跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/20 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宜方
研究生(外文):Yi-Fang Tsai
論文名稱:白腐真菌發酵稻稈作為泌乳羊飼糧之應用
論文名稱(外文):Application of white-rot fungal fermented rice straw in lactating goat diet
指導教授:余碧余碧引用關係李滋泰李滋泰引用關係
指導教授(外文):Bi YuTzu-Tai Lee
口試委員:李春芳魏恒巍
口試委員(外文):Chue-Fang LeeHen-Wei Wei
口試日期:2015-01-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:63
中文關鍵詞:稻稈白腐真菌固態發酵
外文關鍵詞:Rice strawwhite rot fungisolid-state fermentation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
稻稈為台灣主要農業副產物之一,全年產量150萬公噸,與常用牧草比較其高木質素低消化率之特性飼養價值並不高。為有效利用副產物減少進口依賴,因此本研究利用具有降解木質素能力之白腐真菌 (Pleurotus eryngii) 進行稻稈固態發酵,並評估發酵後稻稈作為泌乳羊飼糧之可行性。經條件測試,選定以含水率60%稻稈作為基質,接種5%麥粒菌酛於24℃下固態發酵21天,進行一般成分分析,並以體外氣體生成技術 (In vitro gas production, IVGPT) 及掃描式電子顯微鏡 (Scanning electron microscope, SEM) 評估發酵稻稈品質及其結構變化。結果顯示,稻稈經14天及21天發酵後,粗蛋白含量增加 (0.31%及0.55% DM),中洗纖維及酸洗木質素含量降低,SEM亦觀察到結構明顯崩解與碎裂。體外真消化率 (In vitro true digestibility, IVTD) 評估中,經發酵14天之稻稈由60%提高至67%。此外,IVGPT試驗結果顯示,經發酵7天之稻稈氣體生成量增加86 mL/g DM (230 vs. 144 mL/g DM)。體外試驗顯示稻稈經杏鮑菇菌固態發酵7天及14天後,可提高反芻動物之營養分利用率。使用20頭泌乳羊進行兩期各28天之飼養試驗,分為五個處理組:對照組 (百慕達乾草,佔飼糧乾物質20%)、25%稻稈或發酵稻稈 (以稻稈或發酵稻稈取代25%百慕達草)、50%稻稈或發酵稻稈 (取代50%百慕達草)。結果顯示,乾物質採食量處理組間並無顯著差異,分別為2.23、2.18、2.16、1.94及1.90 kg/day。對照組與25%發酵稻稈之產乳量顯著較50%發酵稻稈之產乳量較高 (2.65 v.s. 2.63 vs. 2.25 kg/day) (P < 0.05)。4% 乳脂校正乳 (Fat-corrected milk, FCM) 以25%發酵稻稈組顯著較50%發酵稻稈組好 (P < 0.05)。乳品質分析中,添加稻稈處理組顯著增加乳脂率,添加發酵稻稈則顯著使乳脂率降低 (P < 0.05)。乳蛋白、乳糖、非脂固形物及總固形物率,處理間均無顯著差異 (P > 0.05)。各項乳成分產量中,50%發酵稻稈處理組均顯著較其他四組差 (P < 0.05)。泌乳羊飼糧中以發酵稻稈取代50%百慕達草對生產性能有明顯不利之影響,然發酵稻稈取代25%百慕達草之生產性能有提升產乳性能之趨勢,但對泌乳品質則無顯著之影響。綜上所述,白腐真菌發酵稻稈可提高此農副產物之營養價值,具替代性芻料之潛力。
Rice straw is one of the main agricultural byproducts in Taiwan. Annual yield of rice straw was about 1.5 million tons (COAG, 2011).Because of their high lignin and low protein contents, cause low digestibility and feeding values for ruminants. To improve the feed quality of rice straw, using solid-state fermentation (SSF) with white rot fungi which is known for capability of degrading lignin. The purpose of this project is to improve the utilization of fibrous byproduct rice straw as ruminant feed by using SSF with white rot fungi. Base on the optimal condition, water content 60% rice straw was inoculated with spawns of Pleurotus eryngii and incubated under 24℃ for 21 days. Rice straw samples were analyzed for Chemical composition, and In vitro gas production technique (IVGPT) and Scanning Electron Microscope (SEM) were used for evaluating the quality of fermented straw and the degradability of structural carbohydrates. The result showed that crude protein increased after 14 and 21 day fermentation (0.31 and 0.55%, respectively). The structure of fermented straw is apparent disintegrative and fragmental. According the results of in vitro tests, after 14 day fermentation, straw improved In vitro true nutrient digestibility (IVTND) from 60% to 67%. Also, fermented straw’s total gas production was 230 mL/ g DM after 7 day fermentation whilst control’s total gas production was 230 mL/ g DM. In vitro experiments showed that utilization of rice straw for rumen microbes can be improved after 14 and 21 day fermentation with white rot fungi. 20 lactating goats randomly were used for two terms 28-day feeding trial which is divided into five treatments: control group (Bermuda hay); 25% fermented or unfermented rice straw group (replacing 25% of Bermuda hay); 50% fermented or unfermented rice straw group (replacing 50% Bermuda hay in control group). Dry matter intake (DMI), milk yield, milk composition and weight changes were recorded. Results showed that there were no significant differences among the groups (2.23; 2.18; 2.16; 1.94; 1.90 kg/day, respectively). 25% fermented rice straw group had similar milk yield with control group and were significant higher than 50% fermented rice straw group (2.63; 2.65; 2.25 kg/day, respectively) (P < 0.05). 25% fermented rice straw group had significant higher fat calculated milk (FCM) than 50% fermented rice straw group (P < 0.05).In quality of milk, 50% fermented rice straw group had significant lower milk fat (P < 0.05), but no significant differences among the other milk quality. In conclusion, it was significant negative effect that feeding lactating goats with white rot fungi treated rice straw replacing 50% of Bermuda hay. However, diet replacing 25% of Bermuda hay with fermented rice straw had a positive effect in milk yield, but no significant differences with rice straw treatment in milk quality. White rot fungi treated rice straw does improve its feed quality and can be used as a potential alternative feedstuff for traditional forage.
壹、 前言 5
貳、 文獻檢討 6
一、 稻稈 6
(一) 稻稈一般成分分析 6
(二) 稻稈營養品質 6
(三) 提高稻稈利用率之方法 7
二、 白腐真菌 8
(一) 胞外木質素降解酵素系統 9
三、 白腐真菌培養方式 10
(一) 液態發酵 10
(二) 固態發酵 10
參、 材料與方法 13
一、 菌種 13
(一) 實驗菌株 13
(二) 菌株培養 13
(三) 菌種特性分析 13
(四) 菌種保存 15
二、 發酵稻稈之最適條件 16
(一) 基質 16
(二) 最適含水量及發酵時間探討 16
(三) 測定項目 16
三、 發酵稻稈之品質評估 16
(一) 基質 16
(二) 菌酛準備 16
(三) 方法 17
(四) 測定項目 17
四、 動物實驗 18
(一) 試驗飼糧設計與配製 18
(二) 泌乳羊試驗 19
五、 統計分析 20
肆、 結果與討論 26
一、 菌株培養及特性分析 26
(一) 菌株挑選及保存 26
(二) 生長曲線 26
(三) 酵素活性分析 29
二、 稻稈發酵最適條件 31
(一) 菌絲生長情況 31
(二) 酵素活性分析 33
(三) 中洗纖維含量變化 39
三、 發酵稻稈品質評估 41
(一) 一般成分分析 41
(二) 稻稈纖維結構變化 46
(三) 體外真消化率 48
(四) 體外氣體生成量 50
四、 動物試驗 53
(一) 泌乳試驗 53
伍、 結論 57
陸、 參考文獻 58
彭金騰。1996。杏鮑菇稻草栽培之研究。中華農業研究45:381-387。
石信德。2010。食藥用菇類液體菌種栽培技術之潛力。農業生技產業季刊23:16-21。
劉秀美、蔡馥嚀。2010。農業廢棄物生產木質分解酵素之研究。安全農業24:53-58。
羅國仁、余立文。2004。固態發酵製程的開發與應用。食品工業36 (10):2-10。
呂禮佳。2012。推動國產芻料作物契作之成果。農政與農情238:106-109。
陳美杏、呂昀陞、石信德。2010。新興菇類的栽培與發展。科學發展446:8-15。
王艷平、趙娜、富麗红、郝利民。2012。杏鲍菇液態發酵培养的初步研究。中國釀造242:30-34。
行政院農業委員會。2011。100 年農業統計年報。
Agbagla-Dohnani, A., P. Noziere, B. Gaillard-Martinie, M. Puard and M. Doreau. 2003. Effect of silica content on rice straw ruminal degradation. J. Anim. Sci. 140:183-192.
ANKOM TECHNOLOGY. 2005. Operator's Manual DAISYII-200/220 Incubator. NY., USA.
AOAC. 2000. Official Method of Analysis, 17th ed., Association of official Analytical Chemists. Washington, DC.
Arora, D. S. and P. K. Gill. 2005. Production of ligninolytic enzymes by Phlebia floridensis. World J. Microbiol. Biotechnol. 21:1021-1028.
Arora, D. S., M. Chander and P. K. Gill. 2002. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int. Biodeterior. Biodegrad. 50:115-120.
Bae, H. D., T. A. McAllister, E. G. Kokko, F. L. Leggett, L. J. Yanke, K. D. Jakober, J. K. Ha, H. T. Shin and K. J. Cheng. 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65:165-181.
Beauchemin, K. A., D. Colombatto and D. P. Morgavi. 2004. A rationale for the development of feed enzyme products for ruminants. Can. J. Anim. Sci. 84:23-36.
Chenost, M. and C. Kayouli. 1997. Roughage utilisation in warm climates. FAO Animal Production and Health Paper 135, Rome.
Chesters, C. G. C. and Bull A. T. 1963. In: F.F. Nord, Editor, Advance in Enzymology, Interscience John Wiley, New York. pp. 325-364.
Cone, J. W., A. H. V. Gelder, G. J. W. Visscher and L. Oudshoorn. 1996. Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim. Feed Sci. Technol. 61:113-128.
Danny, L., R. Zeri and S. W. Kang. 2004. Recycling of Spent Oyster Mushroom Substrate. Mushroom Growers’ Handbook 1 part II. Oyster Mushrooms. pp. 187-191.
Devendra, C. 1997. Crop residues for feeding animals in Asia: Technology development and adoption in crop/livestock systems. In: Crop Residuals in Sustainable Mixed Crop/livestock Farming System (Ed. C. Renard). CAB International; Wallingford, UK. pp. 241-267.
Devendra, C. and D. Thomas. 2002. Crop-animal interactions in mixed farming systems in Asia. Agric. Syst. 71:27-40.
Dinis, M. J., R. M. F. Bezerra, F. Nunes, A. A. Dias, C. V. Guedes, L. M. M. Ferreira, J. W. Cone, G. S. M. Marques and A. R. N. Barros. 2009. Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour. Technol. 100:4829-4835.
Doyle, P. T., C. Devendra and G. R. Pearce. 1986. Rice straw as a feed for ruminants. IDP, Canberra, Australia.
Elisashvili, V., E. Kachlishvili, N. Tsiklauri, M. Bakradze. 2002. Physiological regulation of edible and medicinal higher basidiomycetes lignocellulolytic enzymes activity. Int. J. Med. Mushrooms 4:159–166.
Eriksson, K-EL., R. A. Blanchette and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, Heidelberg, New York.
Evans, C. S., I. M. Gallagher, P. T. Atkey and D. A. Wood. 1991. Localisation of degradative enzymes in white-rot decay of lignocellulose. Biodegradation 2:93–106.
Fazaeli, H., H. Mahmodzadeh, Z. A. Jelan, Y. Rouzbehan, J. B. Liang and A. Azizi. 2004. Utilization of fungal treated wheat straw in the diet of late lactating cow. Asian Australas. J. Anim. 17:467-472.
Fazaeli, H., Z. A. Jelan, H. Mahmodzadeh, J. B. Liang, A. Azizi and A. Osman. 2002. Effect of fungal treated wheat straw on the diet of lactating cows. Asian Australas. J. Anim. Sci. 15:1573-1578.
Goering, H. K. and P. J. Van Soest. 1970. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). Agric. Handbook No. 379, ARS-USDA, Washington, DC., USA.
Hofrichter M., T. Vares, M. Kalsi, S. Galkin, K. Scheibner, W. Fritsche, and A. Hatakka. 1999. Production of ligninolytic enzymes and organic acids, and mineralization of 14C-labeled lignin during solid-state fermentation of wheat straw with the white-rot fungus Nematoloma frowardii. Appl. Environ. Microbiol. 65:1864-1870.
Howard, R. L., E. Abotsi, E. L. Jansen and S. Howard. 2003. Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2:602-619.
Ibrahim, M. N. M. 1983. Physical, chemical, physico-chemical and biological treatments of crop residues. In: The Utilization of Fibrous Agricultural Residues (Ed. G. R. Pearce). Australian Development Assistance Bureau, Research for Development Seminar three, Los Banos, Philippines, 18-23 May 1981. Australian Government Publishing Service, Canberra, Australia. pp. 53-68.
Iiyama, K., T. B. T. Lam and B. A. Stone. 1990. Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 29:733-737.
Jalc, D. 2002. Straw enrichment for fodder production by fungi. In: The Mycota XI Agricultural Applications (Ed. F. Kempken). c Springer-Verlag, Berlin, Heidelberg. pp. 19-38.
Jecu, L. 2000. Solid-state fermentation of agriculture wastes for endoglucanase production. Ind. Crop. Prod. 11:1-5.
Karunanadaa, K. and G. A. Varga. 1996a. Colinization of rice straw by white-rot fungi (Cyathus stercoreus): Effect on ruminal fermentation pattern, nitrogen metabolism, and fiber utilization during continuous culture. Anim. Feed Sci. Technol. 61:1-16.
Karunanadaa, K. and G. A. Varga. 1996b. Colinization of rice straw by white-rot fungi: cell wall monosaccharides, phenolic acids, ruminal fermentation characteristics and digestibility of cell wall fiber components In vitro. Anim. Feed Sci. Technol. 63:273-288.
Karunanandaa, K., G. A. Varga, D. E. Akin, L. L. Rigsby and D. J. Royse. 1995. Botanical fractions of rice straw colonized by white-rot fungi: Changes in chemical composition and structure. Anim. Feed Sci. Technol. 55:179-199.
Kirk, T. K. and R. L. Farrell. 1987. Enzymatic “combustion”: The microbial degradation of lignin. Annu. Rev. Microbiol. 41:465-505.
Lahoz R., Reyes F. and Perez-Leblic M. I. 1976. Lytic enzymes in the autolysis of filamentous fungi. Mycophathologia 60:45.
Lam, T. B. T., K. Kadoya and K. Iiyama. 2001. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the b-position, in grass cell walls. Phytochemistry 57:987-992.
Lechner, B. E. and V. L. Papinutti. 2006. Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw. Process Biochem. 41:594-598.
Liu, J. X., E. R. Orskov and X. B. Chen. 1999. Optimization of steam treatment as a method for upgrading rice straw as feeds. Anim. Feed Sci. Technol. 76:345-357.
Martinez, A.T. 2002. Molecular biology and structure–function of lignin-degrading heme peroxidases. Enzyme Microb. Technol. 30: 425-444.
Miller, G. L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 31: 426-428.
Mitchell, D. A. and B. K. Lonsane. 1992. Definition, characteristics and potential. In: H. W. Doelle, D. A. Mitchell and C.E. Rolz (eds.) Solid substate cultivation. Elsevsir Science Publisher, London.
Munoz, C., F. Guillen, T. A. Martinez and J. M. Martinez. 1997. Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation. Appl. Environ. Microbiol. 63:2166-2174.
National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Sci., Washington, DC.
Novotny, C., K. Svobodova, P. Erbanova, T. Cajthaml, A. Kasinath, E. Lang and V. Sasek. 2004. Ligninolytic fungi in bioremediation: Extracellular enzyme production and degradation rate. Soil Biol. Biochem. 36:1545-1551.
Palmieri, G., C. Bianco, G. Cennamo, P. Giardina, G. Marino, M. Monti and G. Sannia.2001. Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus. Appl. Environ. Microbiol. 67: 2754-2759.
Pandey, A., P. Selvakumar, C. R. Soccol and P. Nigam. 1999. Solid-state fermentation for the production of industrial enzymes. Curr. Sci. 77:149-162.
Prasad, R. D. D., M. R. Reddy and G. V. N. Reddy. 1998. Effect of feeding baled and stacked urea treated rice straw on the performance of crossbred cows. Anim. Feed Sci. Technol. 73:347-352.
Ramachandran, S., A. K. Patel, K. M. Nampoothiri, F. Francis, V. Nagy, G. Szakacs. 2004. Coconut oil cake-a potential raw material for the production of α-amylase. Bioresour. Technol. 93:69-174.
Ramesh, M. V., and B. K. Lonsane. 1990. Critical importance of moisture content of the medium in alpha-amylase production by Bacillus licheniformis M27 in a solid-state fermentation system. Appl. Microbiol. Biotechnol. 33:501-505.
Rodrigues, M. A. M., P. Pinto, R. M. F. Bezerra, A. A. Dias, C. V. M. Guedes, V. M. G. Gardoso, J. W. Cone, L. M. M. Ferreira, J. Colaco and C. A. Sequeira. 2008. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and In vitro digestibility of wheat straw. Anim. Feed Sci. Technol. 141:326-338.
Ruiz-Duenas, F. J., S. Camarero, M. Perez-Boada, M. J. Martinez and A. T. Martinez. 2001. A new versatile peroxidase from Pleurotus. Biochem. Soc. Trans. 29: 116-122.
Santini, F. J., C. D. Lu, M. J. Potchoiba, J. M. Fernandez and S.W. Coleman. 1992. Dietary fiber and milk yield, mastication, digestion and rate of passage in high Alpine goats fed alfalfa hay. J. Dairy Sci. 75:209-219.
Schiere, J. B. and M. N. M. Ibrahim. 1989. Feeding of urea ammonia treated rice straw: A compilation of miscellaneous reports produced by the Straw Utilization Project (Sri Lanka). Pudoc, Wageningen.
Selim, A. S. M., J. Pan, T. Takano, T. Suzuki, S. Koike, Y. Kobayashi and K. Tanaka. 2004. Effect of ammonia treatment on physical strength of rice straw, distribution of straw particles and particle-associated bacteria in sheep rumen. Anim. Feed Sci. Technol. 115:117-128.
Shen, H. S., D. B. Ni and F. Sundstol. 1998. Studies on untreated and urea-treated rice straw from three cultivation seasons: 1. Physical and chemical measurements in straw and straw fractions. Anim. Feed Sci. Technol. 73:243-261.
Shen, H. S., F. Sundstol, E. R. Eng and L. O. Eik. 1999. Studies on untreated and urea-treated rice straw from three cultivation seasons: 3. Histological investigations by light and scanning electron microscopy. Anim. Feed Sci. Technol. 80:151-159.
Shrivastava, B., P. Nandal, A. Sharma, K. K. Jain, Y. P. Khasa, T. K. Das, V. Mani, N. J. Kewalramani, S. S. Kundu and R. C. Kuhad. 2012. Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. rckk02. Bioresource Technol. 17:347-351.
Stajić, M., L. Persky, D. Friesem, Y. Hadar, S. Wasser, E. Nevo and J. Vukojevič. 2005. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme Microb. Technol. 38:65-73.
Stajić, M., L. Persky, E. Cohen, Y. Hadar, I. Brceski, S.P. Wasser and E. Nevo. 2004. Screening of laccase, manganese peroxidase, and versatile peroxidase activities of the genus pleurotus in media with some raw plant materials as carbon sources. Appl. Biochem. Biotech. 117:155-164.
Stensig, T., M. R. Weisbjerg, J. Madsen and T. Hvelplund. 1994. Estimation of voluntary feed intake from In sacco degradation and rate of passage of DM or NDF. Livest. Prod. Sci. 39:49-52.
Subramaniyan, S. and Prema P. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett 183:1-7.
Tekere, M., R. Zvauya and J. S. Read. 2001. Ligninolytic enzyme production in selected sub-tropical white-rot fungi under different culture conditions. J. Basic Microb. 41:115-129.
Thurston, C. 1994. The structure and function of fungal laccase. Microbiology, 140:19-26.
Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for In vitro digestion of forage crops. J. Brit. Grassland Soc. 18:104-111.
Tuyen, V. D., H. N. Phuong, J. W. Cone, J. J. P. Baars, A. S. M. Sonnenberg and W. H. Hendriks. 2013. Effect of fungal treatments of fibrous agricultural by-products on chemical composition and In vitro rumen fermentation and methane production. Bioresource Technol. 129:256-263.
Tuyen, V. D., J. W. Cone, J. J. P. Baars, A. S. M. Sonnenberg and W. H. Hendriks. 2012. Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation. Bioresource Technol. 111:336-342.
Uden, P. 1988. The effect of grinding and pelleting hay on digestibility, fermentation rate, digesta passage and rumen and faecal particle size in cows. Anim. Feed Sci. Technol. 19:145-157.
Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.
Victor, G. T., A. T. Martinez, M. J. Martinez and F. Guillen. 2001. Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii H2O2 generation and the influence of Mn2+. Eur. J. Biochem. 268:4787-4793.
Vyas, B.R.M., J. Volc and V. Sasek. 1994. Ligninolytic enzymes of selected white rot fungi cultivated on wheat straw. Folia Microbiol. 39:235-240.
Wong, D. W. 2009. Structure and action mechanism of ligninolytic enzymes. Appl Biochem. Biotechnol.157:174-209.
Yamakava, M. and H. A. Okamnto. 1992. Effect of incubation with edible mushroom, Pleurotus ostreatus, on voluntary intake and digestibility or rice bran by sheep. Anim. Feed Sci. Technol. 63:133-138.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top