[1]H. Miao, Y. Zhou, G. Tan, and M. Dong, “Microstructure and dielectric properties of ferroelectric barium strontium titanate ceramics prepared by hydrothermal method,” J. Electroceram. 21 (2008) 553.
[2]C. Borderon, D. Averty, R. Seveno, and H. W. Gundel, “Preparation and Characterization of Barium Strontium Titanate Thin Films by Chemical Solution Deposition,” Ferroelectrics 362 (2008) 1.
[3]A. Tombak, J. P. Maria, F. T. Ayguavives, Z. Jin, G. T. Stauf, A. I. Kingon, and A. Mortazawi, “Voltage-Controlled RF Filters Employing Thin-Film Barium–Strontium–Titanate Tunable Capacitors,” IEEE Trans. Microw. Theory Tech. 51 (2003) 462.
[4]A. Kumar, and S. G. Manavalan, “Characterization of barium strontium titanate thin films for tunable microwave and DRAM applications,” Surf. Coat. Technol. 198 (2005) 406.
[5]A. Tombak, J. P. Maria, F. Ayguavives, Z. Jin, G. T. Stauf, A. I. Kingon, and A. Mortazawi, “Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications,” IEEE Microw. Wirel. Compon. Lett. 12 (2002) 3.
[6]S. H. Xiao, H. J. Xu, J. Hu, W. F. Jiang, and X. J. Li, “Structure and humidity sensing properties of barium strontium titanate/silicon nanoporous pillar array composite films,” Thin Solid Films 517 (2008) 929.
[7]Q. Zhang, L. Wang, J. Luo, Q. and Tang, J. Duw, “Improved Energy Storage Density in Barium Strontium Titanate by Addition of BaO–SiO2–B2O3 Glass,” J. Am. Ceram. Soc. 92 (2009) 1871.
[8]Q. Zhang, J. Zhai, B. Shen, H. Zhang, and X. Yao, “Grain size effects on dielectric properties of barium strontium titanate composite ceramics,” Mater. Res. Bull. 48 (2013) 973.
[9]M. Yoshida, H. Yabuta, and S. Yamamichi, “Plasma CVD of (BaSr)TiO3 Dielectrics for Gigabit DRAM Capacitors,” J. Electroceram. 3 (1999) 123.
[10]M. Kocanda, S. F. Mohiudin, and I. A. Motaleb, “An Investigation of PLD-Deposited Barium Strontium Titanate (BaxSr1−xTiO3) Thin Film Optical Properties,” Cryst. Struct. Theory Appl. 1 (2012) 17.
[11]P. Padmini, T. R. Taylor, M. J. Lefevre, A. S. Nagra, R. A. York, and J. S. Speck, “Realization of high tunability barium strontium titanate thin films by rf magnetron sputtering,” Appl. Phys. Lett. 75 (1999) 3186.
[12]Q. Hu, T. Wang, L. Jin, and X. Wei, “Dielectric and energy storage properties of barium strontium titanate based glass–ceramics prepared by sol–gel method,” J. Sol-Gel Sci. Technol. 71 (2014) 522.
[13]J.S. Chun, I. Petrov, and J. E. Greene, “Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth,” J. Appl. Phys. 86 (1999) 3633.
[14]E. T. Whittaker, A History Of The Theories Of Aether And Electricity: From The Age Of Descartes To The Close Of The Nineteenth Century, Longman, London, 1910, 67.
[15]O. G. Palanaa, Engineering Chemistry, Tata McGraw-Hill Education, New Delhi, 2009, 44.
[16]W. D. Callister, Materials Science and Engineering: an introduction, Wiley Asia Student Edition, New York, 2007, 703.
[17]S. Agarwal, and G. L. Sharma, “Humidity sensing properties of (Ba, Sr)TiO3 thin films grown by hydrothermal- electrochemical method,” Sens. Actuators B 85 (2002) 205.
[18]D. Gao, D. Xiao, J. Bi, P. Yu, G. Yu, W. Zhang, and J. Zhu, “Hydrothermal Syntheses of Barium Strontium Titanate Thin Films,” Mater. Trans. 44 (2003) 1320.
[19]J. Zhao, X. Wang, R. Chen, and L. Li, “Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates,” Mater. Lett. 59 (2005) 2329.
[20]J. Xu, J. Zhai, and X. Yao, “Growth and Characterization of BaxSr1-xTiO3 Thin Films Derived by A Low-Temperature Process,” Cryst. Growth Des. 6 (2006) 2197.
[21]J. Zhao, X. Wang, L. Li, X. Wang, and Y. Li, “Stoichiometry control and structure evolution in hydrothermally derived (Ba,Sr)TiO3 films,” Ceram. Int. 34 (2008) 1223.
[22]R. Z. Hou, A. Wu, and P. M. Vilarinho, “Low-Temperature Hydrothermal Deposition of (BaxSr1-x)TiO3 Thin Films on Flexible Polymeric Substrates for Embedded Applications,” Chem. Mater. 21 (2009) 1214.
[23]Z. Zhou, H. Tang, Y. Linb, and H. A. Sodano, “Hydrothermal growth of textured
BaxSr1-xTiO3 films composed of nanowires,” Nanoscale 5 (2013) 10901.
[24]余錦智,以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究,國立中興大學材料科學與工程學系碩士論文,2005年。[25]鄧煥平,以低溫-水熱化學電池法於鍍氮化鋯膜矽基材上製備鋯酸鋇膜之研究,國立中興大學材料科學與工程學系碩士論文,2007年。[26]趙玲夙,以低溫-水熱化學電池法於鍍鈦膜矽基材上製備具有生物活性之奈米NaHTi3O7薄膜研究,國立中興大學材料科學與工程學系碩士論文,2009年。[27]蔡迪佑,以水熱-化學電池法於氮化鈦膜上製備鈦酸鋇膜及其成長動力學分析,國立中興大學材料科學與工程學系碩士論文,2010年。[28]林佳君,以水熱-化學電池法於不同表面形貌及電阻率之TiN/Si上製備SrTiO3膜之研究,國立中興大學材料科學與工程學系碩士論文,2011年。[29]簡榛密,以水熱-化學電池法在鍍氮化鈦膜基材上製備鈦酸鋇膜與應用於天線之研究,國立中興大學材料科學與工程學系碩士論文,2012年。[30]蔡右相,水熱-化學電池法中以低Sr離子濃度生成SrTiO3薄膜之研究,國立中興大學材料科學與工程學系碩士論文,2013年。[31]陳祺涵,以低Ba離子濃度在水熱-化學電池法生成BaTiO3薄膜之探討,國立中興大學材料科學與工程學系碩士論文,2014年。[32]吳?泓,以水熱-化學電池法於ZrN/Si上製備BaZrO3薄膜及成長機制分析,國立中興大學材料科學與工程學系碩士論文,2015年。
[33]Y. C. Chieh, C. C. Yu, and F.-H. Lu, “Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method,” Appl. Phys. Lett. 90 (2007) 032904.
[34]H. P. Teng, Y. C. Chieh, and F.-H. Lu, “Preparation of BaZrO3 films by physical vapor deposition and a novel hydrothermal duplex technique,” Thin Solid Films 516 (2007) 364.
[35]P. H. Chan, and F.-H. Lu, “Low-temperature hydrothermal–galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrates,” Thin Solid Films 517 (2009) 4782.
[36]P. H. Chan, and F.-H. Lu, “Low Temperature Hydrothermal Synthesis and the Growth Kinetics of BaTiO3 Films on TiN/Si, Ti/Si, and Bulk-Ti Substrates,” J. Electrochem. Soc. 57 (2010) G130.
[37]C. J. Yang, L. S. Chao, and F.-H. Lu, “Synthesis and electrochemical behaviors of nano-network NaHTi3O7 thin films on Ti/Si prepared by a hydrothermal-galvanic couple method,” Surf. Coat. Technol. 231 (2013) 521.
[38]C. J. Yang, D. Y. Tsai, P. H. Chan, C. T. Wu, and F.-H. Lu, “Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates,” Thin Solid Films 542 (2013) 108.
[39]Y. H. Tsai, Y. C. Chieh, and F.-H. Lu, “Influence of Sr+2 concentrations on growth of SrTiO3 thin films synthesized by hydrothermal–galvanic couple method,” Thin Solid Films 570 (2014) 479.
[40]C.K. Tan, G.K.L. Goh, and G.K. Lau, “Growth and dielectric properties of BaTiO3 thin films prepared by the microwave-hydrothermal method,” Thin Solid Films 516 (2008) 5545.
[41]M. Pourbaix, Atlas Of Electrochrmical Equilibria In Aqueous Solutions, Cebelcor, Houston, 1967.
[42]K. Kajiyoshi, M. Yoshimura, Y. Hamaji, K. Tomono, and T. Kasanami, “Growth of (Ba, Sr)TiO3 thin films by the hydrothermal-electrochemical method and effect of oxygen evolution on their microstructure,” J. Mater. Res. 11 (1996) 196.
[43]R. K. Roede, and E. B. Slamovich, “Stoichiometry Control and Phase Selection in Hydrothermally Derived BaxSr1−xTiO3 Powders,” J. Am. Ceram. Soc. 82 (1999) 1665.
[44]M. A. McCormick, R. K. Roeder, and E. B. Slamovich, “Processing effects on the composition and dielectric properties of hydrothermally derived BaxSr(1−x)TiO3 thin films,” J. Mater. Res. 16 (2001) 1200.
[45]I. Barin, F. Sauert, E. S. Rhonhof, and W. S. Sheng, Thermochemical Data of Pure Substances, VCH Publishers, New York, 2008.
[46]K.A. Razak, A.Asadov, J. Yoo, E Haemmerle, and W. Gao, “Structure and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method,” J. Alloys Compd. 449 (2008) 19.
[47]A. Testino, V. Buscaglia, M. T. Buscaglia, M. Viviani, and P. Nanni, “Kinetic Modeling of Aqueous and Hydrothermal Synthesis of Barium Titanate (BaTiO3),” Chem. Mater. 17 (2005) 5346.
[48]J. A. Dirksen, and T. A. Ring, “Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology,” Chem. Eng. Sci. 46 (1991) 2389.
[49]E. R. Nightingale, “Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions,” J. Phys. Chem. 63 (1959) 1381.