跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范恩誠
研究生(外文):An-Chen Fan
論文名稱:CoCrFeNiX高熵合金成相行為之研究
論文名稱(外文):On the phase formation of CoCrFeNiX high entropy alloys
指導教授:蔡銘洪
口試委員:張守一林士剛
口試日期:2015-06-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:186
中文關鍵詞:高熵合金成相
外文關鍵詞:high entropy alloyphase formation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現有文獻中,對於高熵合金的設計,與添加元素的影響,往往是各自為政,因而各自無法比較。因為各個合金基底不同,比較的基準即不同,不容易互相參照比較,來歸納成相理論。
本研究以CoCrFeNi四元為基底,週期性添加週期表左邊IIIB-VIB元素,共有Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W等等十個元素,混合成十個不同配方的高熵合金,如CoCrFeNiY、CoCrFeNiTi、CoCrFeNiZr…等等。並以真空電弧熔煉製備這些合金。每個合金鑄錠除鑄造態外,另外進行四個不同溫度的長時間退火。希望透過這些合金的成相,來了解不同元素添加對於合金成相的影響。
結果顯示,CoCrFeNiX (X = Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W)十個合金中絕大部分合金都生成都生成一個主要介金屬相(佔體積一半以上)和一個簡單固溶相,與以往對高熵合金容易形成簡單相的認知有所不同。同時觀察到添加元素X對合金結構的影響,首重尺寸因素。添加元素尺寸不同,會影響合金內的介金屬相種類不同。本研究首創以觀察二元相圖預測CoCrFeNiX合金主要介金屬相的方法預測合金中可能出現的主要介金屬相。
後續四個不同退火溫度中,1100°C均質化後,大部分合金皆無相變化,顯示鑄造態大體保留了高溫的相。500°C長時間退火則對各合金都幾乎沒有影響;900°C與700°C退火溫度則多數都發生相變化。而各合金最常發生的相變化就是產生σ相。


Despite the vast numbers of reported high entropy alloys (HEAs), our understanding of the composition-phase relationship of HEAs is far from satisfactory. One of the main problems that hinder our progress is that most works study the effect of alloying by adding different elements into different base alloys. Because there can be substantial difference between base alloys, it becomes difficult to understand the effect of the alloying elements themselves.
Here, we add ten different alloying elements to the same base alloy CoCrFeNi. The alloying elements are varied systematically from IIIB to VIB elements (X = Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W), leading to ten CoCrFeNiX alloys. Except for the cast ingots, the ten alloys have been processed by four heat treatments conditions. We try to understand that the results in the alloys with different adding elements by analysing the structures of these alloys with different conditions.
We realize that existing phase formation theories often fail to explain the behavior of the CoCrFeNiX alloys. Besides, we find that atomic size difference is the key factor to the selection of intermetallic phase type. In this research, we create an idea to predict the possible main intermettallic phase in the CoCrFeNiX cast alloys by checking the binary phase diagrams.
In other conditions, we find that most of the ten alloys have no phase transformations during 1100°C Homogenizing and 500°C annealing. However, most of the ten alloys have phase transformations during 900°C and 700°C annealing, and the common phase transformation in thes ten alloys during annealing is the formation of the σ phase.


誌謝 i
摘要 iii
AbStract iv
目錄 v
圖目錄 viii
表目錄 xv
壹、前言 1
貳、文獻回顧 3
2.1 高熵合金 3
2.2 高熵合金內的四大效應 3
2.3 常見高熵合金系統與其性質 8
2.3.1 Al-Co-Cr-Cu-Fe-Ni系統 8
2.3.2 Al-Co-Cr-Cu-Fe-Ni的延伸系統 11
2.3.3 耐火高熵合金系統 13
2.3.4 腐蝕行為 13
2.4 高熵合金的成相法則 14
2.4.1 成相法則的重要性 14
2.4.2 現有成相法則 14
2.5 拓樸緊密堆積相 21
2.5.1 TCP相的發現 21
2.5.2 TCP相的定義 21
2.5.3 常見TCP相介紹 23
2.5.4 σ相 23
2.5.5 Laves相 24
2.5.6 μ相 24
2.5.7 χ相 25
2.5.8 R相 26
參考文獻 32
參、研究動機及實驗步驟 41
3.1 研究動機 41
3.2 實驗設計與流程 42
3.3 元素性質列表 42
3.4 合金製備 43
3.5 熱處理 43
3.6 相與微結構分析 43
3.7 硬度及破壞韌性量測 44
3.8 實驗參數與計算 44
3.8.1 熱力學參數 45
3.8.2 尺寸學參數 45
3.8.3 電子參數 46
參考文獻 49
肆、鑄造態CoCrFeNiX高熵合金的成相行為 50
4.0 基底相(CoCrFeNi)金相分析 50
4.1 鑄造態CoCrFeNiX合金的相與微結構分析 54
4.2 在CoCrFeNiX高熵合金中相形成的趨勢 68
4.3 純簡單相的形成預測 69
4.4 複雜相的形成預測: 原子尺寸的影響 71
4.5 相同原子大小比例的成相選擇 74
4.6 CoCrFeNi v.s X二元相圖之成相預測 82
參考文獻 93
伍、CoCrFeNiX高熵合金不同溫度長時間退火後的成相行為 95
5.1 1100°C48小時均質化 95
5.2 900°C 10天退火 110
5.3 700°C 20天退火 126
5.4 500°C 30天退火 142
5.5不同退火溫度結果討論 155
參考文獻 184
陸、 結論 185


葉均蔚, 高熵合金的發展.華岡工程學報, 2011(27): p. 1-18.
2.Yeh, J.W., S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
3.Zhang, Y., Y.J. Zhou, J.P. Lin, et al., Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 2008. 10(6): p. 534-538.
4.Tsai, K.Y., M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897.
5.Tong, C.J., M.R. Chen, S.K. Chen, et al., Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2005. 36A(5): p. 1263-1271.
6.Tong, C.J., Y.L. Chen, S.K. Chen, et al., Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2005. 36A(4): p. 881-893.
7.Singh, S., N. Wanderka, B.S. Murty, et al., Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Materialia, 2011. 59(1): p. 182-190.
8.Tsai, M.H., H. Yuan, G. Cheng, et al., Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics, 2013. 32: p. 329-336.
9.Tung, C.C., J.W. Yeh, T.T. Shun, et al., On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials Letters, 2007. 61(1): p. 1-5.
10.Wen, L.H., H.C. Kou, J.S. Li, et al., Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics, 2009. 17(4): p. 266-269.
11.Tsai, C.W., Y.L. Chen, M.H. Tsai, et al., Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. Journal of Alloys and Compounds, 2009. 486(1-2): p. 427-435.
12.Tsai, C.W., M.H. Tsai, J.W. Yeh, et al., Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. Journal of Alloys and Compounds, 2010. 490(1-2): p. 160-165.
13.Zhang, K.B., Z.Y. Fu, J.Y. Zhang, et al., Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. Journal of Alloys and Compounds, 2010. 502(2): p. 295-299.
14.Wang, F.J., Y. Zhang, G.L. Chen, et al., Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy. International Journal of Modern Physics B, 2009. 23(6-7): p. 1254-1259.
15.Kuznetsov, A.V., D.G. Shaysultanov, N.D. Stepanov, et al., Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2012. 533: p. 107-118.
16.Kuznetsov, A.V., D.G. Shaysultanov, N.D. Stepanov, et al., Superplasticity of AlCoCrCuFeNi High Entropy Alloy. Materials Science Forum, 2013. 735: p. 146-151.
17.Wu, J.M., S.J. Lin, J.W. Yeh, et al., Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 2006. 261(5-6): p. 513-519.
18.Hemphill, M.A., T. Yuan, G.Y. Wang, et al., Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Materialia, 2012. 60(16): p. 5723-5734.
19.Liu, Z.Y., S. Guo, X.J. Liu, et al., Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy. Scripta Materialia, 2011. 64(9): p. 868-871.
20.Shun, T.T. and Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 2009. 479(1-2): p. 157-160.
21.Wang, W.R., W.L. Wang, S.C. Wang, et al., Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 2012. 26: p. 44-51.
22.Kao, Y.F., T.J. Chen, S.K. Chen, et al., Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 <= x <= 2) high-entropy alloys. Journal of Alloys and Compounds, 2009. 488(1): p. 57-64.
23.Li, C., J.C. Li, M. Zhao, et al., Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. Journal of Alloys and Compounds, 2010. 504: p. S515-S518.
24.Lin, C.M. and H.L. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics, 2011. 19(3): p. 288-294.
25.Wang, Y.P., B.S. Li, M.X. Ren, et al., Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 491(1-2): p. 154-158.
26.Guo, S., C. Ng, J. Lu, et al., Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 2011. 109(10): p. 103505.
27.Zhang, K.B. and Z.Y. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics, 2012. 22: p. 24-32.
28.Chen, M.R., S.J. Lin, J.W. Yeh, et al., Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0-2.0) high-entropy alloys. Materials Transactions, 2006. 47(5): p. 1395-1401.
29.Shun, T.T., L.Y. Chang, and M.H. Shiu, Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2012. 556: p. 170-174.
30.Zhou, Y.J., Y. Zhang, Y.L. Wang, et al., Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied Physics Letters, 2007. 90(18): p. 181904.
31.Wang, X.F., Y. Zhang, Y. Qiao, et al., Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 2007. 15(3): p. 357-362.
32.Zhang, K.B., Z.Y. Fu, J.Y. Zhang, et al., Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009. 508(1-2): p. 214-219.
33.Lin, C.W., M.H. Tsai, C.W. Tsai, et al., Microstructure and aging behavior of Al5Cr32Fe35Ni22Ti6 ternary-like high-entropy alloy. In preparation.
34.Chuang, M.H., M.H. Tsai, W.R. Wang, et al., Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia, 2011. 59(16): p. 6308-6317.
35.Hsu, C.Y., T.S. Sheu, J.W. Yeh, et al., Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear, 2010. 268(5-6): p. 653-659.
36.Hsu, C.Y., W.R. Wang, W.Y. Tang, et al., Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys. Advanced Engineering Materials, 2010. 12(1-2): p. 44-49.
37.Shun, T.T., C.H. Hung, and C.F. Lee, The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 degrees C. Journal of Alloys and Compounds, 2010. 495(1): p. 55-58.
38.Zhu, J., H. Zhang, H. Fu, et al., Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMo x alloys. Journal of Alloys and Compounds, 2010. 497(1): p. 52-56.
39.Zhu, J.M., H.M. Fu, H.F. Zhang, et al., Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010. 527(27-28): p. 7210-7214.
40.Hsu, C.Y., C.C. Juan, W.R. Wang, et al., On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2011. 528(10-11): p. 3581-3588.
41.Shun, T.T., L.Y. Chang, and M.H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Materials Characterization, 2012. 70: p. 63-67.
42.Juan, C.C., C.Y. Hsu, C.W. Tsai, et al., On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys. Intermetallics, 2013. 32(0): p. 401-407.
43.Liu, W.H., Y. Wu, J.Y. He, et al., Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia, 2013. 68(7): p. 526-529.
44.Otto, F., A. Dlouhý, C. Somsen, et al., The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013. 61(15): p. 5743-5755.
45.Bhattacharjee, P.P., G.D. Sathiaraj, M. Zaid, et al., Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. Journal of Alloys and Compounds, 2014. 587(0): p. 544-552.
46.Tsao, L.C., C.S. Chen, and C.P. Chu, Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy. Materials & Design, 2012. 36: p. 854-858.
47.Chen, S.T., W.Y. Tang, Y.F. Kuo, et al., Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010. 527(21-22): p. 5818-5825.
48.Tsai, M.H., H. Yuan, G. Cheng, et al., Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy. Intermetallics, 2013. 33: p. 81-86.
49.Senkov, O.N., G.B. Wilks, D.B. Miracle, et al., Refractory high-entropy alloys. Intermetallics, 2010. 18(9): p. 1758-1765.
50.Senkov, O.N., J.M. Scott, S.V. Senkova, et al., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011. 509(20): p. 6043-6048.
51.Senkov, O.N., S.V. Senkova, C. Woodward, et al., Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis. Acta Materialia, 2013. 61(5): p. 1545-1557.
52.Senkov, O.N., G.B. Wilks, J.M. Scott, et al., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011. 19(5): p. 698-706.
53.Senkov, O.N. and C.F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2011. 529: p. 311-320.
54.Senkov, O.N., J.M. Scott, S.V. Senkova, et al., Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science, 2012. 47(9): p. 4062-4074.
55.Senkov, O.N., S.V. Senkova, D.M. Dimiduk, et al., Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. Journal of Materials Science, 2012. 47(18): p. 6522-6534.
56.Senkov, O.N., S.V. Senkova, D.B. Miracle, et al., Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2013. 565: p. 51-62.
57.Yang, X., Y. Zhang, and P.K. Liaw, Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys. Procedia Engineering, 2012. 36(0): p. 292-298.
58.Chen, Y.Y., T. Duval, U.T. Hong, et al., Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 degrees C high-purity water. Materials Letters, 2007. 61: p. 2692-2696.
59.Chen, Y.Y., T. Duval, U.D. Hung, et al., Microstructure and electrochemical properties of high entropy alloys - a comparison with type-304 stainless steel. Corrosion Science, 2005. 47(9): p. 2257-2279.
60.Chen, Y.Y., U.T. Hong, H.C. Shih, et al., Electrochemical kinetics of the high entropy alloys in aqueous environments - a comparison with type 304 stainless steel. Corrosion Science, 2005. 47(11): p. 2679-2699.
61.Hsu, Y.J., W.C. Chiang, and J.K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Materials Chemistry and Physics, 2005. 92(1): p. 112-117.
62.Chen, Y.Y., U.T. Hong, J.W. Yeh, et al., Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 degrees C high-purity water. Scripta Materialia, 2006. 54(12): p. 1997-2001.
63.Lee, C.P., Y.Y. Chen, C.Y. Hsu, et al., The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx. Journal of the Electrochemical Society, 2007. 154(8): p. C424-C430.
64.Lee, C.P., C.C. Chang, Y.Y. Chen, et al., Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on. the corrosion behaviour in aqueous environments. Corrosion Science, 2008. 50(7): p. 2053-2060.
65.Chou, Y.L., Y.C. Wang, J.W. Yeh, et al., Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corrosion Science, 2010. 52(10): p. 3481-3491.
66.Chou, Y.L., J.W. Yeh, and H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corrosion Science, 2010. 52(8): p. 2571-2581.
67.Kao, Y.F., T.D. Lee, S.K. Chen, et al., Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corrosion Science, 2010. 52(3): p. 1026-1034.
68.Lin, C.M., H.L. Tsai, and H.Y. Bor, Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy. Intermetallics, 2010. 18(6): p. 1244-1250.
69.Chou, Y.L., J.W. Yeh, and H.C. Shih, Effect of Molybdenum on the Pitting Resistance of Co1.5CrFeNi1.5Ti0.5Mox Alloys in Chloride Solutions. Corrosion, 2011. 67(8): p. 085002.
70.Lin, C.M. and H.L. Tsai, Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu0.5 alloy. Materials Chemistry and Physics, 2011. 128(1-2): p. 50-56.
71.Yu, Y., F.Q. Xie, T.B. Zhang, et al., Microstructure Control and Corrosion Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy. Rare Metal Materials and Engineering, 2012. 41(5): p. 862-866.
72.Liu, W., Y. Wu, J. He, et al., The Phase Competition and Stability of High-Entropy Alloys. JOM, 2014. 66(10): p. 1973-1983.
73.Guo, S., Phase selection rules for cast high entropy alloys: an overview. 2015.
74.Cahn, R.W. and P. Haasen, Physical metallurgy. Vol. 1. 1996: North-Holland.
75.Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta materialia, 2000. 48(1): p. 279-306.
76.Massalski, T.B., Comments concerning some features of phase diagrams and phase transformations. Materials transactions, 2010. 51(4): p. 583-596.
77.Mizutani, U., Hume-Rothery rules for structurally complex alloy phases. 2010: CRC Press.
78.Guo, S. and C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science-Materials International, 2011. 21(6): p. 433-446.
79.Yang, X. and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 2012. 132(2-3): p. 233-238.
80.Guo, S., Q. Hu, C. Ng, et al., More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics, 2013. 41: p. 96-103.
81.Wang, Z., Y. Huang, Y. Yang, et al., Atomic-size effect and solid solubility of multicomponent alloys. Scripta Materialia, 2015. 94: p. 28-31.
82.Poletti, M. and L. Battezzati, Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Materialia, 2014. 75: p. 297-306.
83.Hartsough, L., Stability of A15 type phases. Journal of Physics and Chemistry of Solids, 1974. 35(12): p. 1691-1701.
84.Joubert, J.-M., Crystal chemistry and Calphad modeling of the σ phase. Progress in Materials Science, 2008. 53(3): p. 528-583.
85.Joubert, J.-M. and M. Phejar, Crystal chemistry and Calphad modelling of the χ phase. Progress in Materials Science, 2009. 54(7): p. 945-980.
86.Seiser, B., R. Drautz, and D. Pettifor, TCP phase predictions in Ni-based superalloys: Structure maps revisited. Acta Materialia, 2011. 59(2): p. 749-763.
87.Sinha, A.K., Topologically close-packed structures of transition metal alloys. Progress in Materials Science, 1972. 15(2): p. 81-185.
88.Stein, F., M. Palm, and G. Sauthoff, Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability. Intermetallics, 2004. 12(7-9): p. 713-720.
89.Reed, R.C., The superalloys: fundamentals and applications. 2006: Cambridge university press.
90.Rae, C. and R. Reed, The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Materialia, 2001. 49(19): p. 4113-4125.
91.De Graef, M. and M.E. McHenry, Structure of materials: an introduction to crystallography, diffraction and symmetry. 2007: Cambridge University Press.
92.Seiser, B., R. Drautz, and D.G. Pettifor, TCP phase predictions in Ni-based superalloys: Structure maps revisited. Acta Materialia, 2011. 59(2): p. 749-763.
93.Watson, R. and L. Bennett, Transition-metal alloy formation. The occurrence of topologically close packed phases-I. Acta Metallurgica, 1984. 32(4): p. 477-489.
94.Friauf, J.B., The crystal structures of two intermetallic compounds. Journal of the American Chemical Society, 1927. 49(12): p. 3107-3114.
95.Friauf, J.B., The crystal structure of magnesium di-zincide. Physical Review, 1927. 29(1): p. 34.
96.Laves, F., Kristallographie der Legierungen. Naturwissenschaften, 1939. 27(5): p. 65-73.
97.Laves, F. and K. Löhberg, Nachr Ges Wiss Göttingen. Math-Phys Kl, 1932. 59.
98.Laves, F. and H. Witte, Die Kristallstruktur des MgNi2 und seine Beziehungen zu den Typen MgCu2 und MgZn2. Metallwirtsch, 1935. 14(33): p. 645-649.
99.Laves, F. and H. Witte, The influence. of valence electrons on the crystal structure of ternary magnesium alloys. Metallwirtschaft, 1936. 15: p. 840.
100.Schulze, G.E., Zur Kristallchemie der intermetallischen AB2‐Verbindungen (Laves‐Phasen). Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1939. 45(12): p. 849-865.
101.Kasper, J., Theory of Alloy Phases. American Society of Metals, Cleveland, OH, 1956: p. 264-278.
102.Greenfield, P., CORRECTION. 1954, MINERALS METALS MATERIALS SOC 420 COMMONWEALTH DR, WARRENDALE, PA 15086. p. 758-758.
103.Emmanuel, G., The Nature, Occurrence, and Effects of Sigma Phase. ASTM Spec. Tech. Publ, 1950. 110: p. 82.
104.Duwez, P., Theory of Alloy Phases. ASM, Cleveland, Ohio, 1956: p. 243.
105.Greenfield, P. and P.A. Beck, The sigma phase in binary alloys. Trans. AIME, 1954. 200: p. 253.
106.Lawson, A., C. Olsen, J. Richardson, et al., Structure of β-uranium. Acta Crystallographica Section B: Structural Science, 1988. 44(2): p. 89-96.
107.Treitschke, W. and G. Tammann, Enthalpy of formation for σ-phase solid solutions at 1060 K. Anorganische Chemie, 1907. 55: p. 707.
108.Bain, E.C. and W.E. Griffiths, An introduction to the iron-chromium-nickel alloys. Trans. AIME, 1927. 75(166): p. 166-211.
109.Jette, E.R. and F. Foote, The Fe-Cr Alloy System. Metals and Alloys, 1936. 7: p. 207-210.
110.Calvert, L. and P. Villars, Pearson’s handbook of crystallographic data for intermetallic phases. ASM, Materials Park, OH, 1991.
111.Ansara, I., T. Chart, A.F. Guillermet, et al., Thermodynamic Modelling of Solutions and Alloys. Calphad, 1997. 21(2): p. 171-218.
112.Kitano, Y., M. Takata, and Y. Komura, High resolution electron microscopy of partial dislocations in the Laves phase structure. Journal of Microscopy, 1986. 142(2): p. 181-190.
113.Hafner, J., P. Villars, J. Majewski, et al., The structures of binary compounds. 1990.
114.Sauthoff, G., Intermetallics, VCH. New York, 1995: p. 1-5.
115.Livingston, J., Laves‐phase superalloys? Physica status solidi (a), 1992. 131(2): p. 415-423.
116.Ivey, D.G., Derek 0. Northwood. Z. Phys. Chem. NF, 1986. 147: p. 191.
117.Yu, J., Y. Lei, C. Chen, et al., The electrochemical properties of hydrogen storage Zr-based Laves phase alloys. Journal of alloys and compounds, 1995. 231(1): p. 578-581.
118.Schlapbach, L. and A. Züttel, Hydrogen-storage materials for mobile applications. Nature, 2001. 414(6861): p. 353-358.
119.Züttel, A., F. Meli, and L. Schlapbach, Electrochemical and surface properties of Zr (V x Ni 1-x) 2 alloys as hydrogen-absorbing electrodes in alkaline electrolyte. Journal of alloys and compounds, 1994. 203: p. 235-241.
120.Joubert, J.-M., D. Sun, M. Latroche, et al., Electrochemical performances of ZrM 2 (M= V, Cr, Mn, Ni) Laves phases and the relation to microstructures and thermodynamical properties. Journal of alloys and compounds, 1997. 253: p. 564-569.
121.Iwakura, C., H. Kasuga, I. Kim, et al., Effect of alloy composition on electrochemical properties of the Zr-based Laves-phase hydrogen storage alloys. Electrochimica acta, 1996. 41(17): p. 2691-2694.
122.Kim, D.-M., K.-J. Jang, and J.-Y. Lee, A review on the development of AB 2-type Zr-based Laves phase hydrogen storage alloys for Ni–MH rechargeable batteries in the Korea Advanced Institute of Science and Technology. Journal of alloys and Compounds, 1999. 293: p. 583-592.
123.Zhang, Q., Y. Lei, X. Yang, et al., Annealing treatment of AB 2-type hydrogen storage alloys: I. crystal structures. Journal of alloys and compounds, 1999. 292(1): p. 236-240.
124.Rönnebro, E., D. Noréus, M. Tsukahara, et al., Neutron diffraction study of the new hexagonal Laves phase (Hf, Ti)(Ni, V) 2 and its deuteride. Journal of alloys and compounds, 1999. 293: p. 169-173.
125.Shi, Z., S. Chumbley, and F. Laabs, Electron diffraction analysis of an AB 2-type Laves phase for hydrogen battery applications. Journal of alloys and compounds, 2000. 312(1): p. 41-52.
126.Du, Y., X. Yang, Q. Zhang, et al., Phase structures and electrochemical properties of the Laves phase hydrogen storage alloys Zr 1− x Ti x (Ni 0.6 Mn 0.3 V 0.1 Cr 0.05) 2. International journal of hydrogen energy, 2001. 26(4): p. 333-337.
127.Xu, Y.-h., C.-p. Chen, X.-l. Wang, et al., The cycle life and surface properties of Ti-based AB 2 metal hydride electrodes. Journal of alloys and compounds, 2002. 337(1): p. 214-220.
128.Yang, K., D. Chen, L. Chen, et al., Microstructure, electrochemical performance and gas-phase hydrogen storage property of Zr 0.9 Ti 0.1 [(Ni, V, Mn) 0.95 Co 0.05] α laves phase alloys. Journal of alloys and compounds, 2002. 333(1): p. 184-189.
129.Liu, B.H., Z.P. Li, R. Kitani, et al., Improvement of electrochemical cyclic durability of Zr-based AB 2 alloy electrodes. Journal of alloys and compounds, 2002. 330: p. 825-830.
130.Okada, M., T. Kuriiwa, A. Kamegawa, et al., Role of intermetallics in hydrogen storage materials. Materials Science and Engineering: A, 2002. 329: p. 305-312.
131.Shu, K., S. Zhang, Y. Lei, et al., Effect of Ti on the structure and electrochemical performance of Zr-based AB 2 alloys for nickel–metal rechargeable batteries. Journal of alloys and compounds, 2003. 349(1): p. 237-241.
132.Livingston, J.D. Refractory and silicide Laves phases. in MRS Proceedings. 1993. Cambridge Univ Press.
133.Fleischer, R., C. Liu, A. Taub, et al. High-Temperature, Ordered Intermetallic Alloys, III. in MRS Symp. Proc., CC Koch, CT Liu, NS Stoloff, and AI Taub, eds., MRS, Pittsburgh, PA. 1989.
134.Anton, D. and D. Shah, High temperature evaluation of topologically close packed intermetallics. Materials Science and Engineering: A, 1992. 153(1): p. 410-415.
135.Sauthoff, G., Intermetallic phases-materials developments and prospects. 1989.
136.Machon, L. and G. Sauthoff, Deformation behaviour of Al-containing C14 Laves phase alloys. Intermetallics, 1996. 4(6): p. 469-481.
137.Thoma, D., F. Chu, J. Wills, et al. Comparison of NbCr2 and HfV2 C15 Laves Phases. in MRS Proceedings. 1996. Cambridge Univ Press.
138.Thoma, D., F. Chu, P. Peralta, et al., Elastic and mechanical properties of Nb (Cr, V) 2 C15 Laves phases. Materials Science and Engineering: A, 1997. 239: p. 251-259.
139.Sauthoff, G., Multiphase intermetallic alloys for structural applications. Intermetallics, 2000. 8(9): p. 1101-1109.
140.Sauthoff, G., Laves phase alloys for high-temperature applications. Transactions of the Nonferrous Metals Society of China(China), 1999. 9: p. 326-334.
141.Von Keitz, A. and G. Sauthoff, Laves phases for high temperatures—Part II: Stability and mechanical properties. Intermetallics, 2002. 10(5): p. 497-510.
142.Arnfelt, H., u. A. Westgren: Jernkont. Ann. Bd, 1935. 119: p. 185-196.
143.Joubert, J.-M. and Y. Feutelais, Contribution of the Rietveld method to non-stoichiometric phase modeling. Part II: α-Tl 5 Te 3 and μ Nb-Ni as experimental examples. Calphad, 2002. 26(3): p. 427-438.
144.Massalski, T.B., H. Okamoto, P. Subramanian, et al., Binary alloy phase diagrams. vol. 3. ASM International, 1990, 1990: p. 1485.
145.Raman, A., $ mu $ PHASES. Z. Metallk., 1966. 57.
146.Rideout, S., W. Manly, E. Kamen, et al., Intermediate phases in ternary alloy systems of transition elements. Trans. AIME, 1951. 191(3): p. 872.
147.Komura, Y., D. Shoemaker, and C. Shoemaker. THE CRYSTAL STRUCTURE OF THE R PHASE, MO-CO-CR. in ACTA CRYSTALLOGRAPHICA. 1957. MUNKSGAARD INT PUBL LTD 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK.
148.Tarasenko, L. and V. Titov, Intermetallic R-phase in maraging steels of the Fe-Cr-Ni-Co-Mo system. Metal science and heat treatment, 2006. 48(7-8): p. 374-378.
149.Komura, Y., W. Sly, and D.P. Shoemaker, The crystal structure of the R phase, Mo-Co-Cr. Acta Crystallographica, 1960. 13(8): p. 575-585.

1.Schubert, W., H. Neumeister, G. Kinger, et al., Hardness to toughness relationship of fine-grained WC-Co hardmetals. International Journal of Refractory Metals and Hard Materials, 1998. 16(2): p. 133-142.
2.Zhang, Y., Y.J. Zhou, J.P. Lin, et al., Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 2008. 10(6): p. 534-538.
3.Yang, X. and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 2012. 132(2-3): p. 233-238.
4.Fang, S., X. Xiao, L. Xia, et al., Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. Journal of Non-Crystalline Solids, 2003. 321(1): p. 120-125.
5.Liu, C., Physical metallurgy and mechanical properties of ductile ordered alloys (Fe, Co, Ni) 3 V. International metals reviews, 1984. 29(1): p. 168-194.
6.Zhu, J., P. Liaw, and C. Liu, Effect of electron concentration on the phase stability of NbCr 2-based Laves phase alloys. Materials Science and Engineering: A, 1997. 239: p. 260-264.
7.Wang, Z., Y. Huang, Y. Yang, et al., Atomic-size effect and solid solubility of multicomponent alloys. Scripta Materialia, 2015. 94: p. 28-31.
8.Norman, N., N. Greenwood, and A. Earnshaw, Chemistry of the Elements. Butter worth-Heinemann, Earnshaw, Alan, 1997.
9.Yeh, J.W., S.K. Chen, J.Y. Gan, et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2004. 35A(8): p. 2533-2536.

1.Handbook, M., Vol. 9. Metallography and Microstructures, ASM, 1985.
2.Li, B., et al., Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy. Materials Science and Engineering: A, 2008. 498(1): p. 482-486.
3.Chen, M.-R., et al., Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0. 5CoCrCuFeNi high-entropy alloy. Metallurgical and Materials Transactions A, 2006. 37(5): p. 1363-1369.
4.Tung, C.C., et al., On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials Letters, 2007. 61(1): p. 1-5.
5.Hsu, C.Y., et al., Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys. Advanced Engineering Materials, 2010. 12(1-2): p. 44-49.
6.Hsu, C.Y., et al., Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear, 2010. 268(5-6): p. 653-659.
7.Shun, T.-T., C.-H. Hung, and C.-F. Lee, The effects of secondary elemental Mo or Ti addition in Al 0.3 CoCrFeNi high-entropy alloy on age hardening at 700° C. Journal of Alloys and Compounds, 2010. 495(1): p. 55-58.
8.Zhu, J., et al., Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMo x alloys. Journal of Alloys and Compounds, 2010. 497(1): p. 52-56.
9.Zhu, J., et al., Microstructures and compressive properties of multicomponent AlCoCrFeNiMo x alloys. Materials Science and Engineering: A, 2010. 527(26): p. 6975-6979.
10.Hsu, C.-Y., et al., On the superior hot hardness and softening resistance of AlCoCr x FeMo 0.5 Ni high-entropy alloys. Materials Science and Engineering: A, 2011. 528(10): p. 3581-3588.
11.Shun, T.-T., L.-Y. Chang, and M.-H. Shiu, Microstructure and mechanical properties of multiprincipal component CoCrFeNiMo x alloys. Materials Characterization, 2012. 70: p. 63-67.
12.Juan, C.-C., et al., On microstructure and mechanical performance of AlCoCrFeMo 0.5 Ni x high-entropy alloys. Intermetallics, 2013. 32: p. 401-407.
13.Joubert, J.-M. and N. Dupin, Mixed site occupancies in the μ phase. Intermetallics, 2004. 12(12): p. 1373-1380.
14.De Graef, M. and M.E. McHenry, Structure of materials: an introduction to crystallography, diffraction and symmetry. 2007: Cambridge University Press.
15.Ren, M.-x., B.-s. Li, and H.-z. Fu, Formation condition of solid solution type high-entropy alloy. Transactions of Nonferrous Metals Society of China, 2013. 23(4): p. 991-995.
16.Stepanov, N., et al., Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. Journal of Alloys and Compounds, 2015. 628: p. 170-185.
17.Edwards, A.R., LATTICE DIMENSIONS OF AB2 LAVES PHASES. Metallurgical Transactions, 1972. 3(6): p. 1365-&.
18.Laves, F. and H. Witte, The influence. of valence electrons on the crystal structure of ternary magnesium alloys. Metallwirtschaft, 1936. 15: p. 840.
19.Liu, C., et al., Physical metallurgy and mechanical properties of transition-metal Laves phase alloys. Intermetallics, 2000. 8(9): p. 1119-1129.
20.Von Keitz, A., G. Sauthoff, and P. Neumann, Laves phases for high temperatures - Structure, stability and constitution. Zeitschrift Fur Metallkunde, 1998. 89(12): p. 803-810.
21.Ohta, Y. and D.G. Pettifor, SIZE VERSUS ELECTRONIC FACTORS IN TRANSITION-METAL LAVES PHASE-STABILITY. Journal of Physics-Condensed Matter, 1990. 2(41): p. 8189-8194.
22.Seiser, B., R. Drautz, and D. Pettifor, TCP phase predictions in Ni-based superalloys: Structure maps revisited. Acta Materialia, 2011. 59(2): p. 749-763.
23.Stein, F., M. Palm, and G. Sauthoff, Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability. Intermetallics, 2004. 12(7-9): p. 713-720.
24.Tsai, M.H., et al., Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys. Materials Research Letters, 2013. 1(4): p. 207-212.
25.Seiser, B., et al., Theory of structural trends within 4 d and 5 d transition metal topologically close-packed phases. Physical Review B, 2011. 83(22): p. 224116.
26.Joubert, J.-M., Crystal chemistry and Calphad modeling of the σ phase. Progress in Materials Science, 2008. 53(3): p. 528-583.
27.Hartsough, L., Stability of A15 type phases. Journal of Physics and Chemistry of Solids, 1974. 35(12): p. 1691-1701.
28.Joubert, J.-M. and M. Phejar, Crystal chemistry and Calphad modelling of the χ phase. Progress in Materials Science, 2009. 54(7): p. 945-980.

1.Tsai, M.H., H. Yuan, G. Cheng, et al., Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy. Intermetallics, 2013. 33: p. 81-86.
2.Lin, C.W., M.H. Tsai, C.W. Tsai, et al., Microstructure and aging behavior of Al5Cr32Fe35Ni22Ti6 ternary-like high-entropy alloy. In preparation.
3.Tsai, M.H., K.Y. Tsai, C.W. Tsai, et al., Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys. Materials Research Letters, 2013. 1(4): p. 207-212.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳崇權,2002,〈金控子公司間之共同行銷〉,《實用月刊》第330期,pp.69-73。
2. 吳崇權,2002,〈金控子公司間之共同行銷〉,《實用月刊》第330期,pp.69-73。
3. 方燕玲,2001,〈金融控股公司整合機制面面觀〉,《會計研究月刊》,第一八七期,pp.18-19。
4. 方燕玲,2001,〈金融控股公司整合機制面面觀〉,《會計研究月刊》,第一八七期,pp.18-19。
5. 王國輝,2002a,〈金融控股集團不只是金融百貨服務業〉,《會計研究月刊》第199期,pp.100-104。
6. 王國輝,2002a,〈金融控股集團不只是金融百貨服務業〉,《會計研究月刊》第199期,pp.100-104。
7. 林維義,2003,〈金融控股公司監理機制之探討〉,《存款保險資訊季刊》第十六期第三卷,pp14-57。
8. 林維義,2003,〈金融控股公司監理機制之探討〉,《存款保險資訊季刊》第十六期第三卷,pp14-57。
9. 苗德進、王雅慧,2002,〈金融控股公司是否能創造價值﹖--臺灣金控公司實證〉,《德明學報》第19期,pp.229-244。
10. 苗德進、王雅慧,2002,〈金融控股公司是否能創造價值﹖--臺灣金控公司實證〉,《德明學報》第19期,pp.229-244。
11. 陳一姍,2001,〈搶進金融控股公司 四大集團改寫遊戲規則〉,《天下雜誌》第242期。
12. 陳一姍,2001,〈搶進金融控股公司 四大集團改寫遊戲規則〉,《天下雜誌》第242期。
13. 曾茹萍,2002a,〈台灣各家金控如何e統旗下繁雜業務〉,《e天下雜誌》第23期。
14. 曾茹萍,2002a,〈台灣各家金控如何e統旗下繁雜業務〉,《e天下雜誌》第23期。
15. 劉文彬、石裕泰,2002,〈企業監控與金融控股公司的購併〉,《華信金融季刊》第17期,pp.65-87。
 
無相關點閱論文