跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡至恩
研究生(外文):Chih-En Tsai
論文名稱:不同基板上成長氧化鋅奈米柱之結構、光學及感應特性
論文名稱(外文):Structural, optical and sensing characteristics of ZnO nanorods grown on different substrates.
指導教授:汪芳興
指導教授(外文):Fang-Hsing Wang
口試委員:貢中元吳仁彰楊尚霖
口試委員(外文):Chung-Yuan KungRen-Jang WuSan-Lin Young
口試日期:2015-06-05
學位類別:碩士
校院名稱:國立中興大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:106
中文關鍵詞:氧化鋅奈米柱水熱法感應器
外文關鍵詞:ZnONanorodsHydrothemalSensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在藍寶石基板成長氧化鋅晶種層,並利用濕蝕刻晶種層形成擇區成長氧化鋅奈米柱之結構。同時也使用玻璃基板及P 型矽基板,以水熱法(Hydrothermal method)在不同成長時間(30-90 min)和不同醋酸鋅溶液濃度(0.01-0.04 M)下成長氧化鋅奈米柱,並鍍上厚度為350 nm的指叉狀鋁電極,形成金屬-半導體-金屬的氣體感應器及光檢測器。
由SEM圖可以看出在藍寶石基板及P 型矽基板上成長的氧化鋅奈米柱密度和成長方向有明顯的差異,且皆以成長時間為60 min及醋酸鋅濃度為0.03 M的奈米柱在單位面積下有最大的表面積。由X光繞射分析儀(X-ray Diffractometer, XRD)及光激發螢光(Photoluminescence, PL)分析可得知氧化鋅奈米柱的成長時間為60 min和醋酸鋅溶液為0.04 M時有最強的峰值及紫外光強度,和SEM分析出的總體積及總表面積有關。
氣體感應器之量測溫度為50–300 °C及感應氣體濃度為50–2000 ppm,結果表明各種成長參數所製備出之感應器皆在300 °C及氣體濃度為2000 ppm的環境下有最高的電阻響應值。這是因為成長時間為60 min及醋酸鋅濃度為0.03 M所製備的奈米柱在單位面積上具有最大的總表面積,此結果使此氣體感應器有最好的感應特性。比較以玻璃和藍寶石基板所製備的奈米柱,可發現前者具有較高的電阻響應值,在300 °C和2000 ppm的H2及CO可測到1.91及1.85的響應值,但後者反應時間和回復時間比較快,在相同條件下的H2及CO的反應時間分別為80 s及115 s。量測氣體感應器在空氣中的穩定性可發現,到第六天電阻響應值會降低25 %;而在氬氣中的穩定性可延長到第三十天,電阻響應值才會降低20 %。
紫外光檢測器的量測顯示,電阻比值會隨著醋酸鋅濃度增加而降低,在藍寶石基板上以醋酸鋅濃度0.01 M及成長60 min之奈米柱製備的光檢測器,可測得最高的電阻比值。


In this study, wet etching was used to produce patterned ZnO seed layer arrays, then the ZnO nanorods were grown by hydrothermal method. The different growth times (30-90 min) and concentrations of zinc acetate solution (0.01-0.04 M) were performed to grow ZnO nanorods, then the thermal evaporation method was used to deposit 350 nm-thick Al interdigitated electrodes as M-S-M gas sensors and UV light detectors.
From the SEM analysis, there were significant differences between the ZnO nanorods grown on different substracts. The maximum surface area of the ZnO nanorod was found with zinc acetate solution of 0.03 M and growth time of 60 min. The XRD analysis shows that the ZnO seed layer and the nanorods are typical wurtzite structures with preferred orientation along the (002) plane. The sample prepared with zinc acetate solution of 0.04 M and growth time of 60 min achieved the highest (002) peak intensity from XRD analysis and the highest UV light intensity from PL measurement.
The highest responses were obtained as the ZnO nanorods grown for 60 min with zinc acetate solution of 0.03 M on glass and sapphire substrates because of their large total surface area. The gas sensing response increased with the increasing measurement temperature or gas concentration, and the highest sensing response of the devices on different substrates were obtained under the temperature of 300 °C and the gas concentration of 2000 ppm regardless of H2 and CO gas. The highest gas sensing responses of 1.91 and 1.85 for H2 and CO were found at the concentration of 2000 ppm on glass substrates. The shortest response times of 80 s and 115 s for H2 and CO were found at the concentration of 2000 ppm on sapphire substrates. Stability test of sensors shows significant decrement (20-25% ) of the gas sensing responses after 30 and 6 days in Ar and air atmospheres, respectively.
For ZnO nanorods as UV light detectors, the photo response decreased with the increase of the concentration of zinc acetate solution. The highest response of 15 was found on the ZnO nanorods grown for 60 min with zinc acetate solution of 0.01 M on sapphire substrates.


誌謝 i
摘要 ii
Abstract iii
目錄 iv
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧與基礎理論 4
2.1 氧化鋅晶體結構與特性 4
2.2 氧化鋅光學特性 6
2.3 氧化鋅的成長機制 8
2.4 溶膠-凝膠法(Sol-Gel Method) 11
2.5 溶膠-凝膠的製備方法 12
2.6 氧化鋅在氣體感應器的應用 13
2.7氧化鋅在光檢測器的應用 19
第三章 實驗流程與步驟 21
3.1 實驗流程 21
3.1.1 實驗流程圖 21
3.1.2 氧化鋅奈米柱陣列製作示意圖 22
3.2 化學藥品與實驗用品 23
3.2.1 化學藥品 23
3.2.2 基板介紹 23
3.3 實驗儀器介紹 25
3.3.1 熱蒸鍍機 25
3.3.2 X光繞射儀分析 26
3.3.3 FE-SEM場發射掃描電子顯微鏡 27
3.3.4光激發螢光分析儀 28
3.4 基板清洗 29
3.5 氧化鋅晶種層製備 30
3.5.1氧化鋅溶膠製備 30
3.5.2氧化鋅種子層製備 31
3.5.3濕蝕刻處理 32
3.5.4退火處理 33
3.6 水熱法成長氧化鋅奈米柱陣列 34
3.7 熱蒸鍍機鍍鋁電極 35
3.8 紫外光檢測器量測 36
3.9 氣體感應器量測 37
第四章 結果與討論 39
4.1無圖案化之氧化鋅種子層與奈米柱陣列之形貌與晶體分析 39
4.1.1 氧化鋅種子層XRD分析 39
4.1.2 氧化鋅晶種層SEM分析 40
4.1.3 無圖案化之氧化鋅奈米柱陣列XRD分析 40
4.1.4 無圖案化之氧化鋅奈米柱陣列SEM分析 41
4.1.5 氧無圖案化之氧化鋅奈米柱陣列室溫螢光光譜 47
4.2圖案化之氧化鋅種子層與奈米柱陣列之形貌與晶體分析 50
4.2.1 氧化鋅凹點陣列晶種層XRD分析 50
4.2.2 氧化鋅凹點陣列晶種層SEM分析 52
4.2.3 圖案化之凹點陣列化氧化鋅奈米柱陣列XRD分析 53
4.2.4 圖案化之凹點陣列化氧化鋅奈米柱陣列SEM分析 55
4.2.5 圖案化之凹點陣列化氧化鋅奈米柱陣列室溫螢光光譜 59
4.3氣體感應器量測及分析 62
4.3.1 不同溫度之量測 62
4.3.2 不同氣體濃度之量測 73
4.3.3不同成長濃度之量測 76
4.3.4動態分析 78
4.3.5均勻性分析 82
4.3.6穩定性分析 88
4.4光感應器量測及分析 92
第五章 結論 94
參考文獻 96


[1]Zhong L. Wang, Characterizing the Structure and Properties of Individual Wire-Like Nanoentities, Adv. Mater. Volume 12, Issue 17, pp.1295–1298 (2000).
[2]Jiangtao Hu, Teri Wang Odom, Charles M. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Acc. Chem. Res. 32, pp. 435-445 (1999).
[3]Z.R.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H.F. Xu, Complex and oriented ZnO nanostructures, Nat. Mater. 2, pp. 821–826 (2003).
[4]J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO Nanostructures, Nano Lett. 2, pp. 1287–1291 (2002).
[5]X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves, Science 316 , pp. 102–105 (2007).
[6]X.S. Fang, L.M. Wu, L.F. Hu, ZnS nanostructure arrays: a developing material star, Adv. Mater. 23, pp. 585–598 (2011).
[7]Davide Barreca, Daniela Bekermann, Elisabetta Comini , Anjana Devi , Roland A. Fischer , Alberto Gasparotto , Chiara Maccato , Giorgio Sberveglieri , Eugenio Tondello, 1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases, Sensors and Actuators B 149, pp. 1–7 (2010).
[8]Q. Zhao, H. Z. Zhang, Y. W. Zhu and S. Q. Feng,“Morphological effects on the field emission of ZnO nanorod arrays,” Applied physics letters 86, pp. 203115(2005).
[9]M. S. Arnold, P. Avouris and Z. W. Pan, Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts, The Journal of Physical chemistry B 107, pp. 659-663(2003).
[10]W. Park, J. S. Kim and G. C. Yi, Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors, Applied physics letters 85, pp. 5052-5054(2004).
[11]Chun-Chieh Hu, The Luminescence Properties of ZnO Thin Films Prepared by Room Temperature Sputtering Process, National Chung Shan University, Kaohsiung, Taiwan (2005).
[12]F. Li , Z. Li, and F. J. Jin , Structural and luminescent properties of ZnO nanorods prepared from aqueous solution, Mater. Lett., 61, pp. 1876–1880 (2007).
[13]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, and J.A. Voigt “Mechanisms behind green photoluminescence in ZnO phosphor powders,”J. Appl. Phys., 79, pp. 7983-7990 (1996).
[14]B. Lin, Z. Fu, Y. Jia, and G. Liao , Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions, J. Electrochem. Soc., 148 , pp. 110-113 (2001).
[15]Po-Tsung Hsieh, Study on the Luminescence Characteristics of ZnO Thin Film, National Chung Shan University, Kaohsiung, Taiwan (2008).
[16]Yuan-Chung Wang, Preparation of nanosized ZnO arrays by electrophoretic deposition, Electro chemical and Solid-Stateletters, 5, pp.C53 (2002).
[17]M. J. Zheng, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays byone-step electro chemical deposition technique,Chemical PhysicalLetters, 363,p p.123-126 ( 2002).
[18]Z.Zhou, W. Peng, S. Ke, H. Deng, Tetrapod-shaped ZnO whisker and its composites, Journal of Materials Processing Technology,89, pp. 415-418 (1999).
[19]B. P. Zhang, N. T. Binh, K. Wakatsuki, Y.Segawa, Formation of highly aligned ZnO tubes on sapphire (0001) substrates, Appl. Phys. Lett.,84, pp.4098-4100 (2004).
[20]Tsai Chin-Chou, Huang Sheng-Pin, Study of Nitrogen and Aluminum co-doped P-type ZnO Thin Films, International Conference on Safety & Security Management and Engineering Technology (ICSSMET2010)Vol. 2 of 2 (2010).
[21]Seungjun Oh, Takahiro Nagata, Ja’nos Volk, and Yutaka Wakayama, Nanoimprint for Fabrication of Highly Ordered Epitaxial ZnO Nanorods on Transparent Conductive Oxide Films, Applied Physics Express 5 095003 (2012).
[22]M.T. Browne, P. Charalambous, and VA Kudryashov, “The proximity effect in electron beamnanolithography”, Microelectron Eng. 13,pp. 221-224 (1991).
[23]X.Wang, C.J. Summers, and Z. L. Wang, Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays, Nano Lett., 4, pp. 423-426 (2004).
[24]J. W. P. Hsu, Z. R Tian, N. C. Simmons, C. M. Matzke, J. A.Voigt, and J. Liu, Directed Spatial Organization of Zinc Oxide Nanorods, Nano Lett., 5, pp.83-86 (2005).
[25]M. Geissler, A. Bernard, A. Bietsch, H. Schmid, B. Michel, and E. Delamarche, Microcontact-Printing Chemical Patterns with Flat Stamps, J. Am. Chem. Soc., 122, , pp. 6303-6304 (2000).
[26]Yi-Che Su, Wei-Cheng Tang, Nanocomposites Prepared by Sol-Gel Process”, CHEMISTRY, The Chinese Chemical Society, Taipei, Vol. 70, No. 1, pp. 39-51 ( 2012).
[27] wangchao.net.cn, ZnO, from http://tc.wangchao.net.cn/baike/detail_421360.html (2010).
[28]EDN Network, White LEDs Printed on Paper—A Doctoral Thesis—Part I, from http://www.edn.com/design/led/4391796/2/White-LEDs-Printed-on-Paper-A-Doctoral-Thesis-Part-I (2012).
[29]J.B. Lee, H.J. Lee, S.H. Seo, J.S. Park, Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications, Thin Solid Films, 641, pp.398-399 (2001).
[30]Y.C. Lin, C.R. Hong, H.A. Chuang, Fabrication and analysis of ZnO thin film bulk acoustic resonators, Appl. Surf. Sci. 254 , pp. 3780-3783 (2008).
[31]Buffat, Ph.; Borell, J. P., Size effect on the melting temperature of gold particles, Phys. ReV. A, 13, pp. 2287-2298 (1976).
[32]A. N. Goldstein,C. M. Echer, A. P. Alivisatos, Melting in Semiconductor Nanocrystals, Science 256, pp. 1425-1427 (1992).
[33]W. I. Park, G. C. Yi, J. W. Kim, S. M.Park, Schottky nanocontacts on ZnO nanorod arrays, Appl. Phys. Lett., 82, pp. 4358-4360 (2003).
[34]H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M.Meyyappan, Growth of Epitaxial Nanowires at the Junctions of Nanowalls, Science,300, pp.1249-1251 (2003).
[35]Y. W. Wang, L. D. Zhang, G. Z.Wang, X. S.Peng,Z.Q.Chu,C.H.Liang, Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties, J.Cryst. Growth., 234, pp.171-174 (2002).
[36]Woong Lee, Min-Chang Jeong, Jae-Min Myoung, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation, Acta Materialia 52, pp. 3949–3957 (2004).
[37]Yuan-Chung Wang, Preparation ofnanosized ZnO arrays by electrophoretic deposition, Electrochemical and Solid-Stateletters, 5, pp. 53-55 (2002).
[38]M. J. Zheng, Fabrication and opticalproperties oflarge-scale uniform zinc oxidenanowirearrays byone-step electrochemicaldeposition technique, Chemical PhysicalLetters, 363, pp.123-125( 2002).
[39]R. A. Laudise, and A. A. Ballman, Hydrothermal synthesis of zinc oxide and zinc sulfide, J. Phys. Chem., 64, pp. 688-690 (1960)
[40]K. Govender, D.S. Boyle, P.B. Kenway andP. O''Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution, J.Mater Chem., 14, pp. 2575-2591 (2004).
[41]Q Ahsanulhaq, A Umar and Y B Hahn, Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties, Nanotechnology 18, pp. 115603-11610 (2007).
[42]Y. Sun, D. J.Riley, and M. N. R. Ashfold, Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates, J. Phys. Chem. B 110, pp. 15186-15192 (2006).
[43]Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, and R.P.H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chem. Mater. 17, pp. 1001-1005 (2005).
[44]W. Geffcken, E. Berger and Dtsch, Verfahren zur AEnderung des Reflexionsver moegens optischer Glaeser, Reichspatent 736411 (1939).
[45]A.J. Moulson and J.M. Herbert, “Electroceramics, 1st ed. Chap.1 &6 Chapman &Hall, New York , pp.1 &263.
[46]工業技術研究院工業材料研究所編印,”精密陶瓷特性及檢測分析”,(1999)
[47]M. Lourdes Calzada, Rafael Sirera, Francisco Carmona and Basilio Jimenez, Investigations of a Diol-based Sol-Gel Process for the Preparation of Lead Titanate Materials, Journal of the American Ceramic Society. Volume 78, Issue 7, pp. 1802–1808 (1995).
[48]Dislich, H.,Hinz, P. J., Sol-gel coating films for optical and electronic application Non-Cryst, Solids, 48, pp. 11 (1982).
[49]B. Jirgensons and M. E. Straumanis, Coloid Chemistry, MvMillian Co., New York, 1962.
[50]Peng-Wei Chiang, Effects of different catalysts on the growth of ZnO nanorods for the application of dye-sensitized solar cells, National Chung Hsing University, Taichung, Taiwan (2011).’
[51]Thomas, I. M. Klein,C. C., Eds.;Noyes: Park Ridge, In Sol-Gel Technology for Thin Films Fibers Preforms Electronics and Specialty Shapes, Chap 1 (1998).
[52]Sung-Hsun Chiang , Preparation and Characterization of AZO Transparent Conducting Films, National Cheng Kung University, Tainan, Taiwan (2006).
[53]Caihong Wang, Xiangfeng Chu, Mingmei Wu, Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sensors and Actuators B, 113,pp. 320–323 (2006).
[54]O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Journal of Physics D: Applied Physics 42 , pp. 225305-225308 (2009).
[55]Zuruzi A S, Kolmalov A, Macdonald N C and Moskovits M, Highly sensitive gas sensor based on integrated titania nanosponge arrays, Appl. Phys. Lett. 88, pp. 102904-102908 (2006).
[56]Kim Y S, Ha S C, Kim K,Yang H, Park J T, Lee C H, Choi J, Paek J and Lee K, Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film, Appl. Phys. Lett. 86, pp. 213105-213107 (2005).
[57]Huang H, Tan O K, Lee Y C, Tran T D, Tse M S and Yao X, Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment, Appl. Phys. Lett. 87 , pp. 163123-163127 (2005).
[58]Baratto C, Sberveglieri G, Onischuk A, Caruso B and Stasio S D, Low temperature selective NO 2 sensors by nanostructured fibres of ZnO, Sensors Actuators B , 100, pp. 261-265 (2004).
[59]Gao T and Wang T H, Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications, Appl. Phys. A 80, pp. 1451-1454 (2005).
[60]Chang J F, Kuo H H, Leu I C and Hon M H, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors Actuators B 84, pp. 258-264 (2002).
[61]Basu S and Dutta A, Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application, Sensors Actuators B 22, pp. 83-87 (1994).
[62]J.S. Wright, W. Lim, D.P. Norton, S.J. Pearton, F. Ren, J.L. Johnson, A. Ural, Nitride and oxide semiconductor nanostructured hydrogen gas sensors, Semiconductor Science and Technology 25 , pp. 024002-024009 (2010).
[63]J. Sun, J. Xu, Y.S. Yu, P. Sun, F. Liu, G. Lu, UV-activated room temperature metal oxide based gas sensor attached with reflector, Sensors and Actuators B: Chemical 169, pp. 291–296 (2012).
[64]K.J. Choi, H.W. Jang,, One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues, Sensors 10, pp. 4083-4099 (2010).
[65]Min Y, Tuller H L, Palzer S, Wollenstein J and Bottner H, Gas response of reactively sputtered ZnO films on Si-based micro-array, Sensors Actuators B 93, pp. 435-411 (2003).
[66] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO–nanostructures, defects, and devices, Materials Today 10, pp. 40-48 (2007).
[67]M. Tonezzer, R.G. Lacerda, Zinc oxide nanowires on carbon microfiber as flexible gas sensor, Low-dimensional Systems and Nanostructures, Physica E 44, pp. 1098-1102 (2012).
[68]Zhang D H, Li C, Liu X L, Tang T and Zhou C W, Doping-dependent Ammonia Sensing of Indium Oxide Nanowires, Appl. Phys. Lett. 83, pp. 1845-1847 (2003).
[69]Wan Q and Wang T H, Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application, Chem. Commun. 30, pp. 3841-3843 (2005).
[70]Li Q H, Liang Y X,Wan Q and Wang T H, Oxygen sensing characteristics of individual ZnO nanowire transistors , Appl. Phys. Lett. 85, pp. 6389-6393 (2004).
[71]Chen Y J, Nie L, Xue X Y,Wang Y G and Wang T H, Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity, Appl. Phys. Lett. 88, pp. 083105-083109 (2006).
[72]L. Liao, H. B. Lu, J.C. Lin and C. Lin, Size Dependence of Gas Sensitivity of ZnO Nanorods, The Journal of Physical Chemistry C 111, pp. 1900‒1903(2006).
[73]J X Wang, X W Sun, Y Yang, H Huang, Y C Lee, O K Tan and L Vayssieres, Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications, Nanotechnology 17, pp. 4995–4998 (2006).
[74]Sadullah Ozturk, Necmettin Kılınc, Zafer Ziya Ozturk, Effect of ZnO nanorods density on NO2 sensing, The 14th International Meeting on Chemical Sensors P2.4.1 (2012).
[75]Q. Li et al, Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions, Chemistry material 17, pp. 1001-1006 (2005).
[76]J.X. Wang, X.W. Sun, H. Huang, Y.C. Lee, O.K. Tan, M.B. Yu, G.Q. Lo, D.L. Kwong, A two-step hydrothermally grown ZnO microtube array for CO gas sensing, Appl. Phys. A 88, pp. 611–615 (2007).
[77]Oleg Lupan, Guangyu Chai, Lee Chow, Novel hydrogen gas sensor based on single ZnO nanorod, Microelectronic Engineering 85, pp. 2220–2225 (2008).
[78]H. Huang, O.K. Tan, Y.C. Lee, T.D. Tran,M.S. Tse, X. Yao, Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with post plasma treatment, Appl. Phys. Lett. 87, pp. 163123-163127 (2005).
[79]A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Dingn Z.L. Wang, Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks, Appl. Phys. Lett. 88, pp. 203101-203104 (2006).
[80]M. Takata, D. Tsubone, H. Yanagida, Dependence of electricalconductivity of ZnO, degree of sensing, J. Am. Ceram. Soc. 59, pp. 4–8 (1976).
[81]H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO, Sensors and Actuators B 115 , pp. 247–251 (2006).
[82]S. Saito, M. Miyayama, K. Kuomoto, H. Yanagida, Gas sensing characteristics of porous ZnO and Pt, J. Am., Ceram. Soc. 68, pp. 40-45 (1985).
[83]Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, Photoconductivity of ultrathin zinc oxide film, Jpn. J. Appl. Phys., 33, pp. 6611-6645 (1994).
[84]Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles , Nano Letters, 8, pp. 1649-1654 (2008).
[85]Luo Ji Zong , The applications of the thin films technology, pp. 105-109 (2004).
[86]Li-Jen Lin, The theories and Applications of X-ray diffraction, Materialsnet 86 (1994).
[87]Office of Research and Development of National Chung Hsing University, from FE-SEM,FIB”http://research.nchu.edu.tw/chinese/04_achievement/042_detail.aspx?MainID=33&kind=1
[88]Apurba, D.; Soumitra, K.; Subhadra, C., Optical and fieldemission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route, J. Phys. Chem. B, A-E. (2006).
[89]Peng-Wei Chiang , Effects of different catalysts on the growth of ZnO nanorods for the application of dye-sensitized solar cells, National Chung Hsing University, Taichung, Taiwan (2011).’
[90]Qingwei Li, JimingBian, Jingchang Sun, Jingwei Wang, Yingmin Luo, Kaitong Sun, Dongqi Yu, Controllable growth of well-aligned ZnOnanorod arrays by low-temperature wet chemical bath deposition method, Applied Surface Science 256, pp. 1698–1702 (2010).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top