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells. J Mol Biol 204: 593-606
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203
Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26: 385-394
Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424: 85-88
Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci U S A 93: 4793-4798
Sommer H, Beltran JP, Huijser P, Pape H, Lonnig WE, Saedler H, Schwarz-Sommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9: 605-613
Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4: 75-85
Theissen G, Becker A (2004) Gymnosperm orthologues of class B floral homeotic genes and their impact on understanding flower origin. Critical Reviews in Plant Sciences 23: 129-148
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42: 115-149
Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43: 484-516
Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409: 469-471
Tunen AJv, Eikelboom W, Angenent GC (1993) FLORAL ORGANOGENESIS IN TULIPA. Flowering Newsletter: 33-38
Tzeng TY, Liu HC, Yang CH (2004) The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins. J Biol Chem 279: 10747-10755
Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T (2004) The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16: 741-754
Winter KU, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theissen G (2002) Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol Biol Evol 19: 587-596
Yang Y, Fanning L, Jack T (2003) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 33: 47-59
Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39
Chen MK, Hsieh WP, Yang CH (2012) Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues. J Exp Bot 63: 941-961
Chen MK, Lin IC, Yang CH (2008) Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiol 49: 704-717
Ciaffi M, Paolacci AR, Tanzarella OA, Porceddu E (2011) Molecular aspects of flower development in grasses. Sex Plant Reprod 24: 247-282
Cozzolino S, Schiestl FP, Muller A, De Castro O, Nardella AM, Widmer A (2005) Evidence for pollinator sharing in Mediterranean nectar-mimic orchids: absence of premating barriers? Proc Biol Sci 272: 1271-1278
Elangovan M, Wallrabe H, Chen Y, Day RN, Barroso M, Periasamy A (2003) Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29: 58-73
Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16: 9877
Hsu H-F, Hsu W-H, Lee Y-I, Mao W-T, Yang J-Y, Li J-Y, Yang C-H (2015) Model for perianth formation in orchids. Nature Plants 1: 15046
Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH (2010) C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 51: 1029-1045
Huijser P, Klein J, Lonnig WE, Meijer H, Saedler H, Sommer H (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11: 1239-1249
Keck E, McSteen P, Carpenter R, Coen E (2003) Separation of genetic functions controlling organ identity in flowers. EMBO J 22: 1058-1066
Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267: 522-525
Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277
Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409: 469-471
Tzeng TY, Chen HY, Yang CH (2002) Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol 130: 1827-1836
Tzeng TY, Hsiao CC, Chi PJ, Yang CH (2003) Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol 133: 1091-1101
Tzeng TY, Yang CH (2001) A MADS box gene from lily (Lilium Longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol 42: 1156-1168
毛婉廷 (2013) 文心蘭PISTILLATA (PI) 同源基因之功能性分析,國立中興大學生物科技學研究所碩士論文
Akita, Y., Y. Horikawa, and A. Kanno. (2008). Comparative analysis of floral MADS-box genes between wildtype and a putative homeotic mutant in lily. J. Hort. Sci. Biotech. 83:453–461.
Akita, Y., M. Nakada, and A. Kanno. (2011). Effect of the expression level of an AGAMOUS-like gene on the petaloidy of stamens in the double-flowered lily, ‘Elodie’. Scientia Hortic. 128:48–53.
Alexander MP (1980) A versatile stain for pollen fungi, yeast and bacteria. Stain Technol 55: 13-18
Alvarez-Buylla ER, Ambrose BA, Flores-Sandoval E, Englund M, Garay-Arroyo A, Garcia-Ponce B, de la Torre-Barcena E, Espinosa-Matias S, Martinez E, Pineyro-Nelson A, Engstrom P, Meyerowitz EM (2010) B-function expression in the flower center underlies the homeotic phenotype of Lacandonia schismatica (Triuridaceae). Plant Cell 22: 3543-3559
Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F., and Schmidt, R.J. (2000). Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell 5: 569-579.
Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29: 464-489
Becker A, Theissen G (2004) Orthologs of class B floral homeotic genes from
gymnosperms: features, phylogeny and importance for flower origin. CRC Crit
Rev Plant Sci 23:129-148
Benedito VA, Visser PB, van Tuyl JM, Angenent GC, de Vries SC, Krens FA (2004) Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. J Exp Bot 55: 1391-1399
Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M. (1989). Genes directing flower development in Arabidopsis. Plant Cell 1: 37-52.
Chen MK, Hsieh WP, Yang CH (2012) Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues. J Exp Bot 63: 941-961
Chen MK, Lin IC, Yang CH (2008) Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiol 49: 704-717
Doyle, J.J. (1994). Evolution of a plant homeotic multigene family: toward connecting molecular systematics and molecular developmental genetics. Syst. Biol. 43: 307-328.
Elena M. Kramer, Stilio Verónica SD, Philipp M. Schlüter (2003) Complex Patterns of Gene Duplication in the APETALA3 and PISTILLATA Lineages of the Ranunculaceae. International Journal of Plant Sciences 164: 1-11
Goto, K., and Meyerowitz, E.M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548-1560.
Guo, Y.F., and Gan, S.S. (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46: 601-612.
Hernandez-Hernandez, T., Martinez-Castilla, L.P., and Alvarez-Buylla, E.R. (2007). Functional diversification of B MADS-box homeotic regulators of flower development: adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol. Biol. Evol. 24: 465-481.
Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125: 1711-1721
Hsu, H.F., and Yang, C.H. (2002). An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol. 43: 1198-1209.
Hsu WH, Yeh TJ, Huang KY, Li JY, Chen HY, Yang CH (2014) AGAMOUS-LIKE13, a putative ancestor for the E functional genes, specifies male and female gametophyte morphogenesis. Plant J 77: 1-15
Irish, V.F. (2008). The Arabidopsis petal: a model for plant organogenesis. Trends Plant Sci. 13: 430-436.
Irish, V.F. (2009). Evolution of petal identity. J. Exp. Bot. 60: 2517-2527.
Jack, T., Brockman, L.L., and Meyerowitz, E.M. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-697.
Kanno A, Nakada M, Akita Y, Hirai M (2007) Class B gene expression and the modified ABC model in nongrass monocots. ScientificWorldJournal 7: 268-279
Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol Biol 52: 831-841
Kim, S., Yoo, M.J., Albert, V.A., Farris, J.S., Soltis, P.S., and Soltis, D.E. (2004). Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am. J. Bot. 91: 2102-2118.
Kramer, E.M., and Irish, V.F. (1999). Evolution of genetic mechanisms controlling petal development. Nature 399: 144-148.
Kramer, E.M., Dorit, R.L., and Irish, V.F. (1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765-783.
Kramer EM (2009) Aquilegia: a new model for plant development, ecology, and evolution. Annu Rev Plant Biol 60: 261-277
Kramer, I., Sigrist, M., de Nooij, J.C., Taniuchi, I., Jessel, T.M., and Arber, S. (2006). A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49: 379-393.
Krizek, B.A., and Meyerowitz, E.M. (1996). The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122: 11-22.
Lamb, R.S., and Irish, V.F. (2003). Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc. Natl. Acad. Sci. U.S.A. 100: 6558-6563.
Liu S, Sun Y, Du X, Xu Q, Wu F, Meng Z (2013) Analysis of the APETALA3- and PISTILLATA-like genes in Hedyosmum orientale (Chloranthaceae) provides insight into the evolution of the floral homeotic B-function in angiosperms. Ann Bot 112: 1239-1251
Litt A, Kramer EM (2010) The ABC model and the diversification of floral organ identity. Semin Cell Dev Biol 21: 129-137
Lunz M, Bradley AL, Chen W-Y, Gunʼko YK (2009) Two-Dimensional Förster Resonant Energy Transfer in a Mixed Quantum Dot Monolayer: Experiment and Theory. The Journal of Physical Chemistry C 113: 3084-3088
Ma H, dePamphilis C (2000) The ABCs of floral evolution. Cell 101: 5-8
Nagasawa, N., Miyoshi, M., Sano, Y., Satoh, H., Hirano, H., Sakai, H., and Nagato, Y. (2003). SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130: 705-718.
Park JH, Ishikawa Y, Ochiai T, Kanno A, Kameya T (2004) Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol 45: 325-332
Park JH, Ishikawa Y, Yoshida R, Kanno A, Kameya T (2003) Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Mol Biol 51: 867-875
Prasad, K., and Vijayraghavan, U. (2003). Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second-whorl-specific function in floral organ patterning. Genetics 165: 2301-2305.
Purugganan, M.D. (1997). The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J. Mol. Evol. 45: 392-396.
Sablowski, R.W.M., and Meyerowitz, E.M. (1998). A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92: 93-103.
Stellari, G.M., Jaramillo, M.A., and Kramer, E.M. (2004). Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Mol. Biol. Evol. 21: 506-519.
Sundstrom JF, Nakayama N, Glimelius K, Irish VF (2006) Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. Plant J 46: 593-600
Theissen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484-516.
Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100: 603-619
Tinoco I, Jr., Gonzalez RL, Jr. (2011) Biological mechanisms, one molecule at a time. Genes Dev 25: 1205-1231
Tsai, W.C., Lee, P.F., Chen, H.I., Hsiao, Y.Y., Wei, W.J., Pan, Z.J., Chuang, M.H., Kuoh, C.S., Chen, W.H., and Chen, H.H. (2005). PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 46: 1125-1139.
Tunen AJv, Eikelboom W, Angenent GC (1993) FLORAL ORGANOGENESIS IN TULIPA. Flowering Newsletter: 33-38
Tzeng, T.Y., and Yang, C.H. (2001). A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol. 42: 1156-1168.
Urbanus SL, de Folter S, Shchennikova AV, Kaufmann K, Immink RG, Angenent GC (2009) In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol 9: 5
Whipple, C.J., Zanis, M.J., Kellogg, E.A., and Schmidt, R.J. (2007). Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. Proc. Natl. Acad. Sci. U.S.A. 104: 1081-1086.
Winter, K.U., Becker, A., Munster, T., Kim, J.T., Saedler, H., and Theissen, G. (1999). MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci. U.S.A. 96: 7342-7347.
Winter KU, Saedler H, Theissen G (2002) On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. Plant J 31: 457-475
Wu X, Shi J, Xi M, Luo Z, Hu X (2010) A B Functional Gene Cloned from Lily Encodes an Ortholog of Arabidopsis PISTILLATA (PI). Plant Molecular Biology Reporter 28: 684-691
Xu Y, Teo LL, Zhou J, Kumar PP, Yu H (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46: 54-68
Yadav, S.R., Prasad, K., and Vijayraghavan, U. (2007). Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics 176: 283-294.
Yao, S.G., Ohmori, S., Kimizu, M., and Yoshida, H. (2008). Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development. Plant Cell Physiol. 49: 853-857.
Zahn, L.M., Leebens-Mack, J., DePamphilis, C.W., Ma, H., and Theissen, G. (2005). To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J. Hered. 96: 225-240.
Zik, M. (2002). Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell 15: 207-222.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top