跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王嘉煒
研究生(外文):Jia-Wei Ong
論文名稱:仙草萃取物改善高尿酸血症及腎損傷之功效評估
論文名稱(外文):Effect of Mesona procumbens Hemsl. extracts on improvement of hyperuricemia and nephropathy
指導教授:顏國欽顏國欽引用關係
口試委員:徐慶琳吳思敬廖俊旺
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:126
中文關鍵詞:仙草尿酸鹽黃嘌呤氧化酶高尿酸血症鏈佐黴素腎臟發炎反應
外文關鍵詞:Hsian-tsaomonosodium uratexanthine oxidasehyperuricemiastreptozotocinkidney inflammation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
嘌呤類物質透過黃嘌呤氧化酶 (xanthine oxidase, XO) 代謝為尿酸 (uric acid) 並隨尿液排出體外。當體內尿酸濃度持續過高,會發展為高尿酸血症 (hyperuricemia) 及併發如痛風、高血壓及慢性腎損傷等疾病。仙草 (Mesona) 為唇形科仙草屬一年生之食用草本植物,已被證實富含多種生理活性,如降血壓、降血糖、護肝及改善糖尿病所誘發之心肌損傷,但仙草是否對改善高尿酸血症及減緩腎臟發炎反應之功效尚未釐清。因此,本研究以體外及活體試驗為平台,探討仙草改善高尿酸血症及減緩腎臟發炎反應之潛力。
使用水及不同濃度乙醇 (25、50、75 及 95%) 分別對不同地區仙草 (台灣、越南及大陸) 進行萃取,並分析各萃取物中之活性成分、體外抑制尿酸生成及減緩腎臟發炎反應之功效。活性成分分析結果顯示,大陸仙草萃取物含有最高之總酚及類黃酮含量。經 HPLC 分析結果顯示,台灣仙草萃取物含有 p-hydroxybenzoic acid、caffeic acid 及 protocatechuic acid (PCA);越南仙草萃取物含有 caffeic acid、 PCA 及 hesperidin;而大陸仙草萃取物僅分析出 caffeic acid。此外,各地區仙草萃取物皆含有三萜類化合物齊墩果酸 (oleanolic acid, OA) 及熊果酸 (ursolic acid, UA)。於抑制尿酸生成試管試驗結果發現,台灣仙草萃取物具有最佳的抑制尿酸生成效果。以細胞模式評估台灣各仙草萃取物抑制 XO 活性能力,結果顯示,台灣仙草各萃取物可顯著抑制尿酸鹽 (monosodium urate, MSU) 誘導 THP-1 胞內 XO 活性上升,其中又以 50% 乙醇萃取物 (50% ethanol extract, EE50) 之抑制效果最佳。
慢性腎臟發炎為高尿酸血症眾多併發症之一,因此以 MSU 誘導 HEK 293 腎胚細胞作為實驗平台,評估台灣仙草各萃取物減緩腎臟發炎反應之功效。實驗結果顯示,台灣仙草各萃取物皆顯著減少促發炎激素介白素-8 (interleukin-8, IL-8) 之分泌量。台灣仙草水萃物 (water extract, WE) 亦可顯著減少 MSU 誘導 HEK 293 腎臟細胞中胞內超氧陰離子含量, 而其 EE50 則可顯著減少胞內 reactive oxygen species (ROS) 之含量。因此,台灣仙草萃取物具有良好抑制尿酸生成、 MSU 誘導之 XO 活性上升與改善腎臟發炎反應,說明台灣仙草萃取物具有改善高尿酸血症及 MSU 誘導的腎臟發炎反應之潛力。
進一步利用動物模式探討台灣 EE50 於活體中改善高尿酸血症及腎臟發炎反應之功效。實驗使用鏈佐黴素 (streptozotocin, STZ) 誘導 Sprague-Dawley 雄性大鼠產生第一型糖尿病、高尿酸血症及腎臟發炎反應,並於誘導一週後分別給予 10 mg/kg B.W. 異嘌呤醇 (allopurinol, AP) 或不同劑量台灣 EE50 (0.25、0.5 及 1 g/kg B.W.)。結果顯示,餵食各劑量台灣 EE50 並無改善 STZ 誘導之大鼠體重降低、攝食飲水量上升、空腹血糖值升高及葡萄糖耐受性下降等糖尿病典型症狀之功效。但餵食中劑量及高劑量台灣 EE50 後,可顯著降低 STZ 誘導之血清尿酸含量及肝臟 XO 活性。此外,餵食高劑量 EE50 亦可顯著降低 STZ 誘導之血中尿素氮、腎臟促發炎激素 IL-1β 及 tumor necrosis factor-alpha (TNF-α) 分泌量上升之效果。
本研究結果證實,台灣仙草 50% 乙醇萃取物富含酚類及三萜類物質,且具有抑制尿酸生成、減緩 XO 活性、改善 STZ 誘導之高尿酸血症及腎臟發炎反應之功效與潛力。


Uric acid is metabolized from purine by the xanthine oxidase (XO) and excreted by urine. High level of serum uric acid leads to hyperuricemia and its complications such as gout, hypertension and chronic renal disease. Hsian-tsao (Mesona) is an annual herbaceous plant belonging to the Labiatae family, which has been reported to possess many beneficial properties, such as, anti-hypertension, hypoglycemic effect, hepatoprotective effect and improvement of diabetic myocardium impairment. However, the inhibitory effects of Hsian-tsao on hyperuricemia and kidney inflammation remain unclear. Therefore, we investigated the potential effect of Hsian-tsao on hyperuricemia and kidney inflammation in vitro and in vivo.
We analyzed the active compounds and investigated the effects of Taiwan, Vietnam and China Hsian-tsao extracts after being extracted by water and various concentrations of ethanol (25, 50, 75 and 95%), respectively, on uric acid production and kidney inflammation, the results showed that China Hsian-tsao extracts contained the highest levels of phenolics and flavonoids. The results from HPLC analysis showed that p-hydroxybenzoic acid, caffeic acid and protocatechuic acid (PCA) were detected in Taiwan Hsian-tsao extracts, and the caffeic acid, PCA and hesperidin were detected in Vietnam Hsian-tsao extracts. However, China Hsian-tsao extracts contained caffeic acid only. In addition, both oleanolic acid and ursolic acid, the triterpenoids, presented in Hsian-tsao extracts from Taiwan, Vietnam and China. The in vitro result showed that Taiwan Hsian-tsao extracts exerted the greatest inhibitory effects on uric acid production. We further evaluated the inhibition of Taiwan Hsian-tsao extract on XO activity in THP-1 monocytes. The results showed that Taiwan Hsian-tsao extracts significantly inhibited the XO activity in monosodium urate (MSU)-induced THP-1 monocytes, and the 50% ethanol extracts (EE50) of Taiwan Hsian-tsao exhibited the most potent inhibitory activity.
Because chronic kidney inflammation is one of the complications of hyperuricemia, we investigated the alleviative effects of Taiwan Hsian-tsao extracts on kidney inflammation induced by MSU in human embryonic kidney HEK293 cells. The results revealed that Taiwan Hsian-tsao extracts significantly reduced the secretion of pro-inflammatory cytokine interleukin-8. The water extract (WE) of Taiwan Hsian-tsao decreased the superoxide anion generation while EE50 decreased the reactive oxygen species (ROS) generation in MSU-induced HEK 293 cells. Taiwan Hsian-tsao extracts could inhibit uric acid production, reduce XO activity and improve kidney inflammation under MSU condition. These findings indicate that Taiwan Hsian-tsao extracts possess highly potential effects on attenuation of hyperuricemia and the kidney inflammation.
We further investigated the effects of Taiwan Hsian-tsao extracts on hyperuricemia and kidney inflammation in vivo by streptozotocin (STZ)-induced SD-rats. The animals after induction by STZ were treated by oral gavage 10 mg/kg B.W. allopurinol or various concentrations of Taiwan EE50 (0.25, 0.5 and 1 g/kg) for seven weeks. The results indicated that all dosages of Taiwan EE50 showed no effect on the typical syndrome of type-1 diabetes such as body weight, food intake, water intake, fasting glucose and glucose tolerance in STZ-induced rat. In addition, Taiwan EE50 at 1 g/kg reduced the levels of BUN, kidney pro-inflammatory cytokines IL-1β and TNF-α in STZ-induced rat.
In conclusion, Taiwan Hsian-tsao 50% ethanol extracts are enriched in phenolics and triterpenoids compound. Also, EE50 might have the potential effect to inhibit uric acid production, to reduce XO activity and to improve hyperuricemia and kidney inflammation induced by STZ.


目次
全文摘要...............................................i
Abstract.............................................iii
目次..................................................vi
圖次..................................................ix
表次..................................................xi
縮寫表................................................xii
前言..................................................1
第一章、文獻整理.......................................3
壹、尿酸 (Uric acid)..................................4
一、尿酸簡介...........................................4
二、尿酸之生合成.......................................4
三、尿酸之排泄及重吸收..................................6
貳、高尿酸血症(Hyperuricemia).........................13
一、高尿酸血症簡介 ....................................13
二、高尿酸血症病因 ...................................13
三、高尿酸血症臨床治療.................................15
四、高尿酸血症併發症...................................16
?、高尿酸血症動物模式.................................23
一、鏈佐黴素 (streptozotocin, STZ) 誘導大鼠第一型糖尿病之機制 ....................................................23
二、鏈佐黴素與高尿酸血症及腎損傷........................24
肆、仙草.............................................25
一、仙草簡介..........................................25
二、中醫食療古代文獻...................................25
三、一般營養成分及機能性成分............................25
四、仙草之特殊生理功效.................................26
伍、研究目的..........................................27
陸、研究架構..........................................28
第二章、仙草萃取物活性成分分析及抑制尿酸生成與發炎反應之功效評估 .....................................................29
摘要.................................................30
Abstract.............................................32
前言.................................................34
材料與方法............................................36
結果.................................................43
一、仙草之萃取........................................43
二、仙草萃取物之活性成分...............................43
三、HPLC 分析台灣、越南及大陸仙草各萃取物中酚酸類化合物含量 ....................................................44
四、HPLC 分析台灣、越南及大陸仙草各萃取物中 OA 及 UA 含量 ....................................................45
五、建立 MSU 誘導 THP-1 細胞 XO 活性實驗模式...........46
六、台灣、越南及大陸仙草萃取物抑制尿酸生成之功效評估......46
七、台灣仙草萃取物抑制 MSU 誘導 THP-1 細胞 XO 活性試驗 ....................................................47
八、台灣仙草各萃取物之細胞毒性及提升 MSU 誘導 HEK 293 細胞存活率下降...............................................47
九、台灣仙草萃取物降低 MSU 誘導 HEK 293 促發炎激素分泌量 ....................................................47
十、台灣 WE 及 EE50 降低 MSU 誘導 HEK 293 氧化壓力.....48
討論.................................................49
第三章、仙草 50 % 乙醇萃取物對以 STZ 誘導大鼠糖尿病及高尿酸血症之改善功效............................................72
摘要.................................................73
Abstract.............................................74
前言.................................................75
材料與方法............................................77
結果.................................................82
一、EE50 對 STZ 誘導 SD 大鼠空腹血糖值、葡萄糖耐受性及胰臟組織病理變化之影響........................................82
二、EE50 對 STZ 誘導 SD 大鼠體重、攝食及飲水量變化之影響 ....................................................83
三、STZ 誘導 SD 大鼠之死亡率...........................83
四、EE50 對 STZ 誘導 SD 大鼠之肝臟及腎臟相對臟器重量之影響 .....................................................84
五、EE50 對 STZ 誘導 SD 大鼠血清尿酸及肝臟XO 活性之影響 .....................................................84
六、EE50 對 STZ 誘導 SD 大鼠血脂生化參數之影響...........85
七、EE50 對 STZ誘導 SD 大鼠腎臟組織病理變化之影響........85
八、EE50 對 STZ 誘導 SD 大鼠血中尿素氮 (blood urea nitrogen, BUN) 及肌酸酐 (creatinine) 生化參數之影響...............85
九、EE50 對 STZ誘導 SD 大鼠腎臟 IL-1β 及 TNF-α 之影響 ......................................................86
討論 .................................................87
總結論 .............................................105
參考文獻..............................................107
附錄..................................................120

行政院衛生福利部,健康食品調節血糖功能評估方法修正草案。2010。

行政院衛生福利部,台灣營養健康狀況變遷調查-國中生高尿酸之狀況。2010。

丁梵,飲食膽固醇添加的有無對共軛亞麻油酸影響 STZ 誘導之糖尿病大白鼠血脂與血糖代謝之研究. 國立台灣海洋大學食品科學系 2008.

王翠華、邱建勳、許育、曾淑芬、黃娟、王昱鑫、朱柏齡、林裕峰。高尿酸血症與腎臟疾病。腎臟與透析。2003,15:83-88。

甘偉松,藥用植物。國立中國醫藥研究所。1980。

李勉民,常見藥用圖說。讀者文摘遠東有限公司。1994。

邱年永、張光雄,原色台灣藥用植物圖鑑 (2),台北天南書局。p190。1986。

林家富、陳成龍編著,基層醫學。2001。

洪千雅,仙草抗氧化機能性之研究. 國立中興大學食品科學研究所 2001

胡敏夫,劉慧瑛、劉新裕,仙草品系間農藝性狀與化學成分之比較。中華農業研究。1997,46 (1): 32-41。

楊啟春、陳理宏、呂政義,仙草東凝膠機制之研究-以不同乙醇濃度沉澱仙草多醣膠質之凝膠性及其醣成分組成。食品科學。1982,9 (1-2):19-26。

姜金龍、龔財力、李穎宏,仙草東的原料-仙草的栽培及利用。興農雜誌。1993,295:8-14。

翟枻棻,神秘果抗氧化及降尿酸功效與保健飲品開發。國立嘉義大學生命科學院食品科學研究所 2013。

蔡嘉哲、余光輝、梁統華、蔡文展、魏正宗、謝祖怡。台灣痛風與高尿酸血症診療指引,中華民國風濕病醫學會。2007。

蔡達慶,苦瓜萃取物對STZ誘發之糖尿病鼠慢性發炎反應及凝血機制影響之探討。靜宜大學食品營養學系 2007。

陳淑娟,臨床營養學。合記圖書出版社,台北市 2000。

劉婉君、洪啟智、張哲銘、黃尚志、陳鴻鈞。尿酸與腎臟病。內科學誌。2010;21, 197-203。

Abe, C. K. T., Uric Acid Metabolism in Streptozotocin (STZ)-Induced Diabetic Rats. Effects of Doses of STZ and Length of Follow-Up Period after STZ Injection. Journal of Home Economics of Japan 1992, 43, 629-634.

Abooali, M.; Lall, G. S.; Coughlan, K.; Lall, H. S.; Gibbs, B. F.; Sumbayev, V. V., Crucial involvement of xanthine oxidase in the intracellular signalling networks associated with human myeloid cell function. Sci Rep 2014, 4, 6307.

Amita Pandey; Tripathi, S., Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. journal of pharmacognosy and phytochemistry 2014, 2, 115-119.

Angela A. Meireles, M. E. M. B., Patricia F. Leal, Mario R. Marostica, Camila G. Pereira, and Thais M. Takeuchi, Low-Pressure Solvent Extraction (Solid-Liquid Extraction, Microwave Assisted, and Ultrasound Assisted) from Condimentary Plants. Extracting Bioactive Compounds for Food Products 2008, 97-109.

Ashraf, K. A. S. a. S., Reactive Oxygen Species: A link between chronic inflammation and cancer. AsPac J. Mol. Biol. Biotechnol 2013, 21, 42-49.

Billiet, L.; Doaty, S.; Katz, J. D.; Velasquez, M. T., Review of hyperuricemia as new marker for metabolic syndrome. ISRN Rheumatol 2014, 2014, 852-954.

Cam, M. C.; Rodrigues, B.; McNeill, J. H., Distinct glucose lowering and beta cell protective effects of vanadium and food restriction in streptozotocin-diabetes. Eur J Endocrinol 1999, 141, 546-554.

Choe, J. Y.; Park, K. Y.; Kim, S. K., Oxidative stress by monosodium urate crystals promotes renal cell apoptosis through mitochondrial caspase-dependent pathway in human embryonic kidney 293 cells: mechanism for urate-induced nephropathy. Apoptosis 2015, 20, 38-49.

Chuang, S. Y.; Lee, S. C.; Hsieh, Y. T.; Pan, W. H., Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993-1996 to 2005-2008. Asia Pac J Clin Nutr 2011, 20, 301-308.

de Oliveira, E. P.; Burini, R. C., High plasma uric acid concentration: causes and consequences. Diabetol Metab Syndr 2012, 4, 12.

Deeds, M. C.; Anderson, J. M.; Armstrong, A. S.; Gastineau, D. A.; Hiddinga, H. J.; Jahangir, A.; Eberhardt, N. L.; Kudva, Y. C., Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim 2011, 45, 131-140.

Desco, M. C.; Asensi, A.; Marquez, R.; Martinez-Valls, J.; Vento, M.; Pallardo, F. V.; Sastre, J.; Vina, J., Xanthine oxidase is involved in free radical production in type 1 diabetes - Protection by allopurinol. Diabetes 2002, 51, 1118-1124.

Dominguez, J. H.; Camp, K.; Maianu, L.; Feister, H.; Garvey, W. T., Molecular adaptations of GLUT1 and GLUT2 in renal proximal tubules of diabetic rats. Am J Physiol 1994, 266, F283-290.

Ekaratanawong, S.; Anzai, N.; Jutabha, P.; Miyazaki, H.; Noshiro, R.; Takeda, M.; Kanai, Y.; Sophasan, S.; Endou, H., Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci 2004, 94, 297-304.

Elsner, M.; Guldbakke, B.; Tiedge, M.; Munday, R.; Lenzen, S., Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia 2000, 43, 1528-1533.

Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S. H.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T.; Matsuo, H.; Kikuchi, Y.; Oda, T.; Ichida, K.; Hosoya, T.; Shimokata, K.; Niwa, T.; Kanai, Y.; Endou, H., Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002, 417, 447-452.

Feig, D. I., Hyperuricemia and hypertension. Adv Chronic Kidney Dis 2012, 19, 377-385.

Feig, D. I.; Kang, D. H.; Johnson, R. J., Uric acid and cardiovascular risk. N Engl J Med 2008a, 359, 1811-1821.

Feig, D. I.; Soletsky, B.; Johnson, R. J., Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA 2008b, 300, 924-932.

Gimeno-Orna, J. A.; Faure-Nogueras, E.; Sancho-Serrano, M. A., Usefulness of total cholesterol/HDL-cholesterol ratio in the management of diabetic dyslipidaemia. Diabet Med 2005, 22, 26-31.

Hakoda, M., Recent trends in hyperuricemia and gout in Japan. Japan Med Assoc J 2012, 55, 319-323.

Hammes, M. S.; Lieske, J. C.; Pawar, S.; Spargo, B. H.; Toback, F. G., Calcium oxalate monohydrate crystals stimulate gene expression in renal epithelial cells. Kidney Int 1995, 48, 501-509.

Harrison, R., Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 2002, 33, 774-797.

Hassoun, P. M.; Yu, F. S.; Cote, C. G.; Zulueta, J. J.; Sawhney, R.; Skinner, K. A.; Skinner, H. B.; Parks, D. A.; Lanzillo, J. J., Upregulation of xanthine oxidase by lipopolysaccharide, interleukin-1, and hypoxia. Role in acute lung injury. Am J Respir Crit Care Med 1998, 158, 299-305.

Hayden, M. R.; Tyagi, S. C., Intimal redox stress: accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus. Atheroscleropathy. Cardiovasc Diabetol 2002, 1, 3.

Hayden, M. R.; Tyagi, S. C., Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr Metab (Lond) 2004, 1, 10.

Hediger, M. A.; Johnson, R. J.; Miyazaki, H.; Endou, H., Molecular physiology of urate transport. Physiology (Bethesda) 2005, 20, 125-133.

Herr, R. R.; Jahnke, J. K.; Argoudelis, A. D., The structure of streptozotocin. J Am Chem Soc 1967, 89, 4808-4809.

Hille, R.; Nishino, T., Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J 1995, 9, 995-1003.

Hou, C. W.; Lee, Y. C.; Hung, H. F.; Fu, H. W.; Jeng, K. C., Longan seed extract reduces hyperuricemia via modulating urate transporters and suppressing xanthine oxidase activity. Am J Chin Med 2012, 40, 979-991.

Hovind, P.; Rossing, P.; Tarnow, L.; Johnson, R. J.; Parving, H. H., Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes 2009, 58, 1668-1671.

Huang, G. J.; Liao, J. C.; Chiu, C. S.; Huang, S. S.; Lin, T. H.; Deng, J. S., Anti-inflammatory activities of aqueous extract of Mesona procumbens in experimental mice. J Sci Food Agric 2012, 92, 1186-1193.

Hung, C. Y.; Yen, G. C., Antioxidant activity of phenolic compounds isolated from Mesona procumbens Hemsl. J Agric Food Chem 2002, 50, 2993-2997.

Ishikawa, T.; Aw, W.; Kaneko, K., Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk. Pharmaceuticals (Basel) 2013, 6, 1347-1360.

Kang, D. H.; Nakagawa, T.; Feng, L.; Watanabe, S.; Han, L.; Mazzali, M.; Truong, L.; Harris, R.; Johnson, R. J., A role for uric acid in the progression of renal disease. J Am Soc Nephrol 2002, 13, 2888-2897.

Kanwar, Y. S.; Wada, J.; Sun, L.; Xie, P.; Wallner, E. I.; Chen, S.; Chugh, S.; Danesh, F. R., Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood) 2008, 233, 4-11.

Konrad, R. J.; Kudlow, J. E., The role of O-linked protein glycosylation in beta-cell dysfunction. Int J Mol Med 2002, 10, 535-539.

Korbi, M.; Youssef, M.; Ben Brahim, H.; Chaabane, A.; Mohamed, M.; Akkari, H.; Belhadjali, H.; Zili, J., Allopurinol-induced DRESS complicated by hemophagocytic lymphohistiocytosis. Ann Dermatol Venereol 2015, doi: 10.1016/j.annder.

Kroncke, K. D.; Fehsel, K.; Sommer, A.; Rodriguez, M. L.; Kolb-Bachofen, V., Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotozin contributes to islet cell DNA damage. Biol Chem Hoppe Seyler 1995, 376, 179-185.

Kumar, V.; Ahmed, D.; Gupta, P. S.; Anwar, F.; Mujeeb, M., Anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of Melastoma malabathricum Linn. leaves in streptozotocin induced diabetic rats. BMC Complement Altern Med 2013, 13, 222.

Landmesser, U.; Spiekermann, S.; Preuss, C.; Sorrentino, S.; Fischer, D.; Manes, C.; Mueller, M.; Drexler, H., Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol 2007, 27, 943-948.

LeDoux, S. P.; Woodley, S. E.; Patton, N. J.; Wilson, G. L., Mechanisms of nitrosourea-induced beta-cell damage. Alterations in DNA. Diabetes 1986, 35, 866-872.

Lemieux, I.; Lamarche, B.; Couillard, C.; Pascot, A.; Cantin, B.; Bergeron, J.; Dagenais, G. R.; Despres, J. P., Total cholesterol/HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: the Quebec Cardiovascular Study. Arch Intern Med 2001, 161, 2685-2692.

Lewis, C.; Barbiers, A. R., Streptozotocin, a new antibiotic. In vitro and in vivo evaluation. Antibiot Annu 1959, 7, 247-254.

Li, K.; Yu, L.; Liu, X.; Chen, C.; Chen, Q.; Ding, J., A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials 2013, 34, 2834-2842.

Lin, S. D.; Tsai, D. H.; Hsu, S. R., Association between serum uric acid level and components of the metabolic syndrome. J Chin Med Assoc 2006, 69, 512-516.

Liu, L. M.; Cheng, S. F.; Shieh, P. C.; Lee, J. C.; Chen, J. J.; Ho, C. T.; Kuo, S. C.; Kuo, D. H.; Huang, L. J.; Way, T. D., The methanol extract of Euonymus laxiflorus, Rubia lanceolata and Gardenia jasminoides inhibits xanthine oxidase and reduce serum uric acid level in rats. Food Chem Toxicol 2014, 70, 179-184.

Malmstrom, R.; Packard, C. J.; Caslake, M.; Bedford, D.; Stewart, P.; Yki-Jarvinen, H.; Shepherd, J.; Taskinen, M. R., Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes 1998, 47, 779-787.

Mandal, A. K.; Mount, D. B., The molecular physiology of uric Acid homeostasis. Annu Rev Physiol 2015, 77, 323-345.
Martinon, F.; Petrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J., Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440, 237-241.

Masiello, P.; Broca, C.; Gross, R.; Roye, M.; Manteghetti, M.; Hillaire-Buys, D.; Novelli, M.; Ribes, G., Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 1998, 47, 224-229.

Masiello, P.; Novelli, M.; Fierabracci, V.; Bergamini, E., Protection by 3-aminobenzamide and nicotinamide against streptozotocin-induced beta-cell toxicity in vivo and in vitro. Res Commun Chem Pathol Pharmacol 1990, 69, 17-32.

Masuda, T.; Shingai, Y.; Takahashi, C.; Inai, M.; Miura, Y.; Honda, S.; Masuda, A., Identification of a potent xanthine oxidase inhibitor from oxidation of caffeic acid. Free Radic Biol Med 2014, 69, 300-307.

Mates, J. M.; Perez-Gomez, C.; Nunez de Castro, I., Antioxidant enzymes and human diseases. Clin Biochem 1999, 32, 595-603.

Mattock, M. B.; Cronin, N.; Cavallo-Perin, P.; Idzior-Walus, B.; Penno, G.; Bandinelli, S.; Standl, E.; Kofinis, A.; Fuller, J. H.; Study, E. I. C., Plasma lipids and urinary albumin excretion rate in Type 1 diabetes mellitus: the EURODIAB IDDM Complications Study. Diabet Med 2001, 18, 59-67.

Mazzali, M.; Hughes, J.; Kim, Y. G.; Jefferson, J. A.; Kang, D. H.; Gordon, K. L.; Lan, H. Y.; Kivlighn, S.; Johnson, R. J., Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001, 38, 1101-1106.

Mazzali, M.; Kanellis, J.; Han, L.; Feng, L.; Xia, Y. Y.; Chen, Q.; Kang, D. H.; Gordon, K. L.; Watanabe, S.; Nakagawa, T.; Lan, H. Y.; Johnson, R. J., Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol 2002, 282, F991-997.

Mazzone, T.; Foster, D.; Chait, A., In vivo stimulation of low-density lipoprotein degradation by insulin. Diabetes 1984, 33, 333-338.

Michiels, C.; Arnould, T.; Houbion, A.; Remacle, J., Human umbilical vein endothelial cells submitted to hypoxia-reoxygenation in vitro: implication of free radicals, xanthine oxidase, and energy deficiency. J Cell Physiol 1992, 153, 53-61.

Miller, M. A.; Morgan, R. J., Eicosanoids, erections and erectile dysfunction. Prostaglandins Leukot Essent Fatty Acids 1994, 51, 1-9.

Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B., Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014, 20, 1126-1167.
Nakagawa, T.; Mazzali, M.; Kang, D. H.; Sanchez-Lozada, L. G.; Herrera-Acosta, J.; Johnson, R. J., Uric acid--a uremic toxin? Blood Purif 2006, 24, 67-70.

Nguyen, M. T.; Awale, S.; Tezuka, Y.; Tran, Q. L.; Watanabe, H.; Kadota, S., Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biol Pharm Bull 2004, 27, 1414-1421.

Nishino, T.; Okamoto, K.; Eger, B. T.; Pai, E. F.; Nishino, T., Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 2008, 275, 3278-3289.

Obermayr, R. P.; Temml, C.; Gutjahr, G.; Knechtelsdorfer, M.; Oberbauer, R.; Klauser-Braun, R., Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol 2008, 19, 2407-2413.

Orallo, F.; Alvarez, E.; Camina, M.; Leiro, J. M.; Gomez, E.; Fernandez, P., The possible implication of trans-Resveratrol in the cardioprotective effects of long-term moderate wine consumption. Mol Pharmacol 2002, 61, 294-302.

Perry, M. A.; Shepherd, A. P.; Kvietys, P. R.; Granger, D. N., Effect of hypoxia on feline intestinal capillary permeability. Am J Physiol 1985, 248, G272-276.
Ran, J.; Ma, J.; Liu, Y.; Tan, R.; Liu, H.; Lao, G., Low protein diet inhibits uric acid synthesis and attenuates renal damage in streptozotocin-induced diabetic rats. J Diabetes Res 2014, 287-536.

Rees, F.; Hui, M.; Doherty, M., Optimizing current treatment of gout. Nat Rev Rheumatol 2014, 10, 271-283.
Roch-Ramel, F.; Guisan, B., Renal Transport of Urate in Humans. News Physiol Sci 1999, 14, 80-84.

Ruilope, L. M.; Garcia-Puig, J., Hyperuricemia and renal function. Curr Hypertens Rep 2001, 3, 197-202.

Sanchez-Lozada, L. G.; Tapia, E.; Lopez-Molina, R.; Nepomuceno, T.; Soto, V.; Avila-Casado, C.; Nakagawa, T.; Johnson, R. J.; Herrera-Acosta, J.; Franco, M., Effects of acute and chronic L-arginine treatment in experimental hyperuricemia. Am J Physiol Renal Physiol 2007, 292, F1238-1244.

Sanchez-Lozada, L. G.; Tapia, E.; Santamaria, J.; Avila-Casado, C.; Soto, V.; Nepomuceno, T.; Rodriguez-Iturbe, B.; Johnson, R. J.; Herrera-Acosta, J., Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 2005, 67, 237-247.

Shyu, M. H.; Kao, T. C.; Yen, G. C., Hsian-tsao (Mesona procumbens Heml.) prevents against rat liver fibrosis induced by CCl(4) via inhibition of hepatic stellate cells activation. Food Chem Toxicol 2008, 46, 3707-3713.
Singer, H. S., Kossoff, E. H., Hartman, A. L., Crawford, T. O. Treatment of Pediatric Neurologic Disorders. Taylor & Francis Group.2005.

So, A.; Thorens, B., Uric acid transport and disease. J Clin Invest 2010, 120, 1791-1799.

Stamp, L. K.; O''Donnell, J. L.; Chapman, P. T., Emerging therapies in the long-term management of hyperuricaemia and gout. Intern Med J 2007, 37, 258-266.

Subha Palaneeswari, M. S., Sivakumar Nagarajan, and Arcot Jagdeeshwaran Manjula Devi, Chronic Kidney Disease—Effect of Oxidative Stress. Chinese Journal of Biology 2014.

Szkudelski, T., The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001, 50, 537-546.

Terkeltaub, R.; Bushinsky, D. A.; Becker, M. A., Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res Ther 2006, 8 Suppl 1, S4.

Verges, B., Lipid disorders in type 1 diabetes. Diabetes Metab 2009, 35, 353-360.

Wang, C.; Pan, Y.; Zhang, Q. Y.; Wang, F. M.; Kong, L. D., Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PLoS One 2012, 7, e38285.

Wang, S.; Mitu, G. M.; Hirschberg, R., Osmotic polyuria: an overlooked mechanism in diabetic nephropathy. Nephrol Dial Transplant 2008, 23, 2167-2172.

Wang, Y. J.; Xie, X. S.; Feng, S. G.; Long, Q. X.; Ai, N.; Wang, B. F., Causes of death in STZ-induced rat models of diabetes mellitus. Sichuan Da Xue Xue Bao Yi Xue Ban 2014, 45, 691-695.

Watanabe, S.; Kang, D. H.; Feng, L.; Nakagawa, T.; Kanellis, J.; Lan, H.; Mazzali, M.; Johnson, R. J., Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 2002, 40, 355-360.

Wu, C. H.; Huang, S. M.; Yen, G. C., Silymarin: a novel antioxidant with antiglycation and antiinflammatory properties in vitro and in vivo. Antioxid Redox Signal 2011, 14, 353-366.

Wu, X. W.; Lee, C. C.; Muzny, D. M.; Caskey, C. T., Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A 1989, 86, 9412-9416.

Wu, X. W.; Muzny, D. M.; Lee, C. C.; Caskey, C. T., Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 1992, 34, 78-84.

Yang, M., [Protection of Hsian-tsao (Mesona procumbens Hemsl)on H2O2-induced DNA damage of primarily cultured mice spleen lymphocytes]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2006, 35, 34-38.

Yang, M.; Xu, Z.; Zhang, R.; Zhang, P.; Weng, Y.; Shen, Y.; Zhang, X., Protection of myocardium in streptozotocin-induced diabetic rats by water extracts of Hsian-tsao (Mesona procumbens Hemsl.). Asia Pac J Clin Nutr 2008, 17, 23-29.

Yen, G. C.; Duh, P. D.; Hung, Y. L., Contributions of major components to the antimutagenic effect of Hsian-tsao (Mesona procumbens Hemsl.). J Agric Food Chem 2001, 49, 5000-5004.

Yen, G. C.; Hung, Y. L.; Hsieh, C. L., Protective effect of extracts of Mesona procumbens Hemsl. on DNA damage in human lymphocytes exposed to hydrogen peroxide and UV irradiation. Food Chem Toxicol 2000, 38, 747-754.
Yen, G. C.; Yeh, C. T.; Chen, Y. J., Protective effect of Mesona procumbens against tert-butyl hydroperoxide-induced acute hepatic damage in rats. J Agric Food Chem 2004, 52, 4121-4127.

Yoo, T. W.; Sung, K. C.; Shin, H. S.; Kim, B. J.; Kim, B. S.; Kang, J. H.; Lee, M. H.; Park, J. R.; Kim, H.; Rhee, E. J.; Lee, W. Y.; Kim, S. W.; Ryu, S. H.; Keum, D. G., Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circ J 2005, 69, 928-933.

Young, T. A.; Bailey, S. M.; Van Horn, C. G.; Cunningham, C. C., Chronic ethanol consumption decreases mitochondrial and glycolytic production of ATP in liver. Alcohol Alcohol 2006, 41, 254-260.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top