跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/18 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧至涵
研究生(外文):Chih-Han Teng
論文名稱:以Bacillus subtilis F3固態發酵羽毛粉應用於肉雞飼糧之探討
論文名稱(外文):Application of solid-state fermented feather meal by Bacillus subtilis F3 in broiler diet
指導教授:余碧余碧引用關係
指導教授(外文):Bi Yu
口試委員:魏恆巍陳國隆
口試委員(外文):Hen-Wei WeiKuo-Lung Chen
口試日期:2015-07-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:92
中文關鍵詞:角蛋白酶羽毛Bacillus subtilis肉雞
外文關鍵詞:keratinasefeatherBacillus subtilisbroiler
相關次數:
  • 被引用被引用:1
  • 點閱點閱:519
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  羽毛為家禽屠宰後所產生之副產物,其含93% 的蛋白質且含較高量的半胱胺酸和缬胺酸,經水解後可用來作為動物性飼料原料,羽毛於水解過程中 (高溫高壓水解、酸鹼水解法…) 其胺基酸如甲硫胺酸、離胺酸和色胺酸容易被高溫及鹼所破壞而降低其利用率,若以羽毛分解菌所生產的角蛋白酶水解羽毛可以改善胺基酸被破壞的情形。Bacillus subtilis F3為具有降解家禽羽毛能力的菌株,本試驗將之目的為評估以以B. subtilis F3固態發酵家禽羽毛探討其應用於肉雞飼糧之效果。以108 CFU/ml B. subtilis F3接種5% 至含水量為40% 的羽毛中,30℃ 培養8天後有最佳的角蛋白酶活性,羽毛經B. subtilis F3所分泌的胞外角蛋白酶降解後,其水萃液中TCA可溶蛋白質和游離硫醇官能基各增加了13.6 M 和13.7 mM,與商業羽毛粉的TCA可溶蛋白質濃度沒有顯著差異。動物試驗中以400隻白肉雞隨機分成五個處理組,分別為對照組、各添加1% 或2.5% 的商業羽毛粉 (CFM) 或發酵羽毛粉組 (FFM)。結果顯示五個處理組間肉雞全期之體增重無顯著差異,但2.5% FFM處理組對肉雞0-21天體增重顯著較對照組為差 (P<0.05),且胰臟相對重量顯著比對照組高 (P<0.05)。糞便及腸道內容物的pH、氨濃度和菌相,2.5% FFM組比對照組之pH和氨濃度為低 (P<0.001; P<0.001),乳酸菌、大腸桿菌和梭狀桿菌則在各處理之間沒有顯著差異。肉雞血清中的總蛋白、尿素氮和尿酸在五個處理組間沒有顯著差異,營養代謝實驗中,FFM之能量、乾物質和蛋白質之消化率與對照組沒有差異。綜上所述,利用B. subtilis F3所分泌之角蛋白酶來降解羽毛,使羽毛能夠被分解釋出硫氫基和TCA可溶蛋白質並可增加蛋白質消化率,1% 和2.5% FFM處理組對全期生長性狀與對照組無顯著差異,並可降低雞隻糞便氨態氮的排出,因此發酵羽毛粉可替代傳統水解方式並應用於肉雞飼糧中。

  Feather is protein rich byproduct of poultry processing industries. It is also hydrolyzed to feather meal which is used as animal feed because it is made up of 93% protein and rich in amino acids like cysteine and valine. Most popular method of feather meal production is by hydrothermal and chemical process, however, they results in destruction of amino acids like methionine, lysine and tryptophan. The biodegradation of feathers by microbial keratinase represents an alternative method and improving the destruction of amino acid. In the previous work, a strain of Bacillus subtilis F3 was isolated which could degrade poultry feather. The purpose of this study was to explore the effect of solid fermented feather by B. subtilis F3 in broiler diet. The optimum condition of producing keratinase by B. subtilis F3 and the TCA soluble protein or SH-group of solid fermented feather was evaluated. The results showed the optimum condition for producing keratinase that feather contained 40% moisture with 5% molasses was inoculated 5% B. subtilis F3 (108 CFU/ml) at 30℃ for 8 days incubation. The TCA soluble protein or SH-group of solid fermented feather was increased 13.6 M and 13.7 mM respectively, and its TCA soluble protein as same as the commercial feather meal. In the broiler trial, four hundred 1-day-old broiler were allocated randomly into 5 diary treatment including the basal, and basal diet containing 1% or 2.5% commercial feather meal (CFM) and fermented feather meal (FFM) with 4 replicates per treatment. The results showed that 1% or 2.5% FFM or CFM compared with control was no significant on the weight gain in 0-35 days, but the weight gain of 2.5% FFM was significant lower than control in grower period (0-21d) (P<0.05). The pancreas relative weigh of 2.5% FFM was significant better than control. All group are no significant on coliform, lactic acid bacteria and clostridium sp. count in intestinal content of broilers. And the total protein, BUN, and uric acid in serum on broiler was no significant among all groups. Furthermore, basal diet containing 2.5% FFM could significantly decrease the pH and the content of ammonia nitrogen in excreta (P<0.001; P<0.001). There were insignificant differences of protein, energy and dry matter utilization compared with control. In conclusion, feather degraded by extracellular keratinase from B. sublitis, the TCA soluble protein and in vitro protein digestibility was increase. The basal diet containing 1% or 2.5% FFM had the same result with control on growth performance, and it could significantly reduce the ammonia nitrogen of excreta on broiler. Therefore, the FFM could be an alternative way to hydrolysis feather and apply in feedstuff on broiler diet.


中文摘要 i
Abstract ii
表次 vi
圖次 vii
前言 1
第一章 文獻探討 2
一、 家禽產業廢棄物羽毛介紹及處理方式 2
(一) 羽毛和角蛋白之結構與特性 2
(二) 羽毛水解方式 5
二、 角蛋白酶 10
(一) 生產角蛋白酶之菌株 10
(二) 角蛋白酶特性介紹 11
(三) 角蛋白酶分解機制 12
三、 固態發酵 13
(一) 固態發酵之優、缺點 14
(二) 固態發酵與液態發酵之比較 15
四、 羽毛粉應用於禽畜飼糧 18
第二章 評估Bacillus菌株羽毛分解能力及其最適角蛋白酶生產之條件 20
一、 前言 20
二、 材料與方法 21
(一) 試驗菌株選擇 21
(二) 探討Bacillis F3最適角蛋白酶生產之條件 23
(三) 探討Bacillis F3羽毛水解程度 24
三、 結果與討論 31
(一) 試驗菌株選擇 31
(二) 探討Bacillis F3最適角蛋白酶生產之條件 31
(三) 探討Bacillis F3羽毛水解程度 32
第三章 固態發酵羽毛條件之建立 39
一、 前言 39
二、 材料與方法 39
(一) 原料雞羽毛製備 39
(二) 角蛋白酶生產之最適生長條件探討 40
(三) 評估發酵羽毛之降解程度 41
(四) 評估發酵羽毛粉之蛋白質品質 41
三、 結果與討論 44
(一) 建立以B. subtilis F3固態發酵羽毛之條件 44
(二) 評估發酵羽毛之降解程度 45
(三) 評估發酵羽毛粉蛋白質品質 48
第四章: 評估飼糧中添加發酵羽毛粉對肉雞生長及腸道之影響 54
一、 前言 54
二、 材料方法 54
(一) 試驗動物與飼養管理 54
(二) 試驗處理與飼糧 55
(三) 樣品採集 55
(四) 分析項目與方法 55
(五) 評估飼糧中添加發酵羽毛粉對肉雞營養代謝率之影響 59
三、 結果與討論 65
(一) 對生長之影響 65
(二) 對腸道菌相之影響 68
(三) 對腸道內容物及排泄物中氨濃度之影響 70
(四) 對腸道內容物及排泄物中總揮發性脂肪及pH之影響 72
(五) 對血清中總蛋白、尿素氮及尿酸之影響 74
(六) 對器官和腹脂相對重之影響 77
(七) 評估發酵羽毛粉 (FFM) 對肉雞營養代謝率之影響 79
第四章 結論 81
第五章 參考文獻 82




毛正倫。2002。食藥用菇類產品之加工利用。興大農業,40:1-9。
王勇智。2013。低蛋白與非傳統飼糧添加蛋白酶對肉雞生長與腸道性狀之影響。碩士論文。中興大學。台中市。
王錦盟。2007。水解羽毛粉於肉雞飼糧中之應用。飼料營養。1:77-83。
白火城、黃森源、林仁壽。1996。家畜臨床血液生化學。立宇出版社。台南。
何武順。2005。飼用羽毛粉的加工方法。糧食與飼料工業。2:22-24。
何武順。2007。羽毛桿水解膨化聯合加工技術。糧食與食品工業。14:39-41。
余碧和邱文石。1979。肉雞飼料添加肉骨粉、羽毛粉之飼養價值。農林學報28:117-132。
吳芝穎。2004。Bicullus licheniformis THSC-1角蛋白分解酶之的純化、定性基因選殖。碩士論文。東海大學。台中市。
沈銀書、霍啟光。1996。水解羽毛粉加工技術的研究進展。飼料工業。12:6-11。
姜樹興。2009。動物營養學原理。華香園出版社。台北。
洪平。2003。飼料原料要覽(含添加物)。作伙逗陣雜誌社。台南。
許元昆。2006。家禽電宰副產物 (羽毛) 之回收利用。飼料營養。9:65-68。
陳明汝、鍾之儀、黃如婕。2010。角蛋白分解酵素應用於非反芻動物飼料之研究。動物與水產生技。22:21-29。
陸建安、張曉鳴、陸京。1995。高壓水解羽毛粉新工藝研究。飼料工業。16:12-14。
賈如琰、何玉鳳、王榮民、李芳蓉、王艳。2008。角蛋白的分子構成、提取及應用。4:265-271。
雷大德。2013。篩選羽毛分解菌進行二階段混合型發酵羽毛粉促進肉雞生長之探討。碩士論文。嘉義大學。嘉義市。
魏恆巍、許佳鳳、陳保基。2005。以試管試驗方法評估國產羽毛粉之品質。中國畜牧學會會誌。34:39-46。
AOAC. 2005. Official methods of analysis. 12th ed. Assoc. Offic. Anal. Chem., Arlington, VA.
Apodaca, G., and J. H. McKerrow. 1989. Purification and characterization of a 27,000-Mr extracellular proteinase from Trichophyton rubrum. Infect. Immun. 57:3072-3080.
Babinszky, L., J. M. Meer, H. Boer, and L. A. Hartog. 1990. An in-vitro method for prediction of the digestible crude protein content in pig feed. J. Sci. Food Agric. 50:173-178.
Bachrach, U. 1957. The aerobic breakdown of uric acid by certain pseudomonads. J. Gen. Microbiol. 17:1-11.
Baker, D. H., R. C. Blitenthal, K. P. Boebel, G. L. Czarnecki, L. L. Southern, and G. M. Willis. 1981. Protein-amino acid evaluation of steam processed feather meal. Poultry Sci. 60:1865-1872.
Bauer-Dial, C. A., and N. A. Dial. 1995. Lethal effects of the consumption of field levels of paraquat-contaminated plants on frog tadpoles. Bull. Environ. Contam. 55:870-877.
Bhargav, S., B. P. Panda, M. Ali, and S. Javed. 2008. Solid-state fermentation: an overview. Chem. Biochem. Eng. 22(1):49-70.
Blasi, D. A., T. J. Klopfenstein, J. S. Drouillard, and M. H. Sindt. 1991. Hydrolysis time as a factor affecting the nutritive value of feather meal and feather meal-blood meal combinations for growing calves. J. Anim. Sci. 69:1272-1278.
Bockle, B., and R. Muller. 1997. Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Appl. Environ. Microbiol. 57:1-7.
Boushy, A. R. and A. E. Roodbeen. 1980. Amino acid availability in Lavera yeast compared with soybean and herring meal. Poultry Sci. Biotechnology. 25:1-30.
Brandelli, A. 2008. Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Tech. 1:105-116.
Brouta, F., F. Descamps, T. Fett, B. Losson, C. Gerday, and B. Mignon. 2001. Purification and characterization a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Med. Mycol. 39:269-275.
Cabel, M. C., T. L. Goodwin, and P. W. Waldroup. 1986. Reduction in abdominal fat content of broiler chickens by the addition of feather meal to finisher diets. Poultry Sci. 66:1644-1651.
Cabel, M. C., T. L. Goodwin, and P. W. Waldroup. 1986. Reduction in abdominal fat content of broiler chickens by the addition of feather meal to finisher diets. Poultry Sci. 66:1644-1651.
Cai, C. G., J. S. Chen, J. J. Qi, Y. Yin, and X. D. Zheng. 2008. Purification and characterization of keratinase from a new Bacillus subtilis strain. J. Zhejiang Univ. Sci. B. 9(9):713-720.
Chen, C. C., Y. C. Shih, P. W. S. Chiou, and B. Yu. 2010. Evaluating nutritional quality of single stage- and two stage-fermented soybean meal. J. Anim. Sci. 23:598-606.
Chou, C. H., S. Y. Wang, Y. T. Lin, and Y. C. Chen. 2014. Antioxidant activities of chicken liver hydrolysates by pepsin treatment. Int. J. Food. Sci. Tech. 49:1654-1662.
Chou, P. Y. and G. D. Fasman. 1978. Empirical predictions of protein conformation. Annual Review of Biochemistry. 47:251-276.
Church, F. C., H. E. Swaisgood, D. H. Porter, and G. L. Catignani. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk protein. J. Dairy Sci. 66:1219-1227.
Cupo, M. A, and A. L. Cartwright. 1991. The effect of feather meal on carcass composition and fat pad cellularity in broilers: influence of the calorie: protein ratio of the diet. Poultry Sci. 70:153-159.
Cupo, M. A., and A. L. Cartwright. 1991. The effect of feather meal on carcass composition and fat pad cellularity in broilers: influence of the calorie: protein ratio of the diet. Poultry Sci. 70:153-159.
De Toni, C. H., M. F. Richter, J. R. Chagas, J. A. P. Henriques, and C. Termignoni. 2002. Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophila strain. Can. J. Microbiol. 48:342-348.
Donsbough, A. L., S. Powell, A. Waguespack, T. D. Bidner, and L. L. Southern. 2010. Uric acid, urea, and ammonia concentrations in serum and uric acid concentration in excreta as indicators of amino acid utilization in diets for broilers. Poultry Sci. 89:287-294.
Drew, M. D., N. A. Syed, B. G. Goldade, B. Laarveld, and A. G. Kessel. 2004. Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poultry Sci. 83:414-420.
El-Boushy, A. R., and A. F. B. Van-Poel. 1990. Feather meal-A biological waste: its processing and utilization as a feedstuff for poultry. Biol. Waste. 32:39-74.
Feng, J., X. Liu, Z. R. Xu, Y. Y. Liu, and Y. P. Lu. 2007. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed. Sci. Technol. 134:235-242.
Figueras, M. J., J. Gurrado, and L. Zaror. 1997. Ultra-structural aspectes of hair digestion in black piedra infection. J. Med. Vet. Mycol. 35:1-6.
Fraser, R. B. D., T. P. Mac-Rae, and G. E. Rogers. 1972. Keratins-their composition, structure and biosynthesis. Charles C. Thomas, Illinois.
Ganga, G., J. Chu, J. G. Wang, Q. X. He, and K. C. Liu. 2013. A two-step biotechnological process for improving nutrition value of feather meal by Bacillus licheniformis S6. J. Northeast Agric. Univ. 20:71-77.
Ghosh A., K. Chakrabarti, and D. Chattopadhyay. 2008. Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J. Ind. Microbiol. Biotechnol. 35:825-834.
Goedeken, F. K., T. J. Klopfenstein, R. A. Stock, and R. A. Britton. 1990. Hydrolyzed feather meal as a protein source for growing calve. J. Anim. Sci. 1990. 68:2945-2953.
Grazziotin, A., F. A. Pimentel, E. V. de Jong, and A. Brandelli. 2006. Nutritional improvement of feather protein by treatment with microbial keratinase. Anim feed Sci. Technol. 126:135-144.
Green, G. M., and R. L. Lyman. 1972. Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitor induced hypersecretion in rats. Proc. Soc. Exp. BioI. Med. 140:6-12.
Hansen, R. E., and J. R. Winther. 2009. An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations. Anal. Biochem. 394:147-158.
Heoa, J. M., J. C. Kimb, C. F. Hansena, B. P. Mullanb, D. J. Hampsona, and J. R. Pluske. 2008. Effects of feeding low protein diets to piglets on plasma urea nitrogen, faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning. Arch. Anim. Nutr. 62:343-358.
Heugten, E. V., and T. A. T. G. Kempen. 2002. Growth performance, carcass characteristics, nutrient digestibility and fecal odorous compounds in growing-finishing pigs fed diets containing hydrolyzed feather meal. J. Anim. Sci. 80:171-178.
Hodgson, J. 1994. Production of alkakine enzymes by alkalophilic microorganisms. Part I. alkaline protease produces by Bacillus no. 221. Agric. Biol. Chem. 35:1407-1414.
Hofacre, C. L., D. G. White, J. J. Maurer, C. Morales, C. Lobsinger, C. R. Hudson, and S. G. Thayer. 2001. Antibiotic resistant bacteria in rendered animal products. Avian Dis. 45:953-961.
Isika, M. A., E. A. Agiang, and C. A. Eneji. 2006. Complementary effect of processed broiler offal and feather meals. Int. J. Poult. Sci. 7:656-661.
Jackson, S., j. D. Summers, and S. Leeson. 1981. Effect of dietary protein and energy on broiler carcass composition and efficiency of nutrient utilization. J. Poult. Sci. 61:2224-2231.
Jafari, M., and A. M. Aghsaghali. Dietary formulation with poultry by product meal on a total amino acid vs. a digestible amino acid basis. 2014. Iranian J. of Applied Anim. Sci. 4:843-848.
Jeong, J. H., Y. D. Jeon, O. M. Lee, J. D. Kim, N. R. Lee, G. T. Park, and H. J. Son. Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil. Biodegradation. 21:1029-1040.
Jiangrang L., U. Idris, B. Harmon, C. Hofacre, J. J. Maurer, and M. D. Lee. 2003. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microb. 69:6816-6824.
Karthikeyan, R., S. Balaji, and P. K. Sehgal. 2006. Industrial application of keratins-A review. J. Sci. Ind. Res. 66:710-715.
Kim, J. M., W. J. Lim, and H. J. Suh. 2002. Effect of enzymatic and chemical treatments on feather solubility and digestibility. Poultry Sci. 81:95-98.
Krishna, C. 2005. Solid-state fermentation systems-an overview. Crit Rev Biotechnol. 25:1-30.
Krogdahl, A., and J. L. Sell. 1989. Influence of age on lipase, amylase, and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poultry Sci. 68:1561-1568.
Lage-Cedrola, S. M., A. C. de Melo, A. M. Mazotto, U. L. Russolina, B. Zingali, A. S. Rosado, R. S. Peixoto, and A. B. Vmelho. 2012. Keratinases and sulfide from Bacillus subtilis SLC to recycle feather waste. World J. Microb. Biot. 28:1259-1269.
Latshaw, J. D., N. Musharaf, and R. Retrum. 1994. Processing of feather to maximize its nutritional value for poultry. Anim. Feed. Sci. Technol. 47:179-188.
Lillie, R. J., J. R. Sizemore, and C. A. Denton. 1956. Feather Meal in Chick Nutrition. Poultry Sci. 35:316-318.
Lucas, F. S., O. Broennimann, I. Febbraro, and P. Heeb. 2003. High diversity among feather-degrading bacteria from a dry meadow soil. Microb. Ecol. 45:282-290.
Malviya, H. K., R. C. Rajak, and S. K. Hasija. 1992. Synthesis and regulation of extracellular keratinase in three fungi isolated from the grounds of a gelatin factory. Crypt. Bot. 120:1-4.
Marchisio, V. F., 2000. Karatinophilic fungi: their role in nature and degradation of keratinic substrates. Rev. Iber. Micol. 17:86-92.
Mazotto, A. M., A. C. Melo, A. Macrae, A. S. Rosado, R. Peixoto, M. L. S. Cedrola, S. Couri, R. B. Zingali, A. L. Villa, L. Rabinovitch, J. Q. Chaves, and A. B. Vermelho. 2011. Biodegradation of feather waste by extracellular keratinases and gelatinases from Bacillus spp. World J. Microb. Biot. 27:1355-1365.
Mazzoto A. M., S. M. Cedrola, U. Lins, A. S .Rosado, K. T. Silva, J. Q. Chaves, L. Rabinovitch, R. B. Zingali, and A. B. Vermelho. 2010. Keratinolytic activity of Bacillus subtilis AMR using human hair. Lett. Appl. Microbiol. 50:89-96.
Meyers, M. A., P. Y. Chen, A. Y. M. Lin, and Y. Seki. 2008. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53:1-206.
Mohorcic, M., A. Torkar, J. Friedrich, J. Kristl, and S. Murdan. 2007. An investigation into keratinolytic enzymes to enhance ungual drug delivery. Int. J. Pharm. 332:196-201.
Moritz, J. S., and Latshaw, J. D. 2001. Indicators of nutritional value of hydrolyzed feather meal. Poultry Sci. 80:79-86.
Nam, G. W., D. W. Lee, H. S. Lee, N. J. Lee, B. C. Kim, E. A. Choe, J. K. Hwang, M. T. Suhartono, and Y. R. Pyun. 2002. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch Microbiol. 178:538-547.
Namroud, N. F., M. Shivazad, and M. Zaghari. 2008. Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level, and excreta characteristics of broiler chicks. Poultry Sci. 87:2250-2258.
Onifade, A. A., N. A. Al-Sane, A. A. Al-Musallam, and S. Al-Zarban. 1998. Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66:1-11.
Papadopoulos, M. C., A. R. El-Boushy, A. E. Roodbeen, and E. H. Ketelaars. 1986. Effects of processing time and moisture content on amino acid composition and nitrogen characteristics of feather meal. Anim. Feed Sci. Technol. 14:279-290.
Parker, D. C., and R. T. McMillan. 1976. The determination of volatile fatty acids in the caecum of the conscious rabbit. Br. J. Nutr. 35:365-371.
Rai S. K., and A. K. Mukherjee. 2010. Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochem. Eng. J. 48:173-180.
Raimbault, M. 1998. General and microbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1(3):1-15.
Ramachandran, S., A. K. Patel, K. M. Nampoothiri, F. Francis, V. Nagy, G. Szakacs, and A. Pandey. 2004. Coconut oil cake-a potential raw material for the production of α-amylase. Bioresour. Technol. 93:169-174.
Ramnani, P., R. Singh, and R. Gupta. 2005. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can. J. Microbiol. 51:191-196.
Rose, V. C., J. E. Johnson, and W. J. Haines. 1950. The amino acid requirements of man. I. The role of valine and methionine. J. Biol. Chem. 182:541-556.
Sangali, S., and Brandelli A. 2000. Feather keratin hydrolysis by a Vibrio sp. strain kr2. J. Appl. Microbiol. 89:735-743.
Sanyal, A. K., S. K. Das, and A. B. Banerjee. 1985. Purification and partial characterization of an exocellular proteinase from Trichophyton rubrum. Sabouraudia. 23:165-178.
Satyanarayana, T., J. B. Narain, and A. Prakash. 2012. Microorganisms in environmental management: microbes and environment. Springer Dordrecht Heidelberg. New York, NY.
Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50:1-17.
Singhania, R. R., A. K. Patel, C. R. Soccol, and A. Pandey. 2009. Recent advances in solid-state fermentation. Biochem. Eng. J. 44:13-18.
Syed, D. G., J. C. Lee, W. J. Li, C. J. Kim, and D. Agasar. 2009. Production, characterization and application of keratinase from Streptomyces gulbargensis. Biores. Technol. 100:1868-1871.
Takiuchi, J., D. Higuchi, Y. Sei, and M. Koga. 1982. Isolation of an extracellular proteinase (keratinase) from Microsporum canis. Sabouraudia. 20(4):281-288.
Taylor, M. M., D. G. Bailey and S. H. Feairrheller. 1987. A review of the use of enzymes in the tannery. J. Am. Leather Chem. Assoc. 82:153-165.
Teresa, K. K and B. Justyna. 2011. Biodegradation of keratin waste: Theory and practical aspects. Waste Management. 31:1689-1701.
Wang, D., X. S. Piao, Z. K. Zeng, T. Lu, Q. Zhang, P. F. Li, L. F. Xue, and S. W. Kim. 2011. Effects of keratinase on performance, nutrient utilization, intestinal morphology, intestinal ecology and inflammatory response of weaned piglets fed diets with different levels of crude protein. Asian-Aust. J. Anim. Sci. 12:1718-1728.
Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974.
Webb, K. E. 1990. Intestinal absorption of protein hydrolysis products: a review. J. Anim. Sci. 68:3011-3022.
Williams, C. M., and J. C. H. Shin. 1989. Enumeration of some microbial groups in thermophilic poultry waste digesters and enrichment of a feather-degrading culture. J. Appl. Biomater. 67:25-35.
Williams, C. M., C. G. Lee, J. D. Garlich, and C. H. Shjh. 1991. Evaluation of a bacterial feather fermentation product, feather-lysate, as a feed protein. Poultry Sci. 70:85-94.
Yamamura, S., Y. Morita, Q. Hasan, K. Yokoyama, and E. Tamiya. 2002. Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem. Biophys. Res. Commun. 295:1034-1034.
Yamauchi, K., A. Yamauchi, T. Kusunoki, A. Khoda, and Y. Konishi. 1996. Preparation of stable aqueous solutions of keratins, and physicochemical and biodegradational properties of films. J. Biomed. Mat. Res. 31:439-444.
Yu, R. J., S. R. Harmon, and F. Blank. 1968. Isolation and purification of an extracellular keratinase of Trichophyton mentagrophytes. J Bacteriol. 96(4):1435-1436.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top