跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊和勳
研究生(外文):He-Syun Jhuang
論文名稱:以射頻磁控濺鍍法製備鎵氟共摻雜氧化鋅薄膜及其特性之研究
論文名稱(外文):Fabrication and characterization of Ga, F co-doped zinc oxide thin films by radio-frequency magnetron sputtering
指導教授:汪芳興
口試委員:劉漢文施能夫
口試日期:2015-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:76
中文關鍵詞:以射頻磁控濺鍍法製備鎵氟共摻雜氧化鋅薄膜及其特性之研究
外文關鍵詞:Fabrication and characterization of GaF co-doped zinc oxide thin films by radio-frequency magnetron sputtering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用射頻磁控濺鍍系統沉積氧化鋅共摻鎵與氟(GFZO)薄膜於康寧Eagle XG玻璃上,其中靶材為3 wt% Ga2O3摻雜的氧化鋅靶材,命名為GZO,並且在濺鍍過程通入四氟化碳(CF4)氣體做氟的摻雜。
本實驗所有系列的薄膜皆是以氬氣(Argon)作為背景氣體,改變CF4/Ar的流量比,固定其他參數包括背景壓力、工作壓力、電漿功率、薄膜厚度及工作距離,分別為5×10-6 Torr、5×10-3 Torr、100 W、330 nm及8 cm,以及在CF4為0.2%時在3種不同沉積溫度(RT、100°C、200°C)下沉積GFZO薄膜。在完成薄膜的製備後,將其中在室溫下且CF4 0.2%摻雜量沉積的薄膜使用高溫爐管做後退火處理,進行3種不同溫度的熱退火處理(200°C、300°C、400°C) ,退火時間60分鐘,並透過各種分析來探討其光電特性與結構特性。
所有系列的薄膜中,在可見光範圍的穿透率皆達89%以上,其中GZO摻雜CF4系列在未摻雜CF4時具有最佳的電阻率為3.372×10-3 Ω-cm;而GZO摻雜CF4 0.2%變溫的系列則是在200°C時具有最佳的電阻率為6.465×10-4 Ω-cm。
在室溫下CF4 0.2%摻雜量GFZO薄膜經過退火處理後,由於結晶性的改善,使得電阻率有30%以上的改善。光學穿透率部分在可見光區有2~3%小幅的提升,顯示薄膜在退火處理後有效的提升其光電與結構特性。


In this study, gallium and fluorine co-doped zinc oxide (GFZO) thin films were deposited on Corning EagleXG glass with RF magnetron sputtering system. We used ZnO targets containing 3wt% Ga2O3, named GZO. Then, we introduced doping gas tetrafluoromethane (CF4) into the chamber during sputtering process.
This experiments use Ar as a background gas and vary CF4/Ar flow ratio. Base pressure, working pressure, plasma power, film thickness, and working distance were fixed at 5 × 10-6 Torr, 5 × 10-3 Torr, 100 W, 330 nm and 8 cm. GFZO thin films with CF4/Ar 0.2% were deposited on glass at the different substrate temperatures of RT, 100°C, 200°C. After thin film deposition, the films prepared at room temperature and CF4 0.2% were annealed at 200°C, 300°C, and 400°C. Effects of F content, substrate temperature, and annealing on electrical, optical and structural properties of thin films were explored.
In all films, the transmittance in the visible range was over than 89%. For RT-deposited and CF4-doped GFZO series, the lowest resistivity of 3.372×10-3 Ω-cm was obtained without CF4 doping, and for CF4 0.2% at the different substrate temperature series, the lowest resistivity of 6.465×10-4 Ω-cm was obtained with substrate temperature at 200°C.
For the RT-deposited and annealed samples, the crystallinity of all thin films was improved, and resistivity decreased >30%. The transmittance showed a slight improvement (2~3%) at visible region. The findings showed furnace annealing enhanced the electrical, optical and structural properties of the films.


致謝 i
摘要 ii
Abstract iii
目錄 iiv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 1
第二章 基礎理論與文獻回顧 3
2.1氧化鋅晶體結構與特性 3
2.2 共摻雜鎵氟之氧化鋅(GFZO)薄膜 5
2.2.1 電學性質 5
2.2.2 光學性質 6
2.3電漿基礎原理 7
2.4射頻磁控濺鍍 8
2.4.1 濺鍍原理 8
2.4.2 直流與射頻濺鍍 9
2.4.3 磁控濺鍍 10
第三章 實驗步驟與方法 11
3.1實驗製程與流程分析 11
3.2基板切割與清洗流程 12
3.3薄膜沉積 13
3.3.1 薄膜沉積設備 13
3.3.2 共摻雜鎵氟之氧化鋅(GFZO)薄膜製程參數 13
3.3.3 真空後退火處理參數 15
3.4薄膜量測分析 16
3.4.1 薄膜結構分析 16
3.4.2 薄膜電性量測 18
3.4.3 薄膜光學量測 19
3.4.4 元素成分分析 20
3.4.5 二次離子質譜儀分析 20
第四章 結果與討論 21
4.1 CF4/Ar流量比對於薄膜特性之影響 21
4.1.1 薄膜沉積速率 21
4.1.2 薄膜XRD分析 22
4.1.3 薄膜SEM分析 24
4.1.4 薄膜AFM分析 28
4.1.5 薄膜電性分析 29
4.1.6 薄膜穩定度分析 31
4.1.7 薄膜光學分析 32
4.1.8 薄膜XPS分析 38
4.2 後退火處理對於GFZO薄膜之影響 44
4.2.1 後退火處理之薄膜XRD分析 44
4.2.2 後退火處理之薄膜SEM分析 46
4.2.3 後退火處理之薄膜AFM分析 50
4.2.4 後退火處理之薄膜電性分析 50
4.2.5 後退火處理之薄膜穩定度分析 53
4.2.6 後退火處理之薄膜光學分析 54
4.2.7 後退火處理薄膜之二次離子質譜儀分析 60
4.2.8 後退火處理薄膜之XPS分析 63
第五章 結論 70
參考文獻 72


[1] H. Kim, J.S. Horwitz, W.H. Kim, A.J. Makinen, Z.H. Kafafi, D.B. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes”, Thin Solid Films, (2002) 539-543.
[2] Maoshui Lv, Xianwu Xiu, Zhiyong Pang, Ying Dai, Shenghao Han, “Influence of the deposition pressure on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering”, Applied Surface Science, 252 (2006) 5687-5692.
[3] C. Becker, E.Conrad, P.Doga, F.Fenske, B.Gorka, T.Hanel, K.Y.Lee, B.Rau, F.Ruske, T.Weber, M.Berginski, J.Hu pkes, S.Gall, B.Rech, “Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells”, Solar Energy Materials & Solar Cells, 93 (2009) 855-858.
[4] H. Zhu, J. Hupkes, E. Bunte, S.M. Huang, “Study of ZnO:Al films for silicon thin film solar cells”, Applied Surface Science, 261 (2012) 268-275.
[5] S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, “Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells:temperature-induced morphological changes”, Solar Energy Materials & Solar Cells, 86 (2005) 385-397.
[6] V. Assuncao, E. Fortunato, A. Marques, H. A´ guas, I. Ferreira, M.E.V. Costa, R. Martins, “Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature”, Thin Solid Films, 427 (2003) 385-397.
[7] Weifeng Yang, Zhuguang Liu, Dong-Liang Peng, Feng Zhang, Huolin Huang, Yannan Xie, Zhengyun Wu, “Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method”, Applied Surface Science, 255 (2009) 401–405.
[8] Seung Wook Shin, Kyu Ung Sim, Jong-Ha Moon, Jin Hyeok Kim, “The effect of processing parameters on the properties of Ga-doped ZnO thin films by RF magnetron sputtering”, Current Applied Physics, 10 (2010) 274–277.
[9] L. Raniero, I. Ferreira, A. Pimentel, A. Gonc¸alves, P. Canhola, E. Fortunato, R. Martins, “Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings”, Thin Solid Films, 511-512 (2006) 295-298.
[10] Yu-Zen Tsai, Na-Fu Wang, Chun-Lung Tsai, “Formation of F-doped ZnO transparent conductive films by sputtering of ZnF2”, Materials Letters, 63 (2009) 1621–1623.
[11] Hua-fu Zhang, Rui-jin Liu, Han-fa Liu, Cheng-xin Lei, Dong-tai Feng, Chang-Kun Yuan, “Mn-doped ZnO transparent conducting films deposited by DC magnetron sputtering”, Materials Letters, 64 (2010) 605-607.
[12] Sheng Hsiung Chang, Hsin-Ming Cheng, Chuen-Lin Tien, Shih-Chin Lin, Kie-Pin Chuang, “Optical, electrical and mechanical properties of Ga-doped ZnO thin films under different sputtering powers”, Optical Materials, 38 (2014) 87–91.
[13] Farah Lyana Shain, Azmizam Manie, Mani, Lam Mui Li, “Temperature Dependence of Ga:ZnO Film Deposited By RF Magnetron Sputtering”, IEEE-ICSE2014 Proc, 978 (2014) 479–482.
[14] Jen-Po Lin and Jenn-Ming Wu, “The effect of annealing processes on electronic properties of sol-gel derived Al-doped ZnO films”, Applied Physics Letters, 92 (2008) 134103.
[15] Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, H. Watanabe, “Hetero-epitaxial growth of ZnO thin films by atmospheric pressure CVD method”, Journal of Crystal Growth, 221 (2000) 431-434.
[16] Akio Suzukia,, Tatsuhiko Matsushita, Takanori Aoki, Akihito Mori, Masahiro Okuda, “Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition”, Thin Solid Films, 411 (2002) 23-27.
[17] Yutaka Sawada, Chikako Kobayashi, Shigeyuki Seki, Hiroshi Funakubo, “Highly-conducting indium–tin-oxide transparent films fabricated by spray CVD using ethanol solution of indium (III) chloride and tin (II) chloride”, Thin Solid Films, 409 (2002) 46-50.
[18] Jingbiao Cui, “Zinc oxide nanowires”, Materials Characterization, 64 (2012) 43-52.
[19] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Progress in Materials Science, 50 (2005) 293-340.
[20] Jin-Bock Lee, Hye-Jung Lee, Soo-Hyung Seo, Jin-Seok Park, “Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications”, Thin Solid Films 398 –399 (2001) 641–646.
[21] Y.C. Lin , C.R.H., H.A. Chuang, “Fabrication and analysis of ZnO thin film bulk acoustic resonators”, Applied Surface Science, 254 (2008) 3780-3786.
[22] Boen Houng & Han Bin Chen, “Effect of discharge power density on the properties of Al and F co-doped ZnO thin films prepared at room temperature”, J Electroceram, 29 (2012) 1-7.
[23] Saliha Ilican, Yasemin Caglar, Mujdat Caglar, Fahrettin Yakuphanoglu, “Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by sol–gel process”, Applied Surface Science, 255 (2008) 2353-2359.
[24] D.L. Zhua, Q. Wanga, S. Hana, P.J. Caoa, W.J. Liua, F. Jia, Y.X. Zenga, X.C. Maa, Y.M. Lu, “Optimization of process parameters for the electrical properties in Ga-doped ZnO thin films prepared by r.f. magnetron sputtering”, Applied Surface Science, 298 (2014) 208-213.
[25] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Progress in Materials Science, 50 (2005) 293-340.
[26] Donald A.Neamen, “Fundamentals of Semiconductor Physics and Device”, McGraw-Hill, 2005.
[27] Sernelius, B.E., et al., “band-gap tailoring of ZnO by means of heavy Al doping”, Physical review. B, Condensed matter, 37 (1988) 10244-10248.
[28] ELIAS BURSTEIN, “Anoma1ous Optical Absorption Limit in InSb”, Physical review, 93(1954) 632.
[29] T. S. MOSS, “The Interpretation of the Properties of Indium Antimonide”, Proc. Phys. Soc. B, 67 (1954) 775.
[30] Hyeongsik Park, Kyungsoo Jang, Krishna Kumar, Shihyun Ahn, Jaehyun Cho, Juyeon Jang, Kyungjun Ahn, Jeonghoon Yeom, Dongseok Kim, Junsin Yi, “Electrical mechanism analysis of Al2O3 doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering”, Thin Solid Films, 519 (2011) 6910-6915.
[31] Campbell, S.A., “The Science and Engineering of Microelectronic Fabrication”, Oxford University Press, 2001. 2nd edition.
[32] 姜辛, 孙超, 洪瑞江, 戴达煌, “透明导电氧化物薄膜. 高等教育出版社”, 2008年.
[33] Klaus Ellmer, “Magnetron sputtering of transparent conductive zinc oxide : relation between the sputtering parameters and the electronic properties”, J. Phys. D: Appl. Phys., 33 (2000) R17–R32.
[34] Fang-Hsing Wang, Hung-Peng Chang, Chih-Chung Tseng, Chia-Cheng Huang, “Effects of H2 plasma treatment on properties of ZnO:Al thin films prepared by RF magnetron sputtering”, Surface & Coatings Technology, 205 (2011) 5269–5277.
[35] 李芳紜, “超音波輔助化學水浴法製備AgInS2薄膜之電化學阻抗頻譜分析”, 國立中央大學化學工程與材料工程研究所碩士論文, 民國102年六月, 51.
[36] Farah Lyana Shain, Azmizam Manie, Mani, Lam Mui Li, “Temperature Dependence of Ga:ZnO Film Deposited By RF Magnetron Sputtering”, IEEE-ICSE2014 Proc, 978 (2014) 479–482.
[37] Qian Shi, KesongZhou, MinjiangDai, HuijunHou, SongshengLin, ChunbeiWei, Fang Hu, “Room temperature preparation of high performance AZO films by MF sputtering”, Ceramics International, 39 (2013) 1135-1141.
[38] Boen Houng, Han Bin Chen, “Investigation of AlF3 doped ZnO thin films prepared by RF magnetron sputtering”, Ceramics International, 38 (2012) 801-809.
[39] H.S. Yoon, K.S. Lee a, T.S. Lee, B. Cheong, D.K. Choi, D.H. Kim, W.M. Kim, “Properties of fluorine doped ZnO thin films deposited by magnetron sputtering”, Solar Energy Materials and Solar Cells, 92 (2008) 1366-1372.
[40] Deok Kyu Kim, Hong Bae Kim, “Room temperature deposition of Al-doped ZnO thin films on glass by RF magnetron sputtering under different Ar gas pressure”, Journal of Alloys and Compounds, 509 (2011) 421-425.
[41] G. Haacke, “New figure of merit for transparent conductors”, J. Appl. Phys., 47 (1976) 4087.
[42] Deok-Kyu Kim, Hong-Bae Kim, “Dependence of the properties of sputter deposited Al-doped ZnO thin films on base pressure”, Journal of Alloys and Compounds, 522 (2012) 69-73.
[43] Byeong-Yun Oh, Min-Chang Jeong, Jae-Min Myoung, “Stabilization in electrical characteristics of hydrogen-annealed ZnO:Al films”, Applied Surface Science, 253 (2007) 7157-7161.
[44] A. TRESSAUD, F. MOGUET, S. FLANDROISS, M. CHAMBON, C. GUIMON,G. NANSE, E. PAPIRER, V. GUPTA and 0. P. BAHL, “On the nature of C-F bonds in various fluorinated carbon materials: XPS and TEM investigations”, J. Phw. Chew Solids Vol 57, Nos 6-8 (1996) 745-751.
[45] A. Tressaud, C. Guimon, V. Gupta, F. Moguet, “Fluorine-intercalated carbon fibers: II: An X-ray photoelectron spectroscopy study”, Materials Science and Engineering B30, (1995) 61-68.
[46] Fang-Hsing Wang, Hung-Peng Chang, Chih-Chung Tseng, Chia-Cheng Huang, “Effects of H2 plasma treatment on properties of ZnO:Al thin films prepared by RF magnetron sputtering”, Surface & Coatings Technology, 205 (2011) 5269–5277.
[47] Mayer, R., “The Artist''s Handbook of Materials and Techniques: Fifth Edition”, Faber, (1991) 784.
[48] Schoen, G. J, “Electorn Spectrosc. Relat. Phenom”, 2 (1973) 75
[49] 孙清清, 张卫, 房润辰, 杨雯, 王鹏飞, “砷化镓表面自体氧化物清洗、纯化及淀积”, BiBTeX, CN102339775 A, February, 2012.
[50] 袁大為, 沈英謨, 王建仁, “半導體原件”, 鼎茂圖書出版股份有限公司, 民國101年二版, 119-121.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top