跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘亮瑜
研究生(外文):Liang-Yu Pan
論文名稱:喜楠癭蚋屬造癭昆蟲於紅楠之營養利用與關聯物種
論文名稱(外文):Nutritional use of Daphnephila gall midges on Machilus thunbergii and organisms associated with their galls
指導教授:楊曼妙楊曼妙引用關係
口試委員:葉文斌邱少婷王也珍董景生石憲宗
口試日期:2015-06-01
學位類別:博士
校院名稱:國立中興大學
系所名稱:昆蟲學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:122
中文關鍵詞:喜楠瘿蚋屬生活史穩定性碳同位素癭組織相關真菌食癭者
外文關鍵詞:Daphnephilalife cyclestable carbon isotopegall structureassociated fungicecidophagous animals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:555
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
喜楠瘿蚋屬(Daphnephila)是台灣闊葉林常見的癭蚋類群。這些喜樟瘿蚋屬的昆蟲常在相同寄主上造不同外形的蟲癭,並且共享相似的生態區位與資源。我使用寄主為紅楠的莖癭喜樟癭蚋、台灣喜樟癭蚋、淑燕喜樟癭蚋、窄癭喜樟癭蚋與鳥頭喜樟癭蚋的蟲癭作為主要材料,分別進行下列探討:(1)持續多年野外調查,瞭解使用相同資源的蟲癭是否有生活史差異;(2)使用穩定性碳同位素技術,測試蟲癭的營養適應假說;(3)進行蟲癭形態測量,測試蟲癭是否為造癭者的延伸表徵;(4)分離不同發育時期的蟲癭瘿室內的真菌;(5)觀察與造癭者相關的寄生蜂與食瘿者,瞭解蟲癭在該地生態環境中的上一階層消費者,建構初階的蟲癭群聚資訊。
主要結果如下:(1)在2004到2011年間觀察台灣陽明山地區大屯山脈兩側105棵紅楠上造葉瘿的四種喜樟瘿蚋屬族群,顯示這四種喜樟瘿蚋屬的成蟲有冬季與春季兩次羽化時間,分別對應寄主植物的兩次抽芽時期。喜樟瘿蚋屬的生活史可分為一年一世代與兩年一世代兩群,差異在於一齡滯育時期的延長。這樣的兩種生活史策略經常來自相同母蟲所產下的同批卵,顯示後代羽化的時間並不總是與母蟲一致。(2)穩定性同位素的分析顯示瘿組織的碳同位素高於寄主植物,因此當植物被昆蟲造瘿之後,會形成類似食物鏈關係的碳同位素累積。(3)根據蟲癭外形的長寬比值,紅楠上的喜樟瘿蚋屬的蟲癭可分為圓胖型(台灣喜樟癭蚋、淑燕喜樟癭蚋)與瘦長型(莖癭喜樟癭蚋、窄癭喜樟癭蚋、鳥頭喜樟癭蚋)。蟲癭內部的儲存細胞層數顯示圓胖型的蟲癭較瘦長型蟲癭多層,只有屬於瘦長型蟲癭的莖癭喜樟癭蚋蟲癭與圓胖型蟲癭更為相似。蟲癭組織部分保有寄主植物組織的特性,如在莖癭裡似輪限薄壁組織的薄壁組織與葉癭裡的維管束鞘。(4)根據蟲室分離的真菌,優勢真菌可分為成熟期蟲癭的B. dothidea與發育期蟲癭的Fusarium spp,並分布於台灣各地的喜樟瘿蚋屬蟲癭內,但是其他非優勢菌種的種類會隨地區不同而有所改變。(5)喜樟瘿蚋屬的寄生蜂主要是Platygaster sp. 與 Eupelmus sp.。我發現五種未曾紀錄過的野生動物食癭行為,分別是臺灣獼猴、臺灣藍鵲、赤腹松鼠與兩種夜蛾科的幼蟲。這五種野生動物平常就會取食紅楠的葉、芽與果實,推測食癭行為乃偶發性,但在冬季或早春食物稀少時會食瘿作為食物補充來源。
結論:(1) 這是第一個在紅楠多年枝條上確認造葉瘿的喜樟瘿蚋屬昆蟲生活史的研究,發現這四種昆蟲同步使用相同資源與有相似的生活史。(2) 穩定性碳同位素的結果顯示喜樟瘿蚋屬的演化適應是朝向較小蟲癭而投資越少能量於蟲癭的方向發展。(3)確認無論蟲癭形狀、蟲癭組織結構、蟲癭能量累積平均、真菌相均為造瘿昆蟲的表徵,並且顯示喜樟瘿蚋屬在紅楠上的適應性演化。(4) Botryosphaeria dothidea是主要的蟲癭內共生菌,但來自相同族群蟲癭內不同的真菌相顯示喜樟瘿蚋屬可以使用其他真菌作為次級共生菌。(5)此研究首度紀錄兩種特有種脊椎動物的食瘿行為。

Daphnephila is a common group of Cecidomyiidae in the evergreen broadleaf forests of Taiwan. Diverse galls induced by different species of Daphnephila often concurrently exist on the same host species demonstrating a striking niche divergence and resource sharing. The galls induced by D. truncicola, D. taiwanensis, D. sueyenae, D. stenocalia, and D. ornithocephala on Machilus thunbergii were examined : (1) to know whether the life cycle differs among various Daphnephila gall midge species accompanying the same host M. thunbergii; (2) to test the nutritional adaptation hypothesis by stable isotope; (3) to examined the galls to verify the hypothesis that the morphology of galls is an expression of the extended phenotype of the respective gall-inducing insect; (4) to establish the fungus flora in different gall midge development stage by isolating the fungi inside galls from the immature to mature stage; (5) to record the parasitoids and cecidophagous predators associated with Daphnephila galls.
Results are as following. (1) Populations of four leaf-gall inducing Daphnephila species were tracked on 105 M. thunbergii trees at four sites on Mt. Datun in Yangmingshan National Park in Northern Taiwan for seven years (2004–2011). Daphnephila populations recognized as either the winter or the spring emergent group could take advantages of two bud bursting seasons, either winter (January–February) or spring (March–May), based upon the availability of their oviposition time and location and they use either the vegetative leaves of the winter mixed buds with inflorescence and vegetative shoots or the spring vegetative buds producing no reproductive organs. Daphnephila populations show two types of life cycles: one-year type and two-year type, the latter with an extended diapause to the second year of the first-instar larva. Tracing the development of eggs from the same batches, I found the offspring did not always follow the life strategies of their parents. (2) Gall tissues had higher carbon isotope contents than the galled leaves. Consequently, a relocation of carbon isotope composition occurred when gall formed and a typical food chain relationship is revealed. (3) Based on their length―width ratio, the materials were grouped into either fleshy (those induced by D. taiwanensis and D. sueyenae) or slim (those induced by D. truncicola, D. stenocalia, and D. ornithocephala) types of galls. The numbers of reserve and nutritive cell layers in galls were greater in the stem galls induced by D. truncicola, similar to those in the fleshy leaf galls, but were fewer in other slim leaf galls. The gall tissues retained some property characteristic from plant tissues, such as the boundary-parenchyma-like parenchyma in stem galls and the bundle sheath in leaf galls. (4) Based on the fungal taxa isolated from the larval chambers, the dominant fungi in mature galls was B. dothidea while in immature galls were Fusarium spp. Regardless sampled localities, the above dominant status of fungal groups remained the same, whereas the non-dominant fungal taxa varied among different areas. (5) The major parasitoids are Platygaster sp. and Eupelmus sp. Five species of animals are newly recorded to be cecidophages on Daphnephila galls, i.e. the Formosan rockmonkey (Macaca cyclopis), the Taiwan blue magpie (Urocissa caerulea), the Formosan red-bellied tree squirrel (Callosciurus erythraeus), and two species of Noctuidae larvae. These animals are facultative cecidophages and usually feed on the leaves, buds or fruits of host plants. They selectively nibble at the gall tissues in winter or early spring, indicating that they may use galls as a supplemental food when their usual food resource is low.
In conclusion: (1) this is the first survey on the cohort of M. thunbergii associated with Daphnephila galls in Taiwan. Synchronizing utilization of the host resources and similar life cycles were found among the four leaf-galling Daphnephila species; (2) the results of stable carbon isotope suggests that the selection forces may toward smaller sizes for galls and decreasing carbon isotope contents with an optimal relationship; (3) the shapes, structure, nutritive tissues, energy levels, and multiple coexisting fungal taxa within galls reinforce that they are extended phenotypes of the respective gall-inducing Daphnephila species and they represent adaptive evolution of Daphnephila on M. thunbergii; (4) Botryosphaeria dothidea is the primary associate and possibly a symbiont. The different fungal taxa isolated from mature galls induced by the same Daphnephila populations suggest that these Cecidomyiidae may use different species of secondary fungal associates to possibly enhance their nutrition; and (5) this study newly recorded the cecidophages behavior of two endemic vertebrate.


1. General introduction 1
1.1. Gall maker and the organisms associated with galls 1
1.2. Gall midges and the tribe Asphondyliini 2
1.3. Gall midges and their hosts in Taiwan 5
1.3.1. Daphnephila 6
1.3.2. Machilus hosts 7
1.4. Galling Hypothesis 10
1.4. Long-term study area 11

2. Host phenology and life cycles of Daphnephila species (Diptera: Cecidomyiidae) on the leaves of Machilus thunbergii (Lauraceae) in Northern
Taiwan 14
2.1. Introduction 14
2.2. Materials and Methods 17
2.2.1. Study sites 17
2.2.2. Leaf longevity and host plant phenology 18
2.2.3. Observation of the life cycle of Daphnephila species 19
2.2.4. Life span of gall midges 20
2.3. Results 21
2.3.1. Host phenology and leaf age 21
2.3.2. Daphnephila life cycle 23
2.3.2.1. Matting and oviposition 23
2.3.2.2. First instar and difference of diapause 25
2.3.2.3. Mature gall and offspring emergence 26
2.3.2.4. The adult life span of Daphnephila 27
2.4. Discussion 27

3. Using stable isotopes to investigate the nutritional use of galling insects in Yangmingshan National Park 32
3.1. Introduction 32
3.1.1. Hypotheses of gall adaptation 32
3.1.2. Tracing the nutritional use 33
3.2. Material and methods 34
3.2.1. Study region and galls 34
3.2.2. Stable isotope analysis 35
3.3. Results 36
3.4. Discussion 40

4. Structure of five Daphnephila galls on Machilus thunbergii in northeastern
Taiwan 42
4.1. Introduction 42
4.2. Material and methods 45
4.3. Results 48
4.3.1. The structure of host tissues 48
4.3.2. The gall structure 50
4.3.2.1. Nutritive tissue 51
4.3.2.2. Sclerenchyma zone 55
4.3.2.3. Transitional ground tissue inside vascular zone 56
4.3.2.4. The structure and ratio at vascular zone 57
4.3.2.5. Cell composition of cortex 59
4.3.2.6. Epidermal characteristics of galls 60
4.4. Discussion 63

5. Associated fungi in Machilus host and Daphnephila galls 68
5.1. Introduction 68
5.2. Materials and methods 70
5.2.1. Study sites and sampling 70
5.2.2. Sampling and fungal isolation 73
5.2.3. Assessment of isolation frequency 74
5.3. Results 74
5.3.1. Isolation frequency of fungi varied in host plants
in different areas 74
5.3.2. Isolation frequency of fungi varied in galls at different
life cycle stages 76
5.3.3. Dominant fungi in D. taiwanensis galls 80
5.3.4. Phenological survey of host plant in different areas 82
5.4. Discussion 83

6. Other organisms associated with Daphnephila galls 86
6.1. Introduction 86
6.2. Materials and methods 87
6.3. Results 88
6.3.1. Associated parasitic wasps in YMSNP 88
6.3.2. Associated parasitic wasps throughout Taiwan 89
6.3.2.1. Parasitic wasps of the family Platygastridae 90
6.3.2.2. Parasitic wasps of the family Pteromalidae 91
6.3.2.3. Parasitic wasps of the family Eulophidae 91
6.3.2.4. Parasitic wasps of the family Braconidae 92
6.3.2.5. Parasitic wasps of the family Eupelmidae 93
6.3.2.6. Parasitic wasps of the family Torymidae 93
6.3.2.7. Parasitic wasps of the family Eurytomidae 93
6.3.2.8. Parasitic wasps of the family Ormyridae 94
6.3.2.9. Parasitic wasps of the family Ceraphronidae 94
6.3.2.10. Parasitic wasps of the family Encyrtidae 94
6.3.2.11. Parasitic wasps of the family Ichneumonidae 95
6.3.3. Cecidophagous animals 90
6.4. Discussion 99

7. Conclusion 101

8. References 104

9. Appendix 122


Abrahamson WG, Weis AE. 1997. Evolutionary ecology across three trophic levels: goldenrods, gall makers and natural Enemies. Princeton University Press, New Jersey.
Abrahamson WG, Melika G, Scrafford R, Csóka G. 1998. Gall-inducing insects provide insights into plant systematic relationships. Amer Jour Bot 85: 1159–1165.
Abrahamson WG, Hunter MD, Melika G, Price PW. 2003. Cynipid gall–wasp commu-nities correlate with oak chemistry. Jour Chem Ecol 29: 209–223.
Adair RJ, Burgess T, Serdani M, Barber P. 2009. Fungal associations in Asphondylia (Diptera: Cecidomyiidae) galls from Australia and South Africa: implications for biological control of invasive acacias. Fungal Ecol, 2, 121–134.
Akhmetiev MA. 2010. Paleocene and Eocene floristic and climatic change in Russia and Northern Kazakhstan. Bull Geosci, 85: 77–94.
Akhter J, Sabir SA, Lateef Z, Ashraf MY, Haq MA. 2008. Relationships between carbon isotope discrimination and grain yield, water-use efficiency and growth parameters in wheat (Triticum aestivum L.) under different water regimes. Pak J Bot, 40: 1441 -1454.
Alexopoulos CJ, Mims CW, Blackwell M. 1996. Introductory Mycology. John Wiley & Sons, Inc., New York.
Alves A, Correia A, Luque J, Phillips AJL. 2004. Botryosphaeria corticola sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph Diplodia mutila. Mycologia 96: 598-613.
Arber A. 1942. Nehemiah Grew (1641-1712) and Marcello Malpighi (1628-1694): an essay in comparison. Isis, 34:7-16.
Askew RR, Shaw MR. 1986. Parasitoid communities: their size, structure and development. pp 225-264. In: Waage J, Greathead D (eds). Insect parasitoids. Academic Press, London.
Batra LR. 1963. Ecology of ambrosia fungi and their dissemination by beetles. Trans Kans Acad Sci, 66: 213–236.
Batra LR. 1967. Ambrosia fungi: a taxonomic revision, and nutritional studies of some species. Mycologia, 59: 976–1017.
Batra LR, Batra SWT. 1966. Fungus-growing termites of tropical India and associated fungi. J Kans Entomol Soc, 39: 725–738.
Batra LR, Francke– Grosmann H. 1961. Contributions to our knowledge of ambrosia fungi. I. Asocidea hylecoeti sp. nov. (Ascomycetes). Am J Bot, 50: 481–487.
Batra LR, Lichtwardt RW. 1963. Association of fungi with some insect galls. J Kansas Entomol Soc, 36: 262–278.
Beck CB. 2010. The phloem. pp 222–246. In: An introduction to plant structure and development, Ed 2. Cambridge University Press, Cambridge.
Bernoux M, Cerri CC, Neill C and de Moraes JFL. 1998. The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma, 82:43-58.
Bisset J, Borkent A. 1988. Ambrosia galls: the significance of fungal nutrition in the evolution of the Cecidomyiidae (Diptera). pp. 203–205. In: Pirozynski KA, Hawksworth DL (eds.) Coevolution of fungi with plants and animals. Academic Press, London.
Bronner R. 1992. The role of nutritive cells in the nutrition of cynipids and cecidomyiids. pp 118–140. In: Shorthouse JD, Rohfritsch O (eds.), Biology of insect-induced galls. Oxford University Press, Oxford, UK.
Brooks SE. 1998. Developmental morphology of stem galls of Diplolepis nodulosa (Hymenoptera: Cynipidae) and those modified by the inquiline Periclistus pirata (Hymenoptera: Cynipidae) on Rosa blanda (Rosaceae). Canadian J Bot, 76: 365–381.
Carneiro MAA, Branco CSA, Braga CED, Almada ED, Costa MBM, Maia VC, Fernandes GW. 2009. Are gall midge species Diptera, Cecidomyiidae host-plant specialists? Rev Bras Entomol, 53: 365-378.
Chanderbali AS, van der Werff, H, Renner SS. 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann Missouri Bot Gard 88: 104–134.
Chaney RW, Chuang CC. 1968. An oak-laurel forest in the Miocene of Taiwan (part 1). Proc Geolog Soc China, 11: 3-18.
Chang NH, Huang Wu CB, Chen YS, Fu CH, Chen SW, Lai IM. 2000. Phenological survey of Machilus kusanoi, Machilus zuihoensis, Elaeocarpus sylvestris, and Castanopsis carlesii over 3 years (1994–1996). Taiwan J For Sci, 15: 497–506. (In Chinese, with English Summary)
Chiang TC. 2011. Biosystematics of the galling midge Daphnephila (Diptera:Cecidomyiidae) on Machilus spp. (Lauraceae) in Taiwan. Master’s Thesis. National Ching Hsing University, Taiwan. (In Chinese).
Clarke KR, Gorley RN. 2006. Primer v6. user manual/tutorial. Primer-E, Plymouth, UK.
Dallai R. 2009. The contribution of the sperm structure to the reconstruction of the hexapod phylogeny. Proc Arthropod Embryol Soc Jpn, 43:23–38.
Dallai R, Mazzini M. 1989. The spermatozoon of the gall-midge Oligotrophidi (Diptera Cecido-myiidae). Boll Zool, 56: 13-27.
Dallai R, Lupetti P, Frati F, Afzelius BA. 1996. Spermatozoafromthe supertribes Lasiopteridi and Stomatosematidi (Insecta, Diptera, Cecidomyiidae): Ultrastructure data and phylogeny of the subfamily Cecidomyiinae. Zool Scr, 25: 51–60.
Dawkins R. 1982. The extended phenotype: the gene as a unit of selection. Oxford University Press, Oxford.
Denman S, Crous PW, Taylor TW, Kang J-C, Pascoe I, Wingfield MJ. 2000. An overview of the taxonomic history of Botryosphaeria, and a re-evluation of its anamorphs based on morphology and ITS rDNA phylogeny. In: Molecules, morphology and classification: Towards monophyletic genera in the Ascomycetes. Stud Myco, 45: 129–140.
Dreger-Jauffret F, Shorthouse JD. 1992. Diversity of gall-inducing insects and their galls. pp. 8–33. In: In: Shorthouse JD, Rohfritsch O (eds). Biology of Insect-Induced Galls. Oxford University Press, New York.
DeNiro MJ, Epstein S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta, 42: 495-506.
Doctors van Leeuwen WM. 1939. An ambrosia gall on Symplocus fasciculate. Zoll Annales du Jardin Botanique de Buitenzorg, 49: 27–42.
Diamond SE, Blair CP, Abrahamson WG. 2008. Testing the nutrition hypothesis for the adaptive nature of insect galls: does a non-adapted herbivore perform better in galls? Ecol Entomol, 33: 385–393.
Dinca OR, Ionete RE, Popescu R, Costinel D, Radu GL. 2014. Geographical and botanical origin discrimination of romanian honey using complex stable isotope data and chemometrics. Food Anal Methods, 8: 401-412.
Fernandes GW, Price PW. 1988. Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76: 161-167
Florentine SK, Raman A, Dhileepan K. 2005. Effects of gall induction by Epiblema strenuana on gas exchange, nutrients, and energetics in Parthenium hysterophorus. Biocontrol, 50: 787–801.
Francey RJ, Farquhar GD. 1982. An explanation of 13C/12C variations in tree rings. Nature, 297: 28-31.
Francke–Grosmann H. 1963. Some new aspects in forest entomology. Annu Rev Entomol, 8: 415–438.
Fernandes GW, Price PW. 1988. Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia, 76: 161-167.
Gagné RJ. 1981. Cecidomyiidae. pp. 257-292. In: McAlpine JF (eds). Manual of Nearctic Diptera. Vol. 1. Research Branch, Agriculture, Canada, Ottawa.
Gagné RJ. 1989. The Plant-Feeding Gall Midges of North America. Cornell University Press, Ithaca. 356 pp.
Gagné RJ. 1994. The gall midges of the Neotropical Region. Cornell University Press, Ithaca, 360 pp.
Gagné RJ, 2004. A catalog of the Cecidomyiidae (Diptera) of the world. Memoirs of the Entomological Society of Washington No 23, 408pp.
Gagné RJ. 2008. The gall midges (Diptera: Cecidomyiidae) of hickories (Juglandaceae: Carya). Mem Am Entomol Soc, 48: 1–147.
Gagné RJ. 2010. Update for a catalog of the Cecidomyiidae (Diptera) of the world. Digital version 1. USDA, Washington.
Gagné RJ, Moser JC. 2013. The North American gall midges (Diptera: Cecidomyiidae) of hackberries (Cannabaceae: Celtis spp.). Mem Am Entomol Soc, 49: 1–103.
Gagné RJ, Jaschhof M. 2014. A catalog of the Cecidomyiidae (Diptera) of the world. 3rd Edition. Digital version 2. [Cited 3 February 2014] Available from URL:http://afrsweb.usda.gov/SP2UserFiles/Place/12454900/Gagne_2014_World_Cecidomyiidae_Catalog_3rd_Edition.pdf
Goidanich A. 1941. Interpretazione simbiotica di una associazione mico–entomatica gallare. Atti della Reale Accademia delle scienze di Torino, 76: 208–221.
Graham K. 1967. Fungal–insect mutualism in trees and timber. Ann Rev Entomol, 12: 105–126.
Harris MO, Stuart JJ, Mohan M, Nair S, Lamb R, Rohfritsch O. 2003. Grasses and gall midges: plant defense and insect adaptation. Annu Rev Entomol, 48: 549-577.
Hawkins BA, Goeden RD. 1984. Organization of a parasitoid community associated with a complex of galls on Atriplex spp. in southern California. Ecol Entomol, 9: 271-292.
Hsieh HJ. 1980. Survey of diseases of woody plants in Taiwan (3). Quart J Chinese Forest, 13: 129-139. (in Chinese)
Hsieh HJ. 1983. Notes on host plants of Cephaleuris virescen new for Taiwan. Bot Bull Acad Sinica Taipei 24: 89-96.
Hsieh HJ. 1985. Survey of diseases of woody plants in Taiwan (9). Taiwan forest res inst bull, 445: 1-9. (in Chinese)
Hsieh HJ. 1990. Survey of diseases of woody plants in Taiwan (14). Quart J Chinese Forest, 23:39-43. (in Chinese)
Huang MY, Lin KH, Yang MM, Chou HM, Yang CM, Chang YT. 2011. Chlorophyll fluorescence, spectral properties, and pigment composition of galls on leaves of Machilus thunbergii. Int J Plant Sci, 172: 323−329.
Janckiewicz LS, Fitch H, Antoszewski M. 1970. Preliminary studies on the translocation of 14C-labelled 32PO4 towards the gall evoked by Cynipis (Diplolepis) quercus-folii L. on oak leaves. Marcellia, 36: 363−372.
Jaschhof, M. 2000. Catotrichinae subfam. n.: a re-examination of higher classification in gall midges (Diptera: Cecidomyiidae). Entomol Sci, 3: 639-652.
Jones CG, Lawton JH, Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69: 373 – 386.
Jones CG, Lawton JH, Shachak M. 1997. Positive and negative effects of organisms as ecosystem engineers. Ecology, 78: 1028 – 1039.
Joy JB, Crespi BJ. 2007. Adaptive radiation of gall-inducing insects within a single host–plant species. Evolution, 61: 784–795.
Kaku S, Iwaya-Inoue M. 1990. Factors affecting the prolongation of NMR relaxation times of water protons in leaves of woody plants affected by formation of insect galls. Plant Cell Physiol, 31: 627-637.
Kanehira R. 1936. Formosan Tree Indigenous to the Island. Dept. of Forestry, Government Research Institute, Taihoku, Formosa.
Kehr V, Kost G. 1999. Microhabitat Planzengallen. Das Zusammenleben von Gallmücken und Pilzen. Biologie in Unserer Zeit, 29: 18–25.
Kieffer JJ. 1905. Etude sur de nouveaux insectes et phytoptides gallicoles du Bengale. Annales de la Société scientifique de Bruxelles, 29: 143–200.
Kirst GO, Rapp H. 1974. Zur Physiologie der Galle von Mikiola fagi Htg. auf Blättern von Fagus silvatica L. 2 Transport 14C markierter Assimilate aus dem befallenen Blatt und aus Nachbarblättern in die Galle. Biochemie und Physiologie der Pflanzen, 165: 445–455.
Kobune S, Kajimura H, Masuya H, Kubono T. 2012. Symbiotic Fungal Flora in Leaf Galls Induced by Illiciomyia yukawai (Diptera: Cecidomyiidae) and in Its Mycangia. Microbial Ecology, 63: 619-627.
Kohn MJ. 1999. You are what you eat. Science, 283: 335-336.
Kostermans AJGH. 1962. The Asiatic species of Persea Mill. Reinwardtia, 6: 189–194.
Körner C, Farqubar GD and Roksandic Z. 1988. A global survey of carbon isotope discrimination in plants from high altitude. Oecologia, 74: 623–632.
Küster E. 1911. Die Gallen der Pflanzen. Leipzig, S. Hirzel. 437pp.
Larson KC, Whitham TG. (1997. Competition between gall aphids and natural plant sinks: plant architecture affects resistance to galling. Oecologia, 109: 575−582.
Leng X, Wang ZS, An SQ, Wang GM, Zheng JW, Feng J. 2006. The influence of insular geographical isolation on population genetic structure of Machilus thunbergii. J Nanjing forest uni, 30: 20-24.
Liao JC. 1988. The Taxonomic Revisions of the Family Lauraceae in Taiwan. National Taiwan University, Taipei. 185 pp.
Liao JC. 1996. Lauraceae. pp.433-499. In: Editorial Committee of the Flora of Taiwan (Eds.) Flora of Taiwan (Ⅱ). 2nd ed, Taipei.
Liu YC, Lu FY, Ou CH. 1994. Trees of Taiwan. College of Agriculture, National Chung-Hsing University, Taiwan.
Li J, Conran JG, Christophel DC, Li ZM, Li L, Li HW. 2008. Phylogenetic relationships of the Litsea complex and core Laureae (Lauraceae) using ITS and ETS sequences and morphology.
Li L, Li J, Rohwer JG, van der Werff H, Wang ZH, Li HW. 2011. Molecular phylogenetic analysis of the Persea group (Lauraceae) and its biogeographic implications on the evolution of tropical and subtropical Amphi-Pacific disjunctions. Am J Bot, 98: 1520−1536.
Li J, Christophel DC. 2000. Systematic relationships within the Litsea complex (Lauraceae): a cladistic analysis on the basis of morphological and leaf cuticle data. Austral Syst Bot, 13: 1–13.
Li HL. 1963. Woody Flora of Taiwan. Livingston Publishing Company, Pennsylvania. pp. 195-227.
Lu FY. 1969. Studies on the Taiwan Machilus. Quart J Chinese Forest, 1: 12-36.
Lu SY, Chen SY. 1996. Geographical distribution and taxonomic study of Machilus zuihoensis and Machilus mushaensis. Taiwan J For Sci, 11: 239–244. (In Chinese)
Lu SY. 2008. A systematic study on the genus Machilus of Taiwan (Lauraceae). Doctoral dissertation, National Sun Yat-sen University, Taiwan. (In Chinese, with English Summary)
Mabberley DJ. 2008. The Plant Book: A portable dictionary of plants, their classification and uses. Third Edition. Cambridge University Press, Cambridge, pp. 496.
Maeda N, Sato S, Yukawa J. 1982. Polymodal emergence pattern of the machilus leaf gall midge, Daphnephila machilicola Yukawa (Diptera, Cecidomyiidae). Kontyû, 50: 44–50.
Mamaev BM. 1975. Evolution of Gall Forming Insects – Gall Midges. British Library, Lending Division, Boston Spa, Wetherby, UK.
Mamaev BM, Krivosheina NP. 1993. The larvae of the gall midges (Diptera, Cecidomyiidae). AA Balkema Publishers. 293 pp.
Mani MS. 1964. The Ecology of Plant Galls. W. Junk, The Hague.
Metcalfe CR, Chalk L. 1950. Anatomy of the Dicotyledons, Vol. II. Oxford University Press.
Meyer J. 1987. Plant galls and gall inducers. Gebrüder Borntraeger. Berlin. 291pp.
Mishima M, Sato S, Tsuda K, Yukawa J. 2014. Sexual isolation between two known intraspecific populations of Hartigiola (Diptera: Cecidomyiidae) that induce leaf galls on upper and lower surfaces of Fagus crenata (Fagales: Fagaceae), indicating possible diversification into sibling species. Ann Ent Soc Am, 107:789-798. 2014.
Neger FW. 1908. Ambrosiapiltze. Berichte der Deutsche Botanische Gesellschaft 26: 735–754.
Nitta I, Ohsawa M. 1997. Leaf dynamics and shoot phenology of eleven warm-temperate evergreen broad-leaved trees near their northern limit in central Japan. Plant Ecol, 130: 71-88.
Nijveldt WC, Yukawa J. 1982. A taxonomic study on Salix-inhabiting gall midges in Japan (Diptera, Cecidomyiidae). Bull Kitakyushu Mus Nat Hist, 4: 23-56.
Nyman T, Julkunen-Titto RR. 2000. Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci USA, 97:13184–13187.
Odling-Smee FJ, Laland KN, Feldman MW. 2003. Niche construction: the neglected process in evolution. Princeton University Press, Princeton, USA. 568 pp.
O''Leary MH. 1981. Carbon isotope fractionation in plants. Phytochemistry, 20: 553-567.
Ou CH. 1977. Chromatographic studies on the Machilus in Taiwan. J Agr Forest, 26: 155-169.
Pan LY, Chiang TC, Weng YC, Chen WN, Hsiao SC, Tokuda M, Tsai CL, Yang MM. 2015a. Taxonomy and biology of a new ambrosia gall midge Daphnephila urnicola sp. nov. (Diptera: Cecidomyiidae) inducing urn-shaped leaf galls on two species of Machilus (Lauraceae) in Taiwan. Zootaxa, 3955: 371–388.
Pan LY, Chen WN, Chiu ST, Raman A, Chiang TC, Yang MM. 2015b. Is a gall an extended phenotype of the inducing insect? A comparative study of selected morphological and physiological traits of leaf and stem galls on Machilus thunbergii (Lauraceae) induced by five species of Daphnephila (Diptera: Cecidomyiidae) in northeastern Taiwan. Zoological Science, 32: 314–321.
Pan LY, Yang MM. 2014. Cecidophagy of Machilus thunbergii Galls in Yangmingshan National Park. Formosan Entomologist. 34: 87-95.
Price PW. 2005. Adaptive radiation of gall-inducing insects. Basic Appl Ecol, 6: 413–421.
Price PW, Fernandes GW, Lara ACF, Brawn J, Barrios H, Wright MG, Ribeiro SP, Rothcliff N. 1998. Global patterns in local number of insect galling species. J Biogeog, 25: 581-591.
Price PW, Westoby M, Rice B, Atsatt RR, Fritz RS, Thompson JN, Mobley K. 1986. Parasite mediation of ecological interactions. Annu Rev Ecol Syst, 17: 487-505.
Price PW, Fernandes GW, Waring GL. 1987. Adaptive nature of insects galls. Environ Entomol, 16: 15-24.
Park BY, Min BS, Kwon OK, Oh SR, Ahn KS, Kim TJ, Kim DY, Bae KW, Lee HK. 2004. Increase of Caspase-3 Activity by Lignans from Machilus thunbergii in HL-60 Cells. Biol Pharm Bull, 27: 1305—1307.
Raman A. 1996. Nutritional diversity in gall inducing insects and their evolutionary relationships with flowering plants. Internat Jour Ecol Environ Sci, 22: 150–160.
Raman A. 2007. Biogeographical implications in species richness, biological diversity, and evolution of gall-inducing insects of the Orient and the Eastern Palearctic. Orient Ins, 41: 9–25.
Raman A. 2011. Morphogenesis of insect-induced plant galls: facts and questions. Flora, 206: 517–533.
Raman A, Schaefer CW, Withers TM. 2005. Galls and gall-inducing insects: an overview of their biology, ecology, and evolution. pp. 1–33. In Raman A, Schaefer CW, Withers TM (eds). Biology, Ecology, and Evolution of Gall-inducing Arthropods. Science Publishers, Inc., Enfield, New Hampshire.
Raman A, Madhavan S, Florentine SK, Dhileepan K. 2006. Metabolite mobilization in the stem galls of Parthenium hysterophorus induced by Epiblema strenuana inferred from the signatures of isotopic carbon and nitrogen and concentrations of total non-structural carbohydrates. Entomol Exper Appl, 119: 101–107.
Raman A, Burckhardt D, Harris KM. 2009. Biology and adaptive radiation in the gall-inducing Cecidomyiidae (Insecta Diptera) and Calophyidae (Insecta Hemiptera) on Mangifera indica (Anacardiaceae) in the Indian subcontinent. Trop Zool, 22: 27–56.
Rohfritsch O. 1971. Dévéloppement cécidien et rôle du parasite dans quelques galles d''arthropodes. Marcellia, 37: 233–339.
Rohfritsch O. 1992. Patterns in gall development. pp. 60–86. In: Shorthouse JD, Rohfritsch O (eds). Biology of Insect-Induced Galls. Oxford University Press, New York.
Rohfritsch O. 2008. Plant, gall midges, and fungi: a three-component system. Netherlands entomol soc, 128: 208–216.
Rohfritsch O. 2010. Genesis and development of dipterocecidia. Atti Accademia Nazionale Italiana di Entomologia, 58: 55–66.
Rohfritsch O, Shorthouse JD. 1982. Insect galls. pp. 131–152. In: Kahl G, Schell J. (eds). Molecular biology of plant tumors. Academic Press, London, U.K.
Rohwer JG. 2000. Toward a phylogenetic classification of the Lauraceae: evidence from matK sequences. Syst Bot, 25: 60–71.
Rohwer JG, Li J, Rudolph B, Schmidt SA, van der Werff H, Li HW. 2009. Is Persea (Lauraceae) monophyletic? Evidence from nuclear ribosomal ITS sequences. Taxon, 58: 1153–1167.
Roskam JC. 1985. Evolutionary patterns in gall midge–host plant associations (Diptera, Cecidomyiidae). Tijds voor Entomol, 128: 193–213.
Roskam JC. 1992. Evolution of the gall-inducing guild. pp. 34-49. In: Shorthouse JD, Rohfritsch O (eds.) Biology of Insect-Induced Galls. Oxford University Press, New York.
Roskam JC. 2005. Phylogeny of gall midges (Cecidomyiidae). pp. 305–320. In: Raman A, Schaefer CW, Withers TM (eds.). Biology, Ecology, and Evolution of Gall–Inducing Arthropods. Science Publishers, Enfield, NH, USA.
Ross H. 1932. Praktikum der Gallenkunde (Cecidologie). Springer-Verlag, Berlin.
Russo RA. 2007. Field guide to plant galls of California and other western states. University of California Press, Berkeley.
Ruzin SE. 1999. Plant microtechnique and microscopy. Oxford University Press, New York.
Sands WA. 1969. The association of termites and fungi. pp. 495-524. In: Krishna K, Weesner FM (eds). Biology of termites. Academic Press, New York and London.
Sanver D, Hawkins BA. 2000 . Galls as habitats: the inquiline communities of insect galls. Basic Appl Ecol, 1: 3-11.
Scartazza A, Mata C, Matteucci G, Yakir D, Moscatello S, Brugnoli E. 2004. Comparisons of δ13C of photosynthetic products and ecosystem respiratory CO2 and their response to seasonal climate variability. Oecologia, 140: 340–351.
Shorthouse JD, Wool D, Raman A. 2005. Gall-inducing insects – nature’s most sophisticated herbivores. Basic Appl Ecol, 6: 407-411.
Skuhravá M. 1986. Family Cecidomyiidae. pp. 72–297. In: Soós A, Papp L (eds). Catalogue of Palaearctic Diptera: Sciaridae and Cecidomyiidae. Vol. 4, Akadémiai Kiadó, Budapest.
Skuhravá M. 2006. Species richness of gall midges (Diptera: Cecidomyiidae) in the main biogeographical regions of the world. Acta Societatis Zoologicae Bohemicae, 69: 327– 372.
Skuhravá M, Skuhravý V, Brewer JW. 1984. Biology of gall midges. pp 169–222. In: Ananthakrishnan TN (eds.). Biology of Gall Insects, Printsman Press, Faridabad.
Slippers B, Wingfield MJ. 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev, 21: 90-106.
Slippers B, Crous PW, Denman S, Coutinho TA, Wingfield BD, Wingfield MJ. 2004. Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia, 96: 83-101.
Slippers B, Johnson GI, Crous PW, Coutinho TA, Wingfield BD, Wingfield MJ. 2005. Phylogenetic and morphological re-evaluation of the Botryosphaeria species causing diseases of Mangifera indica. Mycologia, 97: 99-110.
Sota T. 1988. Ecology of a gall-forming thrips, Ponticulothrips diospyrosi: colony development and gall-associated arthropod community (Thysanoptera: Phaleothripidae). Appl Entomol Zool, 23: 345-352.
Stiling PD. 1987. The frequency of density dependence in insect host parasitoid systems. Ecology, 68: 844-856.
Stone GN, Schonrogge K. 2003. The adaptive significance of insect gall morphology. Trends Ecol Evol, 18:512–522
Su HJ. 1984a. Studies on the climate and vegetation types of the natural forests in Taiwan (I) Analysis in variation of climate factors. Quart J Chin Forest, 17: 1– 14 (in Chinese with English summary).
Su HJ. 1984b. Studies on the climate and vegetation types of the natural forests in Taiwan (II) Altitudinal vegetation zones in relation to temperature gradient. Quart J Chin Forest, 17: 57-73 (in Chinese with English summary).
Su HJ. 1985. Studies on the climate and vegetation types of the natural forests in Taiwan (III) A scheme of geographical climatic regions. Quart J Chin Forest, 18: 33-44 (in Chinese with English summary).
Sugiura S, Yamazaki K, Fukasawa Y. 2004. Weevil parasitism of ambrosia galls. Ann Entomol Soc Am, 97: 184-193.
Sugiura S, Yamazaki K, Osono T. 2006. Consequences of gall tissues as a food resource for a tortricid moth attacking cecidomyiid galls. Can Entomol, 138: 390-398.
Sulaiman HB, Yukawa J. 1992. Relationship between inhabitants and size or weight of galls caused by Pseudasphondylia matatabi (Diptera: Cecidomyiidae). Proceedings of the Association for Plant Protection of Kyushu, 38: 186–189. (In Japanese with English summary.)
Sýlven E. 1979. Gall midges (Diptera, Cecidomyiidae) as plant taxonomists. Symb Bot Ups, 22: 62–69.
Tabuchi K, Amano H. 2003. Host-associated differences in emergence pattern, reproductive behavior and life history of Asteralobia sasakii (Monzen) (Diptera: Cecidomyiidae) between populations on Ilex crenata and I. integra (Aquifoliaceae). Appl Entomol Zool, 38: 501– 508.
Tang CT. 2008. Spindle shaped leaf galls on Cyclobalanopsis glauca (Fagaceae)-the biology and taxonomy of gall midge. Master''s thesis, National Chung Hsing University, Taiwan. (In Chinese)
Teder T, Tanhuanpa M, Ruohomka K, Kaitaniemi P, Henriksson J. 2000. Temporal and spatial variation of larval parasitism in non-outbreaking populations of a folivorous moth. Oecologia, 123: 516-524.
Tieszen L, Boutton L. 1989. Stable carbon isotopes in Terrestrial ecosystem research. pp 167-195. In: Rundel PW, Ehleringer JR, Nagy KA (eds), Stable Isotopes in Ecological Research. Sringer-Verlag, New York.
Tokuda M. 2012. Biology of Asphondyliini (Diptera: Cecidmyiidae). Entomol Sci, 15: 361–383.
Tokuda M, Yukawa J. 2007. Biogeography and evolution of gall midges (Diptera: Cecidomyiidae) inhabiting broadleaved evergreen forests in the Oriental and eastern Palaearctic Regions. Oriental Insects 41: 121–139
Tokuda M, Yang MM, Yukawa J. 2008. Taxonomy and molecular phylogeny of Daphnephila gall midges (Diptera: Cecidomyiidae) inducing complex leaf galls on Lauraceae, with descriptions of five new species associated with Machilus thunbergii in Taiwan. Zool Sci, 25: 533-545.
Trelease W. 1884. Notes the relations of two cecidomyians to fungi. Psyche, 195–200.
Tung GS, Yang PS, Yang MM. 2006. Pattern analysis of galling host-plants in Taiwan. Taiwan J Forest Sci, 21: 205–214. (In Chinese with English abstract)
van der Werff H, Richter HG. 1996. Toward an improved classification of Lauraceae. Ann Missouri Bot Gard, 83:409–418.
Van de Vyvere I, De Bruyn L. 1998. Morphological and histochemical analysis of galls of Lipara lucens (Diptera, Chloropidae) on Phragmites australis (Poaceae). Can J Bot, 76: 1374–1384.
Vogel JC. 1978. Recycling of carbon in a forest environment. CEcol Plant, 13:89-94.
Wang HH, Liu CJ, Lin TT, Chen WB, Lee MY, Su SH. 2011. The Flowering and Fruiting Phenology of Lauraceae and Fagaceae Trees in Fushan Experimental Forest, Northern Taiwan. Quart J Chinese Forest, 44: 349-362. (in Chinese with English summary)
Weis AE, Walton R, Crego CL. 1988. Reactive plant tissue sites and the population biology of gall makers. Annu Rev Entomol, 33: 467–486.
Yang MM, Tung GS. 1998. The diversity of insect-induced galls on vascular plants in Taiwan: a preliminary report. pp. 44–53. In: Csóka G, Mattson WJ, Stone GN, Price PW (eds). General technical report NC-199., North central forest experiment station, Forest Service, United States Department of Agriculture.
Yang CM, Yang MM, Huang MY, Hsu JM, Jane WN. 2003. Herbivorous insect causes deficiency of pigment–protein complexes in an oval-pointed cecidomyiid gall of Machilus thunbergii leave. Bot Bull Acad Sinica, 44: 314–321.
Yang MM, Huang MY, Jane WN, Tung GS, Chang YT, Yang CM. 2008. Observation on the epidermal stomata of a cup-like gall of Litsea acuminata (Lauraceae). Bio Formosa, 43: 71–75.
Yeh HW, Wang WM. 2001. Factors Affecting the Isotopic Composition of Organic Matter. (1) Carbon Isotopic Composition of Terrestrial Plant Materials. Proc. Natl Sci Counc ROC, 137-147.
Yeh HW, Yang CM, Chen FW. 2003. Genetic effect on carbon isotope composition of a C3-plant.Goldschmidt2003, A563.
Yukawa J. 1974. Descriptions of new Japanese gall midges (Diptera, Cecidomyiidae, Asphondyliidi) causing leaf galls on Lauraceae. Kontyû, 42: 293–304.
Yukawa J. 1987. Life history strategies of univoltine gall-making Cecidomyiidae (Diptera) in Japan. Phytophaga, 1: 121–139.
Yukawa J. 2000. Synchronization of gallers with host plant phenology. Popul Ecol, 42: 105–113.
Yukawa J, Akimoto K. 2006. Influence of synchronization between adult emergence and host plant phenology on the population density of Pseudasphondylia neolitseae (Diptera: Cecidomyiidae) inducing leaf galls on Neolitseae sericea (Lauraceae). Population Ecology, 48: 13–21.
Yukawa J, Masuda H. 1996. Insect and Mite Galls in Japan in Color. Zenkoku Nôson Kyôiku Kyôkai, Tokyo. (In Japanese with English explanations for color plates.)
Yukawa J, Ohsaki N. 1988. Adult behavior of the aucuba fruit midge, Asphondylia aucubae Yukawa and Ohsaki (Diptera, Cecidomyiidae). Kontyû, 56: 645– 652.
Yukawa J, Rohfritsch O. 2005. Biology and Ecology of Gall-Inducing Cecidomyiidae (Diptera). pp. 273-304. In: Raman A, Schaefer CW, Withers TM (eds). Biology, Ecology, and Evolution of Gall-Inducing Arthropods, Vol 1. Plymouth, Science Publishers.
Yukawa J, Uechi N, Tokuda M, Sato S. 2005. Radiation of gall midges (Diptera: Cecidomyiidae) in Japan. Basic Appl Entomol, 5: 453–461.
Yukawa J, Uechi N, Ganaha-Kikumura T, Paik JC. 2013. Cecidomyiid Galls found on Jeju Island and in Sunchon and its Vicinity, South Korea. Esakia, 52: 45-49.
Yukawa J, Nakagawa K, Saigou T, Awa T, Fukuda T, Higashi M. 2013. Adult behavior of an ambrosia gall midge Illiciomyia yukawai (Diptera: Cecidomyiidae) and synchronization between its emergence and host plant phenology. Entomol Sci, 16: 400–412.
Zhang GS. 2010. Study on the intraspecific and interspecific competition in Machilus thunbergii community. J Fujian College Fores, 30:179-182.
Zhou S, Stanosz GR. 2001. Relationships among Botryosphaeria species and associated anamorphic fungi inferred from the analysis of ITS and 5.8S rDNA sequences. Mycologia, 93: 516–527.
Ziegler H. 1994. Deuterium content in organic material of hosts and their parasites. pp 393–408. In: Schulze ED, Caldwell M (eds). Ecophysiology of photosynthesis. Springer, Berlin Heidelberg, New York.
Ziegler H. 1996. Stable isotopes in interactions of parasites and hosts within higher plants. Isotopenpraxis, 32:129–140.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top