跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 07:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黎家儒
研究生(外文):Chia-Ru Li
論文名稱:鐵鉑記錄媒體之織構改善
論文名稱(外文):Texture improvement in FePt based media
指導教授:蔡佳霖蔡佳霖引用關係
口試委員:金重勳魏大華
口試日期:2015-06-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:76
中文關鍵詞:鐵白金鉻釕磁控濺鍍
外文關鍵詞:FePtCrRuMagnetron sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:56
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用磁控濺鍍系統,皆以直流電源供應器供給各靶材所需之濺鍍功率,利用基座加熱二次退火的方式沉積Cu2O和(Mg0.2Cu0.8)O在CrRu合金薄膜上再依序鍍上Mo40C60及FePt,目的為使底層CrRu(200)峰值強度增強半高寬角度減小,進而改善FePt(001)半高寬,使FePt在共鍍時異向性不易被破壞。
實驗分成三個部分,第一部份選用與Mo40C60晶格常數匹配的氧化物Cu2O,並改變二次退火Cu2O的溫度,探討Cu2O對CrRu(200)的影響。在無添加Cu2O時CrRu(200)半高寬為9.3° 、FePt(001)為10.6° 。XRD圖顯示當Cu2O溫度在365 °C時CrRu(200)峰值強度有明顯提升,半高寬為5.6°,FePt(001)超晶格峰強度也增強,半高寬減小至8.2°,表示Cu2O的加入可強化CrRu(200)織構使FePt(001) c軸晶面排列提升,磁性部分垂直方向Hc為6.1 kOe,FePt微結構晶粒呈現圓形狀且晶粒變得較為獨立。
第二部分固定二次退火溫度395°C下沉積不同厚度(Mg0.2Cu0.8)O,XRD圖在(Mg0.2Cu0.8)O厚度為5 nm時CrRu(200)強度明顯增強半高寬減小至4.3°,FePt(001)也隨之增強半高寬為7.8°,比Cu2O添加效果更為顯著,垂直方向Hc增加至7.9 kOe,FePt微結構晶粒呈現迷宮狀,晶界寬化。進一步提高Ru原子含量為Cr78Ru22並改變(Mg0.2Cu0.8)O厚度,半高寬在5 nm時可得到本實驗最佳條件,CrRu(200)為3.8°和FePt(001)為6.0°,顯示Ru含量的提升也可改善CrRu(200)織構,磁性維持7.9 kOe角型比也增加至0.97使FePt維持較佳的C軸排列。
第三部分選擇直接對CrRu薄膜二次退火,XRD圖顯示當CrRu在395 °C時為最佳條件,CrRu(200)峰值強度有增加,量測其半高寬為5.5°,FePt(001)半高寬為8.5°,表示氧化物可使CrRu(200)半高寬角度明顯減小,磁性在395 °C時垂直方向Hc增加至8.4 kOe,維持一個良好的垂直異向性,此時FePt晶粒細化且晶粒分布均勻。


In this study, I use magnetron sputtering system with DC power supply. The Cu2O and (Mg0.2Cu0.8)O were deposited on CrRu at heated-substrate by using second-annealing then sequentially deposited Mo40C60 and FePt. Aim to make CrRu(200) intensity increased and FWHM decreased, thereby improving the FWHM of FePt(001). When co-sputtering FePt with other elements the anisotropy could not be destroyed easily.
Experiments are divided into three parts, the first part I chose Cu2O which lattice constant matches with Mo40C60 and change the second-annealing temperature of Cu2O.When the specimen without Cu2O the FWHM of CrRu(200) was 9.3° ,FePt(001) was 10.6° . The XRD patterns show that when the temperature of Cu2O at 365 °C the CrRu (200) peak intensity improved significantly, the FWHM was 5.6°.The FePt(001) superlattice peak intensity also enhanced, the FWHM decreased to 8.2°. Indicate the addition of Cu2O could strengthen CrRu (200) texture and make FePt (001) C-axis planes alignment enhance. The coecivity of the vertical direction was 6.1 kOe. From microstructure, the FePt grains were distributed circular shape and became more independent.
In the second part, I fix second-annealing temperature at 395 °C and deposite different (Mg0.2Cu0.8)O. The XRD patterns show when (Mg0.2Cu0.8)O thickness was 5nm CrRu (200) significantly enhance , the FWHM reduced to 4.3° and FePt (001) also increased to 7.8°.The effect of (Mg0.2Cu0.8)O is better than Cu2O , The coecivity increased to 7.9 kOe. The FePt grains presented maze-like structure and grain boundary were broadened. Increase Ru atomic persent to Cr78Ru22 and change (Mg0.2Cu0.8)O thickness. The optimum conditions of this experiment can obtain when (Mg0.2Cu0.8)O was 5nm, the FWHM of CrRu (200) was 3.8°and FePt is 6.0°. Indicate the enhancement of Ru could also improve CrRu (200) texture. The coecivity maintained 7.9 kOe and squarness also increased to 0.97 to make FePt maintain a better C-axis arrangement.
In final part, the CrRu flim is second-annealing directly.The XRD patterns show the CrRu had the best condition at 395 °C.The CrRu(200) intensity increased and the FWHM was 8.5°.The results show that oxides had a role to improve CrRu(200) texture.The coecivity increased to 8.4 kOe at 395 °C. The FePt grains were refinement and distributed uniformly.


致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 xiii
第一章 緒論 1
1-1前言 1
1-2硬式磁碟機的簡介與發展 2
1-3熱輔助磁記錄媒體 6
1-4背景與研究動機 8

第二章 理論基礎與文獻回顧 10
2-1 材料之晶體結構
2-1-1 Fe-Pt合金結構 10
2-1-2 序化與非序 12
2-1-3 CrRu合金結構 13
2-2  理論基礎
2-2-1 磁性材料 16
2-2-2 磁異向性 17
2-2-3 表面能與接觸角 20
2-3 文獻回顧
2-3-1 CrRu薄膜底層文獻回顧 23
2-3-2 MgTiO底層文獻回顧 29
2-3-3 MoC中間層文獻回顧 31
2-3-4 L10 FePt 顆粒薄膜分隔文獻回顧 33

第三章 實驗流程與儀器原理 36
3-1 實驗流程 36
3-2 靶材選擇 37
3-3 基板選用及清洗 37
3-4 試片製備
3-4-1 磁控濺鍍系統 39
3-4-2 薄膜製備與熱處理 41
3-4-3 膜厚量測 41
3-5 分析設備與方法
3-5-1 原子力顯微鏡(AFM) 42
3-5-2 X光繞射儀(XRD) 44
3-5-3 震動樣品磁度儀(VSM) 46
3-5-4 穿透式電子顯微鏡(TEM) 48
3-5-4-1 穿透式電子顯微鏡原理 48
3-5-4-2 選區繞射之晶面計算 49
3-5-5 精密離子打薄機(PIPS) 50
3-5-6 多功能離子聚焦束(FIB) 51

第四章 結果與討論 52
4-1 CrRuCu2OMo40C60FePt 膜層結構探討
4-1-1 CrRuCu2OMo40C60FePt薄膜之X-Ray繞射分析 53
4-1-2 CrRuCu2OMo40C60FePt 薄膜之VSM磁性分析 55
4-1-3 CrRuCu2OMo40C60FePt 薄膜之TEM微結構分析 57
4-2 CrRu(Mg0.2Cu0.8)OMo40C60FePt 膜層結構探討
4-2-1 CrRu(Mg0.2Cu0.8)OMo40C60FePt 薄膜之X-Ray繞射分析 58
4-2-2 CrRu(Mg0.2Cu0.8)OMo40C60FePt 薄膜之VSM磁性分析 61
4-2-3 CrRu(Mg0.2Cu0.8)OMo40C60FePt薄膜TEM微結構分析 63
4-3 CrRuMo40C60FePt 膜層結構探討
4-3-1 CrRuMo40C60FePt 薄膜之X-Ray繞射分析 65
4-3-2 CrRuMo40C60FePt 薄膜之VSM磁性分析 67
4-3-3 CrRuMo40C60FePt 薄膜之TEM微結構分析 69
4-3-4 半高寬整理表 71

第五章 結論 72
參考文獻 74



[1]Roger Wood, Future hard disk drive systems. JMMM, Vol.321, 555 (2009).
[2]S. H. Charap, Pu-Ling Lu, and Yanjun He, Thermal Stability of Record Information at High Densities. IEEE Trans. Magn., Vol.33, No. 1 (1997).
[3]Shun-ichi Iwasaki and Katsumaro Takemura, An Analysis for the Circular Mode of Magnetization In Short Wavelength Recording. IEEE Trans. Magn., Vol.11, No. 5 (1975).
[4]S. N. Piramanayagam, Tow C. Chong, “Development In Data Storage”
[5]B. Marchon and T. Olson, IEEE Trans. Magn. 45(10), 3608(2009)
[6]D. Mayer, P. E. Kupinski, and J. C. Liu, U.S.Patent 5991113(1999)
[7]R. F. L. Evans, R. W. Chantrell, U. Nowak, A. Lyberatos, and H.-J. Richter, Thermally induced error: Density limit for magnetic data storage. Applied. Physics. Letters. Vol. 100, 102402 (2012).
[8]Dieter Weller, Oleksandr Mosendz, Gregory Parker, Simone Pisana, and Tiffany S. Santos, L10 FePtX–Y media for heat-assisted magnetic recording. Phys. Status Solidi A 210, 1245–1260 (2013)
[9]Mark H. Kryder, Edward C. Gage, Terry W. McDaniel, William A. Challener, Heat Assisted Magnetic Recording. Proceedings of the IEEE Vol. 96, No. 11, November (2008)
[10]J. S. Chen, B. C. Lim, J. F. Hu, B. Liu, G. M. Chow et al., Appl. Phys. Lett., Vol. 91, 132506 (2007).
[11]J. L. Tsai, J. C. Huang, and H. W. Tai, Journal of Applied Physics, Vol.111, 07A709 (2012).C
[12]C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy and D. E. Laughlin, Journal of Applied Physics ,Vol. 92, No. 10 (2002).
[13]B. S. D. Ch. S. Varaprasad , M.Chen , Y. K. Takahashi , and K. Hono, IEEE Trans. Magn., Vol.49, No. 2 (2013).
[14]En Yang, and D. E. Laughlin, Journal of Applied Physics. 104,023904(2008)
[15]B. C. Lim, J. S. Chen, J. F. Hu, P. W. Lwin, Y. F. Ding, K. M. Cher, and B. Liu, J. Appl. Phys., Vol. 105, 07A730 (2009).
[16]M. Hansen, “Constitution of Binary Alloys”, McGraw. New York., P.698 (1958).
[17]U. Kawald, W. Zemke, H. Bach, J. Pelzl and G. A. Saunders, Elastic constants and martensitic phase transitions in FePt and FeNiPt invar alloys. Phsyica B, Vol. 161, 72 (1989).
[18]B. E. Warren, “X-ray Diffraction”, Dover, New York, P. 227, (1990).
[19]Yingfan Xu, J. S. Chen, and J.P.Wang, In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100−xRux underlayer at low substrate temperature. Journal of Applied Physics, Vol. 80, No18 (2002)
[20]H. W. Hugosson, O. Eriksson, U. Jansson, A. V. Ruban, P. Souvatzis, and I. Abrikosov, "Surface energies and work functions of the transition metal carbides," Surface science, vol. 557, pp. 243-254, 2004.
[21]Hakan W. Hugosson, Olle Eriksson, and Lars Nordstrom, Theory of phase stabilities and bonding mechanisms in stoichiometricand substoichiometric molybdenum carbide. Journal of Applied Physics, Vol86, No7(1999)
[22]H. H. Li, J. F. Hu, G. Ju, G. M. Chow, and J. S. Chen, Effects of CrRu–SiO x underlayer with MgO intermediate layer on the microstructure. Journal of Applied Physics, 109, 07A736(2011)
[23]金重勳、李景明、張慶瑞,”磁性技術手冊”,中華民國磁性技術協會,2002年。
[24]N. A. Spaldin, Magnetic Material, P. 17 (2011).
[25]許樹恩、吳泰伯合著,”X光繞射原理與材料結構分析”第十三章,2006年。
[26]B.D. Cullity, “introduction to magnetic materials”, Ch7, Wesley (1972).
[27]D.E.Gray, McGraw-Hill, “American Institute of Physics Handbook” (1972).
[28]M. J. Clerk, Atreatise on Electicity and magnetism, Vol. 2, 1006 (1954).
[29]引用圖片來源網址’’getsciencehelp.wordpress.com’’
[30]Bruno Marchon, Xing-Cai Guo, Bala Krishna Pathem, Franck Rose, Qing Dai, Norbert Feliss, Erhard Schreck, James Reiner, Oleksandr Mosendz, Kentaro Takano, Hoa Do, John Burns, and Yoko Saito, Head–Disk Interface Materials Issues in Heat-Assisted Magnetic Recording. IEEE Trans. Magn., Vol.50, No3 (2014).
[31]Y. C. Feng, D. E. Laughlin, and D.N. Lambeth, Formation of crystallographic texture in rf sputter-deposited Cr thin films. Journal of applied physics, vol. 76, pp. 7311-7316, 1994.
[32]Yingfan Xu, J.S.Chen, and J.P. Wang, In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100−xRux underlayer at low substrate temperature .Journal of Applied Physics, Vol.80 No.18 (2002)
[33]J. S. Chen, B. C. Lim, Y.F. Ding, G. M. Chow, Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording. Jour. Magn. Magn. Mater. 303(2006)309-317
[34]G. R. Trichy, D. Chakraborti, J. Narayan, and J. T. Prater, Appl. Phys. Lett. 92,102504(2008)
[35]X. H. Li, B. T. Liu, H. Y. Sun, W. Li, and X. Y. Zhang, J. Phys. D 41,1350009(2008)
[36]Y. C. Wu, L. W. Wang, and C. H. Lai, Journal of Applied Physics, 91,072502(2007)
[37]A. Perumal, Y. K. Takahashi, T. O. Seki, and K. Hono, Journal of Applied Physics, 92, 132508(2008)
[38]L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, J. Magn. Magn. Mater. 322,2658-2264(2010)
[39]L. Zhang, Y. K. Takahashi, K. Hono, B. C. Stipe, J. Y. Juang, and M. Grobis, IEEE Trans. Magn. 47,718(2013)
[40]B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, Antony Ajan, and K. Hono, Electrically conductive (Mg0.2Ti0.8)O underlayer to grow FePt-based perpendicular recording media on glass substrates. Journal of Applied Physics, 113,203907(2013)
[41]Jai-Lin Tsai, Qi-Shao Luo, Po-Ran Chen, and Yi-Hsiu Chen, MoC intermediate layer for FePt magnetic recording media. Journal of Applied Physics. 115, 17B715 (2014)
[42]Jai-Lin Tsai, Yun-Ting Tseng, Chia-Ru Li, and Sheng-Chun Fu, FePtC magnetic recording media with (200) textured MoC intermediate layer. Journal of Applied Physics. 117, 17C502 (2015)
[43]B. S. D. Ch. S. Vapaprasad, Y. K. Takahashi, and K. Hono, Microstructure Control of L10-Ordered FePt Granular Film. Journal Of Management, Vol. 65, No. 7 (2013)
[44]引用資料來源網址 ’’http://web1.knvs.tp.edu.tw/AFM/ch4.htm’’
[45]引用資料來源網址 ’’http://www.temple.edu/strongin/afm.html’’
[46]引用資料來源網址 ’’http://www.sinap.ac.cn/sns/kp/nano/chap6.htm’’
[47]引用資料來源網址 ’’http://www.bruker-axs.c m, Bruker AXS”
[48]圖片來源 ’’國立中正大學物理系張文成老師實驗室’’
[49]B. D. Cullity, C. D. Graham(2009), Introduction to Magnetic Materials, second edition, p.68.
[50]引用資料來源網址 ’’國立中興大學奈米中心網站”
[51]圖片來源 ’’國立中興大學材料系貴儀’’


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top