跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 16:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃怡娟
研究生(外文):Yi-Chuan Huang
論文名稱:【鐵/釩】雙層薄膜經離子束轟擊後之微結構與磁性質研究
論文名稱(外文):Microstructure and magnetic properties after ion beam bombardment of 【Fe/V】 bilayer Thin Film
指導教授:林克偉林克偉引用關係
指導教授(外文):Ko-Wei Lin
口試委員:孫安正張晃暐
口試日期:2015-06-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:52
中文關鍵詞:鐵釩雙層離子束磁性
外文關鍵詞:Fe/V bilayerion beammagnetic
相關次數:
  • 被引用被引用:8
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究係針對利用離子束濺鍍系統( IBAD) 以二氧化矽(SiO2)基板所鍍著鋁/[鐵/釩](Al / [Fe/V])雙層薄膜,其中鋁層係屬該薄膜的防護層,並再經由離子束轟擊鐵磁層後進行其微結構及磁性質分析探討。
利用X光繞射儀進行X光繞射分析(X-ray Diffraction,XRD) Fe/V薄膜的晶體結構,並從繞射圖譜得知在其繞射角2θ分為82.3°(Fe)、42.1°(V)、33.1° ( Fe2O3);於JCPDS Card 之鐵(211)、釩(110)、氧化鐵(104)的hkl晶面具有一繞射峰。而鐵與釩皆屬於體心立方晶體結構( Body-Centered Cubic Crystal Structure,BCC),利用布拉格定律(Bragg’s law) 分別計算其晶面間距(dhkl)求得鐵、氧化鐵與釩的晶格常數a(Å),鐵晶格常數a211=2.87 Å、釩晶格常數a110=3.03 Å,氧化鐵(Fe-oxide) 晶格常數a=5.05 Å, c=13.76 Å, c/a值為2.72。並將實驗計算值與塊材理論值(JCPDS Card)相比對可得知是相近的,亦驗證此實驗樣品含有氧與鐵結合形成氧化鐵(Fe-oxide)的存在。
再經由穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 觀察鍍膜微結構、膜厚以及晶粒尺寸。從TEM橫截面圖中可清楚辨別四層斷面,分別為二氧化矽基板、釩、鐵(含部份氧與鐵結合形成之氧化鐵)、鋁和覆蓋在最上方之Epoxy,其鐵、釩、鋁各層膜厚分別為9.91 nm(氧化鐵膜厚1.69 nm)、26.1 nm、10.78 nm。透過暗視野圖統計出平均晶粒尺寸(grain size)約為9.8 nm。
最後利用震動樣品磁力計(VSM)在外加磁場(12 kOe) 並於室溫(298 K)及低溫(180 K)下量測薄膜的磁性質。在低溫(180 K)下之矯頑磁力有增加之現象為35.9 Oe,主要原因是於低溫(180 K)下,磁矩翻轉較不容易和鐵磁與反鐵磁界面交換耦合強度增強所致。室溫(298 K)與低溫(180 K)下之交換偏壓場差異性不大,其交換偏壓場差為0.5 Oe,形成交換偏壓場原因可能是Fe與O結合後較容易形成Fe2O3,其磁性質具有反鐵磁性。但發現實驗樣品在低溫時其交換偏壓場無明顯變化,可能是實驗試片內所形成的Fe2O3較低。

The study uses silicon dioxide (SiO2) substrate in an ion beam assisted deposition (IBAD) system which plated with Aluminum/[Iron/ Vanadium ((Al/[Fe/V]) bilayer, wherein the aluminu layer is the protective layer, then analyze and explore its microscture and magnetic properties after using ion beam bombarding the ferromagnetic layer.
X-ray diffractometer is used to analzye the crystal structure of Fe/V film with X-ray diffraction (XRD), from the diffrction pattern, it is known that its diffraction angle 2θ is divided into 82.3°(Fe), 42.1°(V), 33.1° ( Fe2O3). The hkl crystal planes of Iron (211), Vanadium (110) and Ferric Oxide (104) of JCPDS Card have a diffraction peak. The structure of Iron and Vanadium are both body-centered cuibc crystal structure (BCC). Bragg’s law is used to respectively calculate its interplanar distance (dhkl) to get the lattice constant of Iron, Ferric Oxide, and Vanadium, which is a(Å); the lattice constant of Iron a211 is 2.87 Å; the lattice constant of Vanadium a110 is 3.03 Å; the lattice constant of Fe-oxide a is 5.05 Å, c is 13.76 Å, and the c/a value is 2.72. This experimental calculated value is compared with JCPDS Card, and the result shows that the values are similar, and verifies that the test sample contains Fe-oxide which is a combination of oxygen and iron.
Next, observing the microstructure of coated film, film thickness, and grain size via a transmission electron microscope (TEM). From a cross-sectional TEM image, it can be clearly seen that each layer is respectively silicon dioxide (SiO2)substrate, vanadium, iron (including Fe-oxide which is a combination of oxygen and iron), aluminum, and Epoxy that is covered on the top. The film thickness of iron, vanadium, and alauminum is respectively 9.91 nm (1.69 nm for Fe-oxide), 26.1 nm, and 10.78 nm. Counted through dark field diagram, the average grain size is about 9.8 nm.
Finally, vibration sample magnetometer (VSM) is used to measure the magnetic properties of thin film in an external magnetic filed (12 kOe) at room tempaure (298 K) and at low temperature (180 K). At low temperature (180 K), the coercitive force increases 35.9 Oe; the main reason is that, in such low temperature (180 K), magnetization reversal is less easy, and the exchange coupling strength of ferromgnetic and antiferromagnetic planes increases. The difference of exchange biasing field at room temprature (298 K) and low temprature (180 K) is not significant; its exchange biasing field is 0.5 Oe. The cause of exchange biasing field may be that after Fe and O reacts, they more likely to form Fe2O3 whose magnetic property is antiferromagnetic. Nevertherelss, it is found that there is no significant change in exchange biasing field of the test sample at low tempearture; the reason may be that ratio of Fe2O3 formed in experimental specimen is lower.


致謝 I
摘要 II
Abstract III
目次 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 基本理論 3
1-4 磁滯曲線 11
1-5 磁阻效應 14
1-6 文獻回顧 17
第二章 實驗規劃與流程 20
2-1 實驗目的及說明 20
2-2 試片製作 20
2-3 實驗流程 21
2-4 基材準備及處理 22
2-5 離子束濺鍍系統介紹 25
第三章 分析儀器原理介紹 29
3-1 X光繞射儀原理(X-ray Diffraction, XRD) 29
3-2 穿透式電子顯微鏡原理 (TEM) 32
3-3 震動樣品磁力計原理(VSM) 37
第四章 結果與討論 38
4-1 X光繞射儀分析(XRD) 38
4-2 穿透式電子顯微鏡分析(TEM) 42
4-3 震動樣品磁力計(VSM) 47
第五章 結論 50
參考文獻 51
中文文獻 51
英文文文獻 52

中文文獻
[2] 杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓
育泯,「磁性基本特性及磁性材料應用」,國立台灣大學化學系
[3] 磁學館,「磁性的來源』,中國科普博覽
http://159.226.2.2:82/gate/big5/ ... c/200306110013.html
[4] 侯貫智,「我國磁性材料產業鏈分析」,金屬中心MII產業分析(2013)
[7] 宛德福,馬興隆,「磁性物理學」,電子科技大學出版社(1994)
[8] 聶亨芸,國立清華大學碩士論文 (2002)
[9] 金重勳,「磁性技術手冊」,中華民國磁性技術協會
[11] subtechs, Metals crystal structure
http://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structure
[12] 郭仲儀、張書綺、林信儒、林克偉,「雙離子束濺鍍系統之原理及應用」,真空技術,十九卷四期(2007年四月)
[17] 汪建民,「材料分析」,中國材料科學學會,新竹,第16-31 頁(1998)
[18] 許樹恩、吳泰伯,「X光繞射原理與材料結構分析」,中國材料科學學會
[19] 林麗娟,「X光繞射原理及其應用」,工業材料86期,(1994年2月)
[20] 林昆霖,「肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡」,奈米通訊 NANO COMMUNICATION,20卷No.2
[21] 陳力俊等人著,「材料電子顯微鏡學」,國家實驗研究院儀器科技研究中心
(2010年)
[24] 張裕恒,李玉芝,「超導物理」,儒林圖書公司(1997).
[25] 陳彥呈,「錫/鎳奈米顆粒複合系統之超導逆磁鄰近效應」,中央大學碩士論文(2012).
英文文文獻
[1] Nicola A. Spaldin,”Magnetic materials” (2010).
[6] Lee, J., Isobe, T., Senna, M. “Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH.” J.Colloid Interface Sci. 197, 490-494 (1997).
[10] Ching-Ray Chang, and S-P. Chen, Chin. J. Phys.,36,85-90. (1998)
[13] Dorothy Hoffman, Bawa Singh, John H. Thomas, III, “Handbook of Vacuum Science and Technology”, 673 (1997).
[14] J.J Cuomo, S.M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology:principles, deposition, film modification, and synthesis”, Noyes Publication (1989)
[15] H. R. Kaufman, R S. Robinson, and R. I. Seddon, J. Vac. Sci. Technol A., 5, 2081 (1987)
[16] Swaminathan, V., and Macrander, A. T.,Materials Aspects of GaAs and InP BasedStructures, Prentice Hall, Englewood Cliffs, New Jersey, pp. 85-190, 1991.
[22] David B. Williams, C3 Barry Carter, “Transmission Electron Microscopy”, Plenum press (1996)
[23] B.D. Cullity, C.D. Graham,”INTRODUCTION TO MAGNETIC MATERIALS”,68 ( 2009)
[26] J. Aarts, J. M. E. Geers, E. Brueck et al , Phys. Rev. B 56 (1997)
[27] M. M. Schwickert, R. Coehoorn, M. A. Tomaz et al, Phys. Rev. B. 57 (1997)
[28] C. Clavero, J. R. Skuza, Y. Choi et al, Phys. Rev. B 80 (2009)
[29] V. L. Aksenov et al., Cryst. Rep. 52 (2007) 381-386
[30] Yu.N.Khaydukov, B.Nagyc, “On the feasibility to study inverse roximity effect in a single S/F bilayer by polarized neutron reflectometry”, Pis’ma v ZhETF, vol. 98, iss. 2, pp. 116 – 120(2013)
[31] Yu. N. Khaydukov, N.S. Perov, “Structural and magnetic properties of the periodic [Fe(5nm)/V(5nm)]10and [Fe(3nm)/V(3nm)]20 systems”, Solid State Phenomena Vol. 190 (2012) pp 396-400(2012)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top