跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張凱鈞
研究生(外文):Kai-Jyun Chang
論文名稱:水飛薊素對高脂飲食誘導大鼠代謝症候群之胰島素阻抗、GLP-1 及 Sirt1 之影響
論文名稱(外文):Effect of silymarin on insulin resistance, GLP-1 and Sirt1 in high fat diet-induced rat model of metabolic syndrome
指導教授:顏國欽顏國欽引用關係
口試委員:潘敏雄翁家瑞吳啟豪
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:93
中文關鍵詞:代謝症候群胰島素阻抗HOMA-IRGLP-1Sirtulin-1水飛薊素
外文關鍵詞:Metabolic syndromeinsulin resistanceHOMA-IRGLP-1sirtulin-1silymarin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著時代演進,人民攝取高熱量食物比率大增,進而導致代謝症候群 (metabolic syndrome) 盛行。代謝症候群典型之病徵為胰島素阻抗 (insulin resistance, IR) 現象,其可能進一步引發第二型糖尿病 (type 2 diabetes),並造成動物體中重要保護性蛋白 sirtulin 1 (Sirt1) 之表現下降,以及調控體內血糖平衡之腸道荷爾蒙 glucagon-like peptide-1 (GLP-1) 分泌異常,導致體內代謝失衡及肝臟與胰臟損傷,並產生相關之併發症。已知從水飛薊 (Silybum marianum) 種子及果實中萃取之類黃酮 (flavonoid) 化合物-水飛薊素 (silymarin, SM) 具有多種生物活性,其對肝臟與胰臟均具有保護效果。因此,本研究將探討 SM 對高脂飲食誘導大鼠血清生化指標異常及 IR 現象等代謝性損傷之影響,以及 GLP-1 及 Sirt1 在SM介入後之改變情形。
本實驗以高脂飼料誘導 SD 大鼠使其產生代謝症候群相關症狀,實驗進行 16 週,並分別在實驗時程第 0 週及第 8 週後介入低、中、高劑量之 SM (100/200/400 mg/kg b.w.),個別探討 SM 對高脂飲食誘發大鼠代謝性損傷之預防與改善效果。血清生化值分析結果指出,餵食高脂飼料,能夠使大鼠血清中的 TG、LDL、VLDL 等代謝症候群的指標顯著提高,同時亦會使其胰島素的分泌量增加;經過 HOMA-IR 的公式計算,長期高脂飲食確實會使大鼠產生 IR 現象。然而,於實驗第 0 週及第 8 週介入 SM 可顯著改善上述高脂飲食誘發之 IR 及代謝症候群血清生化指標。口服葡萄糖耐受性試驗 (oral glucose tolerance test, OGTT) 結果證實,SM 能改善高脂飲食引起大鼠葡萄糖耐受性降低之情形。另外,實驗結果亦發現大鼠長期攝取高脂飼料將導致其 GLP-1 分泌量降低,而於實驗第 0 週及第 8 週介入 SM 均可顯著提升其 GLP-1 分泌量。組織病理分析顯示,高脂飲食會引起大鼠肝臟油滴堆積及其胰臟部分纖維化,而於實驗第 0 週即介入 SM 則可減少肝臟受損之情形,證實 SM 確實對肝臟與胰臟具有保護的效果。西方墨漬法 (western blot) 結果說明,高脂飲食會使大鼠肝臟及胰臟之 Sirt1 蛋白表現顯著降低,而於實驗第 0 週即介入 SM 則可提升其肝臟及胰臟之 Sirt1 蛋白表現量。
綜合上述,SM 可預防及改善高脂飲食誘發之 IR 及血脂異常現象,且有助於提升 GLP-1 之分泌。SM 更可改善高脂飲食引起之脂肪肝及提升高脂誘導大鼠之肝臟及胰臟 Sirt1 蛋白表現量。由此可知,SM 具有防止及減緩高脂飲食引起代謝性損傷之功效,證實 SM 可作為一種具改善代謝症候群病徵潛力的輔助食品。
High-calorie and high fat diet has been regarded as the major cause of increased prevalence of the metabolic syndrome. Insulin resistance (IR) is the typical symptom of metabolic syndrome, which may lead to type II diabetes mellitus (T2DM). Under IR condition, decreased protein level of sirtulin 1 (Sirt1) and dysregulation of secretion of the gut hormone glucagon-like peptide-1 (GLP-1) which modulate blood glucose balance are observed, which leading to metabolic imbalance and injury of liver and pancreas, and cause the associated complications. Silymarin (SM), flavonoids of milk thistle (Silybum marianum) seed and fruit extracts, has a variety of biological activity, and the most known is protective effect on liver and pancreas. Therefore, the aim of the study was to investgate the effect of SM on abnormalities of blood biochemistry and IR in response to high-fat diet, as well as modulation of GLP-1 and Sirt1.
In this study, SD rats were fed with high-fat diet to induce metabolic syndrome symptoms, and intervention of SM (100/200/400 mg/kg b.w.) from 0 week or 8th week of the time course of the experiment, to assess its effect on prevention and improvement of metabolic injury in rats. Results showed that serum TG, LDL, VLDL and other indicators of metabolic syndrome, as well as insulin secretion significantly increased in high-fat diet-induced rats. Besides, HOMA-IR indicated that long-term high-fat diet lead to IR in rats. Interestingly, SM intervention from 0 week or 8th week of experimental period can significantly improve the IR and metabolic syndrome in rats fed with high-fat diet. We also found that SM can improve the impaired glucose tolerance in these rats. Notably, long-term consumption of high-fat diet rats would lead to reduced GLP-1 secretion in rats, while SM intervention from 0 week or 8th week of experimental period, may recover and further enhance GLP-1 secretion in rats fed with high-fat diet. Histopathological analysis showed that high-fat diet may contribute to hepatic steatosis and pancreas fibrosis in rats, and intervention of SM from 0 week can prevent the liver damage caused by high-fat diet. Western blot indicated that decreased Sirt1 protein levels in pancreas and liver were observed in high-fat diet-induced rats, while SM intervention from 0 week of experimental period can recover high-fat diet-impaired Sirt1 protein expression in liver and pancreas of rats.
In conclusion, SM can prevent and ameliorate high-fat diet-induced phenomena of IR and dyslipidemia, and can improve the secretion of GLP-1 in rats. SM can also improve fatty liver caused by high-fat diet and enhance Sirt1 protein expression of liver and pancreas in rats. Taken together, SM can prevent and retard the metabolic injury caused by high-fat diet, suggesting that SM may be a potential food factor to improve symptoms of metabolic syndrome.
目次
全文摘要..........................................i
Abstract.......................................iii
目次.............................................v
圖次..........................................viii
表次.............................................x
縮寫表...........................................xi
第一章 文獻整理...................................1
壹、代謝症候群 (Metabolic syndrome)...............2
貳、胰島素阻抗 (Insulin resistance)...............4
一、胰島素之訊息傳遞...............................4
二、胰島素阻抗 (Insulin resistance)...............4
參、糖尿病 (Diabetes mellitus, DM)................9
一、糖尿病簡介....................................9
二、糖尿病主要類型.................................9
三、糖尿病併發症..................................11
肆、腸泌素 (Incretin)............................13
一、類升糖素胜肽 (Glucagon-like peptide -1, GLP-1) ................................................13
二、胃抑素 (Gastric inhibitory peptide, GIP).....13
三、腸泌素效應 (Incretin effect)..................14
四、腸泌素及第二型糖尿病之治療......................14
伍、沉默訊息調節因子 (Silent information regulator 1, Sirt1)..........................................18
一、Sirt1 介紹...................................18
二、Sirt1 之生理活性..............................18
三、Sirt1 與 AMP kinase (AMPK) 能量代謝途徑........18
陸、第二型糖尿病之動物模式..........................22
一、飲食誘導......................................22
二、藥物處理......................................23
三、基因改造......................................23
柒、研究材料......................................25
一、水飛薊 (Milk thistle).........................25
二、水飛薊素 (Silymarin)..........................25
捌、研究目的......................................29
玖、研究架構......................................30
第二章...........................................31
前言.............................................32
材料與方法........................................34
壹、實驗材料......................................34
一、實驗樣品......................................34
二、藥品.........................................34
貳、實驗方法......................................34
一、動物飼料配製...................................34
二、實驗動物飼養...................................35
三、實驗動物分組及實驗設計..........................35
四、血清生化值測定 .................................36
五、大鼠血糖測定...................................37
六、口服葡萄糖耐受試驗 (Oral Glucose Tolerance Test, OGTT)............................................37
七、HOMA-IR 之計算.................................37
八、組織切片染色....................................37
九、GLP-1 分泌試驗.................................37
十、組織蛋白質萃取 .................................38
十一、蛋白質定量...................................38
十二、聚丙烯醯胺膠體電泳分析 (SDS-PAGE)..............39
十三、西方墨漬法 (Western blot)....................39
十四、統計分析.....................................40
結果..............................................41
一、水飛薊素對高脂飲食之 SD 大鼠體重變化之影響........41
二、水飛薊素對高脂飲食之 SD 大鼠攝食量、熱量與食物利用率之影響 .................................................41
三、水飛薊素對高脂飲食之 SD 大鼠臟器重量之影響........41
四、水飛薊素對高脂飲食之 SD 大鼠血清生化參數之影響....42
五、水飛薊素對高脂飲食之 SD 大鼠血糖、胰島素阻抗之影響 .................................................42
六、水飛薊素對高脂飲食之 SD 大鼠葡萄糖耐受性之影響....43
七、水飛薊素對高脂飲食之 SD 大鼠腸道荷爾蒙 GLP-1 分泌之影響 .................................................44
八、水飛薊素對高脂飲食 SD 大鼠脂肪組織重量與體脂比率之影響 .................................................44
九、水飛薊素對高脂飲食之 SD 大鼠肝臟、腎臟與胰臟組織病理之影響 .................................................45
十、水飛薊素對高脂飲食之 SD 大鼠組織中Sirt1 蛋白表現量 之影響 .................................................45
討論.............................................47
第三章 總結論.....................................77
參考文獻..........................................79
美國食品藥物管理局, Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. 2005.
張隆仁, 保肝用途之營養保健與藥用植物 - 水飛薊 (奶薊)。. 豐年半月刊 2009, 59, 49-52.
衛生福利部, 2007 臺灣代謝症候群判定標準 -- 公告版. 2007a.
衛生福利部, 健康食品之不易形成體脂肪功能評估方法. 2007b.
衛生福利部, 健康食品調節血糖功能評估方法修正草案. 2010.
衛生福利部, 台灣地區 103年度 十大死亡原因統計. 取自:衛生福利部,http://www.mohw.gov.tw/cht/dos/ 2015.
ADA, Standards of Medical Care in Diabetes. 2013.
Alberti, K. G.; Zimmet, P. Z., Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998, 15, 539-553.
Aleksandrov, N.; Audibert, F.; Bedard, M. J.; Mahone, M.; Goffinet, F.; Kadoch, I. J., Gestational diabetes insipidus: a review of an underdiagnosed condition. J Obstet Gynaecol Can 2010, 32, 225-231.
Altun, E.; Kaya, B.; Paydas, S.; Sariakcali, B.; Karayaylali, I., Lactic acidosis induced by metformin in a chronic hemodialysis patient with diabetes mellitus type 2. Hemodial Int 2014, 18, 529-531.
American Diabetes, A., Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 Suppl 1, S81-90.
Bergman, R. N.; Finegood, D. T.; Ader, M., Assessment of insulin sensitivity in vivo. Endocr Rev 1985, 6, 45-86.
Boily, G.; Seifert, E. L.; Bevilacqua, L.; He, X. H.; Sabourin, G.; Estey, C.; Moffat, C.; Crawford, S.; Saliba, S.; Jardine, K.; Xuan, J.; Evans, M.; Harper, M. E.; McBurney, M. W., SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 2008, 3, e1759.
Bondonno, C. P.; Croft, K. D.; Ward, N.; Considine, M. J.; Hodgson, J. M., Dietary flavonoids and nitrate: effects on nitric oxide and vascular function. Nutr Rev 2015, 73, 216-235.
Canto, C.; Gerhart-Hines, Z.; Feige, J. N.; Lagouge, M.; Noriega, L.; Milne, J. C.; Elliott, P. J.; Puigserver, P.; Auwerx, J., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009, 458, 1056-1060.
Carnethon, M. R.; Rasmussen-Torvik, L. J.; Palaniappan, L., The obesity paradox in diabetes. Curr Cardiol Rep 2014, 16, 446.
Caron, A. Z.; He, X.; Mottawea, W.; Seifert, E. L.; Jardine, K.; Dewar-Darch, D.; Cron, G. O.; Harper, M. E.; Stintzi, A.; McBurney, M. W., The SIRT1 deacetylase protects mice against the symptoms of metabolic syndrome. FASEB J 2014, 28, 1306-1316.
Chanet, A.; Milenkovic, D.; Deval, C.; Potier, M.; Constans, J.; Mazur, A.; Bennetau-Pelissero, C.; Morand, C.; Berard, A. M., Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. J Nutr Biochem 2012, 23, 469-477.
Chang, N. W.; Lin, T. P.; Lin, M. F.; Yen, M. T.; Chen, C. H.; Chang, Y. I.; Chen, S. Y., Effects of Rutin and Quercetin on the hyperlipidemia and hyperglycemia induced by high-fat diet in ICR mice. CHIA-NAN ANNUAL BULLETIN 2012, 38, 124-133.
Chen, T.; Kagan, L.; Mager, D. E., Population pharmacodynamic modeling of exenatide after 2-week treatment in STZ/NA diabetic rats. J Pharm Sci 2013, 102, 3844-3851.
Chen, Y. K.; Cheung, C.; Reuhl, K. R.; Liu, A. B.; Lee, M. J.; Lu, Y. P.; Yang, C. S., Effects of green tea polyphenol (-)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J Agric Food Chem 2011, 59, 11862-11871.
Clichici, S.; Olteanu, D.; Nagy, A. L.; Oros, A.; Filip, A.; Mircea, P. A., Silymarin inhibits the progression of fibrosis in the early stages of liver injury in CCl(4)-treated rats. J Med Food 2015, 18, 290-298.
Connolly, B. A.; O'Connell, D. P.; Lamon-Fava, S.; LeBlanc, D. F.; Kuang, Y. L.; Schaefer, E. J.; Coppage, A. L.; Benedict, C. R.; Kiritsy, C. P.; Bachovchin, W. W., The high-fat high-fructose hamster as an animal model for niacin's biological activities in humans. Metabolism 2013, 62, 1840-1849.
Cote, C. D.; Rasmussen, B. A.; Duca, F. A.; Zadeh-Tahmasebi, M.; Baur, J. A.; Daljeet, M.; Breen, D. M.; Filippi, B. M.; Lam, T. K., Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat Med 2015, 21, 498-505.
Crowther, C. A.; Hiller, J. E.; Moss, J. R.; McPhee, A. J.; Jeffries, W. S.; Robinson, J. S.; Australian Carbohydrate Intolerance Study in Pregnant Women Trial, G., Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 2005, 352, 2477-2486.
de Luca, C.; Olefsky, J. M., Inflammation and insulin resistance. FEBS Lett 2008, 582, 97-105.
Deacon, C. F.; Johnsen, A. H.; Holst, J. J., Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 1995a, 80, 952-957.
Deacon, C. F.; Nauck, M. A.; Toft-Nielsen, M.; Pridal, L.; Willms, B.; Holst, J. J., Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995b, 44, 1126-1131.
Deep, G.; Agarwal, R., Chemopreventive efficacy of silymarin in skin and prostate cancer. Integr Cancer Ther 2007, 6, 130-145.
El-Gazayerly, O. N.; Makhlouf, A. I.; Soelm, A. M.; Mohmoud, M. A., Antioxidant and hepatoprotective effects of silymarin phytosomes compared to milk thistle extract in CCl4 induced hepatotoxicity in rats. J Microencapsul 2014, 31, 23-30.
Elsner, M.; Guldbakke, B.; Tiedge, M.; Munday, R.; Lenzen, S., Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia 2000, 43, 1528-1533.
Eo, H.; Jeon, Y. J.; Lee, M.; Lim, Y., Brown Alga Ecklonia cava polyphenol extract ameliorates hepatic lipogenesis, oxidative stress, and inflammation by activation of AMPK and SIRT1 in high-fat diet-induced obese mice. J Agric Food Chem 2015, 63, 349-359.
Escribano, O.; Guillen, C.; Nevado, C.; Gomez-Hernandez, A.; Kahn, C. R.; Benito, M., Beta-Cell hyperplasia induced by hepatic insulin resistance: role of a liver-pancreas endocrine axis through insulin receptor A isoform. Diabetes 2009, 58, 820-828.
Esposito, K.; Ciotola, M.; Sasso, F. C.; Cozzolino, D.; Saccomanno, F.; Assaloni, R.; Ceriello, A.; Giugliano, D., Effect of a single high-fat meal on endothelial function in patients with the metabolic syndrome: role of tumor necrosis factor-alpha. Nutr Metab Cardiovasc Dis 2007, 17, 274-279.
Faerch, K.; Torekov, S. S.; Vistisen, D.; Johansen, N. B.; Witte, D. R.; Jonsson, A.; Pedersen, O.; Hansen, T.; Lauritzen, T.; Sandbaek, A.; Holst, J. J.; Jorgensen, M. E., Glucagon-Like Peptide-1 (GLP-1) Response to Oral Glucose is Reduced in Pre-diabetes, Screen-detected Type 2 Diabetes and Obesity, and Influenced by Sex: The ADDITION-PRO Study. Diabetes 2015.
Ferenci, P.; Dragosics, B.; Dittrich, H.; Frank, H.; Benda, L.; Lochs, H.; Meryn, S.; Base, W.; Schneider, B., Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol 1989, 9, 105-113.
Fraschini, F.; Demartini, G.; D. Esposti, Pharmacology of Silymarin. Clin Drug Invest 2002, 22, 51-65.
Gan, L.; Meng, Z. J.; Xiong, R. B.; Guo, J. Q.; Lu, X. C.; Zheng, Z. W.; Deng, Y. P.; Luo, B. D.; Zou, F.; Li, H., Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice. Acta Pharmacol Sin 2015, 36, 597-605.
Gobato, A. O.; Vasques, A. C.; Zambon, M. P.; Barros Filho Ade, A.; Hessel, G., Metabolic syndrome and insulin resistance in obese adolescents. Rev Paul Pediatr 2014, 32, 55-62.
Goday, A.; Barneto, I.; Garcia-Almeida, J. M.; Blasco, A.; Lecube, A.; Gravalos, C.; Martinez de Icaya, P.; de Las Penas, R.; Monereo, S.; Vazquez, L.; Palacio, J. E.; Perez-Segura, P., Obesity as a risk factor in cancer: A national consensus of the Spanish Society for the Study of Obesity and the Spanish Society of Medical Oncology. Clin Transl Oncol 2015.
Gomez-Rico, I.; Perez-Marin, M.; Montoya-Castilla, I., [Type 1 Diabetes Mellitus: brief review of the main associated psychological factors]. An Pediatr (Barc) 2015, 82, e143-146.
Guo, S., Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 2014, 220, T1-T23.
Hamza, N.; Berke, B.; Cheze, C.; Le Garrec, R.; Lassalle, R.; Agli, A. N.; Robinson, P.; Gin, H.; Moore, N., Treatment of high fat diet induced type 2 diabetes in C57BL/6J mice by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J Ethnopharmacol 2011, 133, 931-933.
Hanley, A. J.; Wagenknecht, L. E.; Norris, J. M.; Bryer-Ash, M.; Chen, Y. I.; Anderson, A. M.; Bergman, R.; Haffner, S. M., Insulin resistance, beta cell dysfunction and visceral adiposity as predictors of incident diabetes: the Insulin Resistance Atherosclerosis Study (IRAS) Family study. Diabetologia 2009, 52, 2079-2086.
Harp, J. B., New insights into inhibitors of adipogenesis. Curr Opin Lipidol 2004, 15, 303-307.
Havel, P. J.; Hahn, T. M.; Sindelar, D. K.; Baskin, D. G.; Dallman, M. F.; Weigle, D. S.; Schwartz, M. W., Effects of streptozotocin-induced diabetes and insulin treatment on the hypothalamic melanocortin system and muscle uncoupling protein 3 expression in rats. Diabetes 2000, 49, 244-252.
Hayek, T.; Ito, Y.; Azrolan, N.; Verdery, R. B.; Aalto-Setala, K.; Walsh, A.; Breslow, J. L., Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) A-I. Presentation of a new animal model and mechanistic studies in human Apo A-I transgenic and control mice. J Clin Invest 1993, 91, 1665-1671.
Holst, J. J., The physiology of glucagon-like peptide 1. Physiol Rev 2007, 87, 1409-1439.
Horwitz, M. S.; Bradley, L. M.; Harbertson, J.; Krahl, T.; Lee, J.; Sarvetnick, N., Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998, 4, 781-785.
Hsu, C. L.; Wu, C. H.; Huang, S. L.; Yen, G. C., Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats. J Agric Food Chem 2009, 57, 425-431.
Hussain, S. A.; Jassim, N. A.; Numan, I. T.; Al, K., II; Abdullah, T. A., Anti-inflammatory activity of silymarin in patients with knee osteoarthritis. A comparative study with piroxicam and meloxicam. Saudi Med J 2009, 30, 98-103.
IDC, Development of type 2 diabetes. 2001.
IDF, IDF region and global projections of the number of people with diabetes. 2014.
Idzior-Walus, B.; Cieslik, G., [Chronic complication of diabetes and homocysteine]. Przegl Lek 2000, 57, 732-735.
Jang, H. J.; Ridgeway, S. D.; Kim, J. A., Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction. Am J Physiol Endocrinol Metab 2013, 305, E1444-1451.
Jiang, K.; Wang, W.; Jin, X.; Wang, Z.; Ji, Z.; Meng, G., Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncol Rep 2015, 33, 2711-2718.
Jung, U. J.; Choi, M. S., Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014, 15, 6184-6223.
Ka, S. O.; Kim, K. A.; Kwon, K. B.; Park, J. W.; Park, B. H., Silibinin attenuates adipogenesis in 3T3-L1 preadipocytes through a potential upregulation of the insig pathway. Int J Mol Med 2009, 23, 633-637.
Kang, J. S.; Jeon, Y. J.; Kim, H. M.; Han, S. H.; Yang, K. H., Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages. J Pharmacol Exp Ther 2002, 302, 138-144.
Kappe, C.; Zhang, Q.; Nystrom, T.; Sjoholm, A., Effects of high-fat diet and the anti-diabetic drug metformin on circulating GLP-1 and the relative number of intestinal L-cells. Diabetol Metab Syndr 2014, 6, 70.
Kock, K.; Xie, Y.; Hawke, R. L.; Oberlies, N. H.; Brouwer, K. L., Interaction of silymarin flavonolignans with organic anion-transporting polypeptides. Drug Metab Dispos 2013, 41, 958-965.
Krauss, R. M., Dietary and genetic probes of atherogenic dyslipidemia. Arterioscler Thromb Vasc Biol 2005, 25, 2265-2272.
Kren, V.; Walterova, D., Silybin and silymarin--new effects and applications. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005, 149, 29-41.
Lastya, A.; Saraswati, M. R.; Suastika, K., The low level of glucagon-like peptide-1 (glp-1) is a risk factor of type 2 diabetes mellitus. BMC Res Notes 2014, 7, 849.
Lau, R. G.; Kumar, S.; Hall, C. E.; Palaia, T.; Rideout, D. A.; Hall, K.; Brathwaite, C. E.; Ragolia, L., Roux-en-Y gastric bypass attenuates the progression of cardiometabolic complications in obese diabetic rats via alteration in gastrointestinal hormones. Surg Obes Relat Dis 2015.
Lee, H. S.; Nam, Y.; Chung, Y. H.; Kim, H. R.; Park, E. S.; Chung, S. J.; Kim, J. H.; Sohn, U. D.; Kim, H. C.; Oh, K. W.; Jeong, J. H., Beneficial effects of phosphatidylcholine on high-fat diet-induced obesity, hyperlipidemia and fatty liver in mice. Life Sci 2014, 118, 7-14.
Lewis, J. R.; Mohanty, S. R., Nonalcoholic fatty liver disease: a review and update. Dig Dis Sci 2010, 55, 560-578.
Li, M.; Ikehara, S., Stem cell treatment for type 1 diabetes. Front Cell Dev Biol 2014, 2, 9.
Li Volti, G.; Salomone, S.; Sorrenti, V.; Mangiameli, A.; Urso, V.; Siarkos, I.; Galvano, F.; Salamone, F., Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovasc Diabetol 2011, 10, 62.
Liang, F.; Kume, S.; Koya, D., SIRT1 and insulin resistance. Nat Rev Endocrinol 2009, 5, 367-373.
Liu, B.; Yu, C.; Li, Q.; Li, L., Ketosis-onset diabetes and ketosis-prone diabetes: same or not? Int J Endocrinol 2013, 2013, 821403.
Liu, Z.; Patil, I. Y.; Jiang, T.; Sancheti, H.; Walsh, J. P.; Stiles, B. L.; Yin, F.; Cadenas, E., High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PLoS One 2015, 10, e0128274.
Lu, J.-Y., The Role of Incretin-Based Therapy in Type 2 Diabetes. J Intern Med Taiwan 2011, 22, 401-408.
Mariani, S.; Fiore, D.; Basciani, S.; Persichetti, A.; Contini, S.; Lubrano, C.; Salvatori, L.; Lenzi, A.; Gnessi, L., Plasma levels of SIRT1 associate with non-alcoholic fatty liver disease in obese patients. Endocrine 2014.
McGillicuddy, F. C.; Reynolds, C. M.; Finucane, O.; Coleman, E.; Harford, K. A.; Grant, C.; Sergi, D.; Williams, L. M.; Mills, K. H.; Roche, H. M., Long-term exposure to a high-fat diet results in the development of glucose intolerance and insulin resistance in interleukin-1 receptor I-deficient mice. Am J Physiol Endocrinol Metab 2013, 305, E834-844.
Morakinyo, A. O.; Adekunbi, D. A.; Dada, K. A.; Adegoke, O. A., Coffee consumption attenuates insulin resistance and glucose intolerance in rats fed on high-sucrose diet. Niger J Physiol Sci 2013, 28, 179-185.
Mukherjee, B.; Hossain, C. M.; Mondal, L.; Paul, P.; Ghosh, M. K., Obesity and insulin resistance: an abridged molecular correlation. Lipid Insights 2013, 6, 1-11.
Myint, P. K.; Kwok, C. S.; Luben, R. N.; Wareham, N. J.; Khaw, K. T., Body fat percentage, body mass index and waist-to-hip ratio as predictors of mortality and cardiovascular disease. Heart 2014, 100, 1613-1619.
Nakajima, S.; Hira, T.; Hara, H., Postprandial glucagon-like peptide-1 secretion is increased during the progression of glucose intolerance and obesity in high-fat/high-sucrose diet-fed rats. Br J Nutr 2015, 113, 1477-1488.
Nasteska, D.; Harada, N.; Suzuki, K.; Yamane, S.; Hamasaki, A.; Joo, E.; Iwasaki, K.; Shibue, K.; Harada, T.; Inagaki, N., Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions. Diabetes 2014, 63, 2332-2343.
Nauck, M. A.; Vardarli, I.; Deacon, C. F.; Holst, J. J.; Meier, J. J., Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 2011, 54, 10-18.
Nauck, M. A.; Vilsboll, T.; Gallwitz, B.; Garber, A.; Madsbad, S., Incretin-based therapies: viewpoints on the way to consensus. Diabetes Care 2009, 32 Suppl 2, S223-231.
Nisal, K.; Kela, R.; Khunti, K.; Davies, M. J., Comparison of efficacy between incretin-based therapies for type 2 diabetes mellitus. BMC Med 2012, 10, 152.
Padwal, R. S., Obesity, diabetes, and the metabolic syndrome: the global scourge. Can J Cardiol 2014, 30, 467-472.
Papaetis, G. S., Incretin-based therapies in prediabetes: Current evidence and future perspectives. World J Diabetes 2014, 5, 817-834.
Parker, J. C.; Lavery, K. S.; Irwin, N.; Green, B. D.; Greer, B.; Harriott, P.; O'Harte, F. P.; Gault, V. A.; Flatt, P. R., Effects of sub-chronic exposure to naturally occurring N-terminally truncated metabolites of glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), GIP(3-42) and GLP-1(9-36)amide, on insulin secretion and glucose homeostasis in ob/ob mice. J Endocrinol 2006, 191, 93-100.
Pferschy-Wenzig, E. M.; Atanasov, A. G.; Malainer, C.; Noha, S. M.; Kunert, O.; Schuster, D.; Heiss, E. H.; Oberlies, N. H.; Wagner, H.; Bauer, R.; Dirsch, V. M., Identification of isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. J Nat Prod 2014, 77, 842-847.
Pfluger, P. T.; Herranz, D.; Velasco-Miguel, S.; Serrano, M.; Tschop, M. H., Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A 2008, 105, 9793-9798.
Phuwamongkolwiwat, P.; Suzuki, T.; Hira, T.; Hara, H., Fructooligosaccharide augments benefits of quercetin-3-O-beta-glucoside on insulin sensitivity and plasma total cholesterol with promotion of flavonoid absorption in sucrose-fed rats. Eur J Nutr 2014, 53, 457-468.
Polyak, S. J.; Morishima, C.; Lohmann, V.; Pal, S.; Lee, D. Y.; Liu, Y.; Graf, T. N.; Oberlies, N. H., Identification of hepatoprotective flavonolignans from silymarin. Proc Natl Acad Sci U S A 2010, 107, 5995-5999.
Prasad, G. V., Metabolic syndrome and chronic kidney disease: Current status and future directions. World J Nephrol 2014, 3, 210-219.
Qiang, L.; Lin, H. V.; Kim-Muller, J. Y.; Welch, C. L.; Gu, W.; Accili, D., Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab 2011, 14, 758-767.
Ramasamy, K.; Agarwal, R., Multitargeted therapy of cancer by silymarin. Cancer Lett 2008, 269, 352-362.
Renzaho, A. M.; Bilal, P.; Marks, G. C., Obesity, type 2 diabetes and high blood pressure amongst recently arrived Sudanese refugees in Queensland, Australia. J Immigr Minor Health 2014, 16, 86-94.
Saeed, M.; Kadioglu, O.; Khalid, H.; Sugimoto, Y.; Efferth, T., Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking. J Nutr Biochem 2015, 26, 44-56.
Saltiel, A. R.; Kahn, C. R., Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799-806.
Shao, Y.; Yuan, G.; Zhang, J.; Guo, X., Liraglutide reduces lipogenetic signals in visceral adipose of db/db mice with AMPK activation and Akt suppression. Drug Des Devel Ther 2015, 9, 1177-1184.
Sherif, I. O.; Al-Gayyar, M. M., Antioxidant, anti-inflammatory and hepatoprotective effects of silymarin on hepatic dysfunction induced by sodium nitrite. Eur Cytokine Netw 2013, 24, 114-121.
Singh, R. P.; Agarwal, R., Flavonoid antioxidant silymarin and skin cancer. Antioxid Redox Signal 2002, 4, 655-663.
Solhi, H.; Ghahremani, R.; Kazemifar, A. M.; Hoseini Yazdi, Z., Silymarin in treatment of non-alcoholic steatohepatitis: A randomized clinical trial. Caspian J Intern Med 2014, 5, 9-12.
Strollo, F.; Guarino, G.; Marino, G.; Paolisso, G.; Gentile, S., Different prevalence of metabolic control and chronic complication rate according to the time of referral to a diabetes care unit in the elderly. Acta Diabetol 2014, 51, 447-453.
Tamayo, C.; Diamond, S., Review of clinical trials evaluating safety and efficacy of milk thistle (Silybum marianum [L.] Gaertn.). Integr Cancer Ther 2007, 6, 146-157.
Taylor, A. W.; Shi, Z.; Montgomerie, A.; Dal Grande, E.; Campostrini, S., The use of a chronic disease and risk factor surveillance system to determine the age, period and cohort effects on the prevalence of obesity and diabetes in South Australian adults - 2003-2013. PLoS One 2015, 10, e0125233.
Tomkin, G. H., Treatment of type 2 diabetes, lifestyle, GLP1 agonists and DPP4 inhibitors. World J Diabetes 2014, 5, 636-650.
Tonstad, S.; Despres, J. P., Treatment of lipid disorders in obesity. Expert Rev Cardiovasc Ther 2011, 9, 1069-1080.
Triplitt, C.; Solis-Herrera, C.; Reasner, C.; DeFronzo, R. A.; Cersosimo, E., 2000. Classification of Diabetes Mellitus. In De Groot, L.J., Beck-Peccoz, P., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Koch, C., McLachlan, R., New, M., Rebar, R., Singer, F., Vinik, A., Weickert, M.O., (Eds.), Endotext, South Dartmouth (MA), pp.
Tsatsoulis, A.; Mantzaris, M. D.; Bellou, S.; Andrikoula, M., Insulin resistance: an adaptive mechanism becomes maladaptive in the current environment - an evolutionary perspective. Metabolism 2013, 62, 622-633.
Valenzuela, A.; Garrido, A., Biochemical bases of the pharmacological action of the flavonoid silymarin and of its structural isomer silibinin. Biol Res 1994, 27, 105-112.
Valero-Munoz, M.; Martin-Fernandez, B.; Ballesteros, S.; Cachofeiro, V.; Lahera, V.; de Las Heras, N., [Rosuvastatin improves insulin sensitivity in overweight rats induced by high fat diet. Role of SIRT1 in adipose tissue]. Clin Investig Arterioscler 2014, 26, 161-167.
Vetterli, L.; Brun, T.; Giovannoni, L.; Bosco, D.; Maechler, P., Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 2011, 286, 6049-6060.
Wang, X.; Buechler, N. L.; Yoza, B. K.; McCall, C. E.; Vachharajani, V. T., Resveratrol attenuates microvascular inflammation in sepsis via SIRT-1-Induced modulation of adhesion molecules in ob/ob mice. Obesity (Silver Spring) 2015, 23, 1209-1217.
Watanabe, K.; Cho, Y. D., Periodontal disease and metabolic syndrome: a qualitative critical review of their association. Arch Oral Biol 2014, 59, 855-870.
White, A. T.; Philp, A.; Fridolfsson, H. N.; Schilling, J. M.; Murphy, A. N.; Hamilton, D. L.; McCurdy, C. E.; Patel, H. H.; Schenk, S., High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. Am J Physiol Endocrinol Metab 2014, 307, E764-772.
Wu, C. H.; Huang, S. M.; Yen, G. C., Silymarin: a novel antioxidant with antiglycation and antiinflammatory properties in vitro and in vivo. Antioxid Redox Signal 2011, 14, 353-366.
Yokomizo, H.; Inoguchi, T.; Sonoda, N.; Sakaki, Y.; Maeda, Y.; Inoue, T.; Hirata, E.; Takei, R.; Ikeda, N.; Fujii, M.; Fukuda, K.; Sasaki, H.; Takayanagi, R., Maternal high-fat diet induces insulin resistance and deterioration of pancreatic beta-cell function in adult offspring with sex differences in mice. Am J Physiol Endocrinol Metab 2014, 306, E1163-1175.
Yuanyuan, W.; Minghua, J.; Lina, Z.; Suhua, L.; Jiayu, Z.; Yongzhi, S.; Chunyu, C.; Jian, Q., Effect of a combination of calorie-restriction therapy and Lingguizhugan decoction on levels of fasting blood lipid and inflammatory cytokines in a high-fat diet induced hyperlipidemia rat model. J Tradit Chin Med 2015, 35, 218-221.
Zhao, Z. Z.; Xin, L. L.; Xia, J. H.; Yang, S. L.; Chen, Y. X.; Li, K., Long-term High-fat High-sucrose Diet Promotes Enlarged Islets and beta-Cell Damage by Oxidative Stress in Bama Minipigs. Pancreas 2015.
Zheng, J.; Chen, T.; Zhu, Y.; Li, H. Q.; Deng, X. L.; Wang, Q. H.; Zhang, J. Y.; Chen, L. L., Liraglutide prevents fast weight gain and beta-cell dysfunction in male catch-up growth rats. Exp Biol Med (Maywood) 2015.
Zi, X.; Feyes, D. K.; Agarwal, R., Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins. Clin Cancer Res 1998, 4, 1055-1064.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top