跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅聖峻
研究生(外文):Sheng-Chun Fu
論文名稱:碳覆膜對FePt薄膜晶粒分隔之研究
論文名稱(外文):Effect of capping carbon layer on grain partition of FePt films on MoC+C/CrRu/glass
指導教授:蔡佳霖蔡佳霖引用關係
口試委員:金重勳魏大華
口試日期:2015-06-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:74
中文關鍵詞:碳膜晶粒分隔鐵白金薄膜
外文關鍵詞:FePt filmsgrain partitioncapping carbon layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用頂層碳膜作為FePt薄膜的分隔材料,利用不同厚度的碳覆蓋在FePt膜層上,再經由腔體內退火,將頂層的碳與FePt經由擴散,使FePt晶粒細化並得到高垂直矯頑磁力之FePt薄膜。
實驗可分成三個部份
一、覆蓋不同厚度的碳膜層在FePt膜層上,碳膜層厚度為0、1、2、2.5、3、4 nm,經由425℃腔體內退火,持溫時間為15分鐘,經由微結構與磁性質的分析,找出適當的碳膜層厚度,以利進行第二部分的實驗。
二、經由第一部分得到的碳膜層厚度條件,在相同的碳含量的FePt膜層改變其退火溫度,退火溫度分別為RT、190、268、295、330、365℃,持溫時間維持15分鐘,並在微結構與磁性質分析後,找出具有晶粒細化、分隔均勻且高矯頑磁力之樣品所對應的最佳退火溫度條件。
三、結合第一、第二部分的條件,在適當的碳膜層厚度2 nm與最佳退火溫度420oC下,改變FePt膜層厚度為4、5、6、7、8、10 nm,經由膜層晶體結構、震動樣品磁力計分析、穿透式電子顯微鏡下觀察,MoC 中間層磊晶成長至CrRu底層(200)織構上,磊晶成長在MoC膜層上之10 nm FePt膜層具有良好的(001)織構,進一步將FePt由10 nm減少至6 nm後,垂直矯頑磁力由7.5 kOe提升至10 kOe,利用頂層碳膜與MoC中間層提供的碳,經由腔體內退火將FePt膜層進行分隔,其微結構也從原本未覆蓋頂層碳膜進行腔體退火之樣品的島狀結構改善為分隔良好的微結構。
Capping C layer with various thicknesses were sputtered on FePt/MoC/CrRu/glass at room temperature and post annealed from 190-365oC. The optimal magnetic property was obtained at 2 nm thick C layer annealed at 268oC and used to discuss FePt thickness effect. The FePt films with thickness of 4-10 nm were deposited on MoC/CrRu at 425oC by using magnetron sputtering. The MoC intermediate layer was epitaxially grown on the (200) textured CrRu seed layer and the FePt film was prepared on (200) textured MoC at 425oC. The FePt film shows strong (001) texture and out-of-plane coercivity of 7.5 kOe has been demonstrated in 10 nm thick FePt film. After capping 2 nm thick C layer and post annealed at 268oC, the out-of-plane coercivity was increased to 10 kOe in 6 nm thick FePt. From microstructure, the FePt grains were distributed in- or between- islands like structure and further separated by excess carbon from capping carbon layer and MoC intermediate layer. Thinner FePt film was more separated by excess carbon and shown higher coercivity.
致謝..........................................................................................................i
摘要........................................................ii
Abstract...................................................iii
目錄........................................................iv
表目錄......................................................vii
圖目錄.....................................................viii
符號說明...................................................xiii

第一章 緒論..................................................1
1-1前言......................................................1
1-2硬磁的簡介與發展...........................................3
1-3背景與研究動機.............................................7

第二章 基礎理論與文獻回顧.....................................8
2-1 材料之晶體結構
2-1-1 Fe-Pt合金結構.........................................8
2-1-2 序化與非序化...........................................10
2-1-3 CrRu合金結構..........................................12
2-1-4 2-1-4 MoC化合物結構...................................13
2-1-5 C (Carbon)元素材料....................................14

2-2 理論基礎
2-2-1 材料之磁性分類.........................................15
2-2-2 磁異向性...............................................17
2-2-3 超順磁效應.............................................23
2-2-4 薄膜成長機制...........................................24

2-3 文獻回顧
2-3-1 覆蓋頂層或參雜層至L10 FePt薄膜之文獻回顧.................27
2-3-2 CrRu薄膜底層之文獻回顧..................................29
2-3-3 L10 FePt顆粒膜中添加分隔材料之文獻回顧...................31

第三章 實驗流程與儀器原理......................................35
3-1 實驗設計與流程............................................35
3-2 靶材選擇.................................................36
3-3 基板選用及清洗.........................................36
3-4 試片製備
3-4-1 磁控濺鍍系統...................................38
3-4-2 薄膜製備與熱處理................................40
3-4-3 實驗流程.......................................41
3-5 分析設備與方法
3-5-1 膜厚量測.......................................43
3-5-2 晶體結構分析…..................................45
3-5-3 磁性質分析.....................................47
3-5-4 微結構分析.....................................48

第四章 結果與討論.............................................50
4-1 CrRu/MoC/FePt/C(X nm)探討膜層結構探討
4-1-1 CrRu/MoC/FePt/C(X nm)膜層之X-ray繞射分析................52
4-1-2 CrRu/MoC/FePt/C(X nm)膜層之VSM磁性質分析................53

4-2 CrRu/MoC/FePt/C在不同溫度下退火之變化探討
4-2-1 CrRu/MoC/FePt(10)/C(2)不同溫度下退火之膜層X-ray繞射分析...57
4-2-2 CrRu/MoC/FePt(10)/C(2)不同溫度下退火之膜層VSM磁性質分析...58
4-2-3 CrRu/MoC/FePt(10)/C(2) 變溫退火之膜層之TEM微結構分析......61

4-3 CrRu/MoC/FePt(X)/C(2)探討
4-3-1 CrRu/MoC/FePt(X)/C(2)膜層之X-ray繞射分析.................64
4-3-2 CrRu/MoC/FePt(X)/C(2)膜層之VSM磁性質分析.................65
4-3-3 CrRu/MoC/FePt(X)/C(2)膜層之TEM微結構分析.................67

第五章 結論....................................................71
參考文獻 ......................................................72
[1]服部正勝, 鈴木博, and 菅谷誠一, "HDD, ODD, 及ヂ SSD ソ技術動向," 東芝яжшみ, vol. 66, pp. 30-35, (2011).
[2]R. Wood, "Future hard disk drive systems, Journal of magnetism and magnetic materials, vol. 321, pp. 555-561, (2009).
[3]S. H. Charap, Pu-Ling Lu, and Yanjun He, IEEE Trans. Magn., Vol.33, No. 1 (1997).
[4]Shun-ichi Iwasaki and Katsumaro Takemura, IEEE Trans. Magn., Vol.11, No. 5 (1975).
[5]Toshiba to highlight PMR at DiskCon (2005).
[6]Hard disk latest news –trends, shipment, technology and applications (2006).
[7]D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J-U Thiele and M. F. Doerner, IEEE Trans. Magn., Vol.36, No. 1 (2000).
[8]J. S. Chen, Y. F. Ding, B. C. Lim, and E. J. Liu, IEEE Trans. Magn., Vol.42, No. 10 (2006).
[9]Jin-Chun Chiu, Wei-Chih Wen, Liang-Wei Wang, Ding-Shuo Wang, and Chih-Huang Lai JOURNAL OF APPLIED PHYSICS 115, 17B713 (2014)
[10]Steven D. Granza, Katayun Barmak, and Mark H. Kryder Eur. Phys. J. B 86: 81 (2013).
[11]K. F. Dong, H. H. Li, Y. G. Peng, G. Ju, G. M. Chow, and J. S. Chen Appl. Phys. Lett., Vol. 104, 192404 (2014).
[12]M. Hansen, Constitution of binary alloys: New York : McGraw-Hill, (1958).
[13]B. E. Warren, X-ray diffraction: Reading, Mass. : Addison-Wesley, (1969).
[14]Phase diagram of CrRu “http://resource.npl.co.uk/mtdata/phdiagrams/crru.htm”
[15]Y. Feng, D. Laughlin, and D. Lambeth, "Formation of crystallographic texture in rf sputter‐deposited Cr thin films," Journal of applied physics, vol. 76, pp. 7311-7316, (1994).
[16]Phase diagram of MoC “http://resource.npl.co.uk/mtdata/phdiagrams/moc.htm”
[17]Jai-Lin Tsai, Qi-Shao Luo, Po-Ran Chen, and Yi-Hsiu Chen, MoC intermediate layer for FePt magnetic recording media. Journal of Applied Physics. 115, 17B715 (2014)
[18]引用https://en.wikipedia.org/wiki/Carbon
[19]J. F. Hu, T. J. Zhou, W. L. Phyoe , Kelvin.Cher, and J. Z. Shi, Microstructure Control of Ordered FePt Granular Film for HAMR Application. IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 7, JULY 2013
[20]金重勳、李景明、張慶瑞,磁性技術手冊,中華民國磁性技術協會,2002年。
[21]B. D. Cullity, Introduction to magnetic materials: Hoboken, N.J. : IEEE/Wiley, 2009.
[22]Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Eest, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele and Mary F. Doerner, IEEE Trans. Magn. 36, 10 (2000).
[23]G. D. E. American Institute of Physics, American Institute of Physics handbook. New York: McGraw-Hill, 1984
[24]E. P. Wohlfarth, J. Appl. Phys.Vol. 29, 595 (1958).
[25]K. Takanashi, M. Watanabe and H. Fujimori, JMMM.Vol.104, 1749 (1992).
[26]Maxwell, James Clerk, Atreatise on Electicity and Magnetism, Articles 437 and 438, Vol.2, 1006 (1954).
[27]Stoner, Phil. Mag.7, 36, 803 (1945).
[28]G. C. Hadjipanayais, J. Appl. Phys. , Vol. 63,965(1976).
[29]Growth Mechanisms of Polycrystalline Thin Films, Page 4, Fig.1.
[30]引用http://en.wikipedia.org/wiki/Stranski%E2%80%93Krastanov_growth
[31]Li Zhang, Y.K. Takahashi, A. Perumal, K. Hono, L10-ordered high coercivity (FePt)Ag–C granular thin films for perpendicular recording, Journal of Magnetism and Magnetic Materials Volume 322 Pages 2658–2664 (2010).
[32]Taisuke Shiroyama, Bollapragada S. D. C. S. Varaprasad, Yukiko K. Takahashi, and Kazuhiro Hono, Microstructure and Magnetic Properties of FePt–Cr2O3 Films, IEEE TRANSACTIONS ON MAGNETICS, VOL. 50, NO. 11, NOVEMBER (2014)
[33]K. M. Cher, T. J. Zhou, W. K. Lim, J. F. Hu, and P. W. Lwin, TiN and TiC Intermediate Layers for FePt-C-Based Magnetic Recording Media, IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 6, JUNE (2013)
[34]Yun-Chung Wu, Liang-Wei Wang, and Chih-Huang Laia, Low-temperature ordering of (001) granular FePt films by inserting ultrathin SiO2 layers.Appl. Phys. Lett. 91, 072502 (2007).
[35]Wei-Chih Wen,1 Liang-Wei Wang,1 Kai-Chieh Chang,2 and Chih-Huang Lai JOURNAL OF APPLIED PHYSICS 115, 17B734 (2014)
[36]Steven D. Granz, Katayun Barmak, and Mark H. Kryder, Granular L10 FePt-B and FePt-B-Ag (001) thin films for heat assisted magnetic recording, JOURNAL OF APPLIED PHYSICS 111, 07B709 (2012)
[37]Jai-Lin Tsai, Wen-Chieh Tsai, Yi-Cheng Lin, and Shang-Chun Wu, Microstructure and magnetic properties of FePt(B4C) and FePt(B4C–Ag)granular films with perpendicular magnetization, Journal of Alloys and Compounds 579 12–17 (2013)
[38]T. Ichitsubo, S. Tojo, T. Uchihara, and E. Matsubara, Mechanism of c-axis orientation of L10 FePt in nanostructured FePt:B2O3 thin films ,PHYSICAL REVIEW B 77, 094114 (2008)
[39]J. S. Chen, B. C. Lim, J. F. Hu, B. Liu, Low temperature deposited L10 FePt–C (001) films with high coercivityand small grain size, APPLIED PHYSICS LETTERS 91, 132506 (2007)
[40]B.S.D.Ch.S. VARAPRASAD, Y.K. TAKAHASHI, and K. HONO, Microstructure Control of L10-Ordered FePt Granular Film. JOM, Vol. 65, No. 7, (2013).
[41]B. C. Lim, J. S. Chen, J. F. Hu,1 P. W. Lwin, Y. F. Ding, K. M. Cher, and B. Liu, Grain isolated L10 FePt–Ta2O5 nanocomposite films with large coercivity for perpendicular recording applications, JOURNAL OF APPLIED PHYSICS 105, 07A730 (2009)
[42]K. F. Dong,1 H. H. Li,1 Y. G. Peng,2 G. Ju,2 G. M. Chow,1 and J. S. Chen APPLIED PHYSICS LETTERS 104, 192404 (2014)
[43]引用http://delta-technologies.com/products.asp?C=1
[44]引用http://web1.knvs.tp.edu.tw/AFM/ch4.htm
[45]引用https://en.wikipedia.org/wiki/Bragg's_law
[46]引用國立中興大學材料系貴重儀器網頁。
[47]引用國立中正大學物理系網頁。
[48]引用資料來源中興大學永續能源與奈米科技研究中心貴重儀器網頁
[49]D. B. W. a. C. B. Carter, Transmission Electron Microscopy: Plenum Press, New York and London (1996).
[50]陳力俊"材料電子顯微鏡學"科儀叢書
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文