跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 09:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李寶英
研究生(外文):Bao-Ying Lee
論文名稱:具長效藥物釋放功能之奈米孔洞陽極氧化鋁管
論文名稱(外文):A nanoporous small Anodic Aluminum Oxide (AAO) tube for long-acting drug release
指導教授:王國禎
指導教授(外文):Gou-Jen Wang
口試委員:廖國智許佳賢
口試委員(外文):Kuo-Chih LiaoChia-Hsien Hsu
口試日期:2015-06-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:55
中文關鍵詞:陽極氧化鋁膜幾丁聚醣冷凍乾燥藥物釋放前趨骨母細胞誘導分化
外文關鍵詞:nanoporous anodic aluminum oxide tubemicroporous chitosan/collagen compositelong-acting drug releaseMC3T3-E1 differentiation induction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究開發出一新型低成本且具長效型之奈微米藥物釋放裝置,其主要由具奈米孔洞之陽極氧化鋁圓管以及具微米孔洞之幾丁聚醣/膠原蛋白薄膜所組成。首先,以不銹鋼外環電極為陰極,並於外環電極中心處以橫置放方式將放置純度98.6%之3003鋁錳銅合金管置中,封裝後接上陽極以進行環型陽極氧化製程,以0.3 M之草酸為蝕刻液,於溫度0C之工作環境下施以30 V之定電壓,進行陽極氧化製程24小時,經移除未氧化之鋁合金後再以濃度為之30%之H3PO4去除背阻障層,產生具貫穿之奈米孔洞之陽極氧化鋁管。接著以冷凍乾燥法製作具微米孔洞之幾丁聚醣/膠原蛋白薄膜。最後,將經冷凍乾燥後之幾丁聚醣/膠原蛋白薄膜將做為藥物包埋之載體,包埋藥物後並置入具奈米孔洞陽極氧化鋁管中後,進行封裝完成本裝置。
本研究所製備出之陽極氧化鋁管其孔洞排列與大小具均勻性其平均孔徑約為50 nm,而幾丁聚醣/膠原蛋白薄膜藉由調整兩者不同混和比例可製備出最大173.12±26.89 μm以及最小34.20±8.0 7μm之微米孔洞。包埋於幾丁聚醣/膠原蛋白薄膜內之藥物將透過陽極氧化鋁管上之奈米孔洞控制其釋放之速率,進而達到緩釋的效果。本裝置以濃度0.5%之牛血清蛋白(bovine serum albumin)做為釋放藥物,實驗結果發現於37C環境下,本裝置可藉由奈/微米孔洞之相互配合,使釋放時間達兩週。
另外,本研究將藥物釋放裝置應用於骨組織再生,以可誘導前趨骨母細胞 (pre-osteoblast) MC3T3-E1分化成成骨細胞之生長因子rh-BMP2做為藥物,填充於幾丁聚醣/膠原蛋白複合束後再包覆於具奈米孔洞之陽極氧化鋁圓管中,進行細胞培養實驗。經由鹼性磷酸脢活性測試(ALP)以及茜素紅染色(ARS)實驗發現以rh-BMP2培養之前趨骨母細胞確實能分化為成骨細胞。由茜素紅染色實驗比較出本裝置在細胞培養過程中可以用較低劑量的生長因子,並且透過一次性的投藥即可促進細胞分化為成骨細胞。倘若未來可進一步將本研究之藥物釋放裝置應用於體內藥物釋放,除了具有生物可降解性外也有一次性投藥的優點,因此可以改善舊型裝置需要重複開刀進行藥物補充的缺點。


The objective of this study is to develop a long-acting and implantable drug-release device that can effectively control the release rate and concentration of the loaded drug. The proposed device consists of a tubular nanoporous anodic aluminum oxide (AAO) encapsulating a microporous chitosan/collagen composite. The nanopore size of the AAO tube can be modified by adjusting the anodization parameters, which in turn adjust the release rate and concentration, while the microporous chitosan/collagen composite provides the long-acting release feature. Fabrication results indicate that the AAO tube has a uniform pore arrangement with a pore size around 50 nm. The synthesized microporous chitosan/collagen composite containing 90% chitosan yielded the highest moisture content and was therefore used as the drug carrier. Release experiments demonstrate that the proposed long-acting drug-release device had released less than 65% of the loading drug on the 17th release day.
We then applied the proposed long-acting drug-release scheme as a recombinant human-bone morphogenetic-protein 2 (rh-BMP2) release device to induce differentiation of pre-osteoblast MC3T3-E1 cells into osteoblasts. Results from alkaline phosphate (ALP) and alizarin red S assays demonstrate that the total amount of rh-BMP2 consumed by the proposed AAO tube is much less than that consumed using the conventional culture approach. Furthermore, our approach has the advantage of requiring only one-time dosing, whereas the conventional approach requires the periodic renewal of rh-BMP2. AAO’s one-time dosing feature combined with its biocompatablity and biodegradability can be beneficial in real implant applications.


致謝 2
摘要 3
ABSTRACT 4
目錄 5
圖目錄 7
表目錄 9
第一章緒論 10
1.1前言與文獻回顧 10
1.1.1藥物釋放之發展 10
1.1.2骨修復醫學以及骨組織工程 11
1.1.3陽極氧化鋁膜製程 13
1.1.4幾丁聚醣與冷凍乾燥法之介紹 13
1.2研究動機 14
第二章實驗原理 16
2.1陽極氧化鋁膜(ALUMINIUM ANODIC OXIDE,AAO)形成之原理 16
2.2擴散理論(FICKS LAW) 17
第三章實驗材料與方法 19
3.1具奈米孔洞之圓管型藥物釋放載體製作 20
3.1.1 3D陽極氧化鋁圓管之製備 20
3.1.2幾丁聚醣/膠原蛋白複合薄膜之製備 24
3.2含水率測試 25
3.3藥物釋放 25
3.4細胞培養 26
3.4.1細胞植覆 27
3.4.2以AAO釋放裝置包埋BMP-2進行骨細胞培養 28
3.5鹼性磷酸酶試驗(ALKALINE PHOSPHATE ASSAY) 30
3.5.1標準曲線 31
3.5.2ALP ASSAY 31
3.6茜素紅染色試驗(ALIZARIN RED S) 32
第四章實驗結果與討論 34
4.1具奈米孔洞之圓管型藥物釋放載體製作結果 34
4.1.1 3D陽極氧化鋁圓管製作結果 34
4.1.2 幾丁聚醣/膠原蛋白複合薄膜製作結果 38
4.2幾丁聚醣/膠原蛋白複合薄膜含水率測試 44
4.3藥物釋放載體釋放實驗 46
4.4 MC3T3-E1前驅骨母細胞細胞培養實驗 47
4.5ALP活性測試實驗結果 47
4.6ARS染色實驗結果 48
第五章結論與未來展望 51
5.1結論與未來展望 51
5.2未來展望 52
參考文獻 53


[1]Y. Qiu and K. Park, "Environment-sensitive hydrogels for drug delivery," Adv Drug Deliv Rev, vol. 53, pp. 321-39, 2001.
[2]E. M. Ahmed, "Hydrogel: Preparation, characterization, and applications: A review," J Adv Res, vol. 6, pp. 105-21, 2015.
[3]Z. Ahmad, A. Shah, M. Siddiq, and H. B. Kraatz, "Polymeric micelles as drug delivery vehicles," Rsc Advances, vol. 4, pp. 17028-17038, 2014.
[4]W. B. Liechty, D. R. Kryscio, B. V. Slaughter, and N. A. Peppas, "Polymers for drug delivery systems," Annu Rev Chem Biomol Eng, vol. 1, pp. 149-73, 2010.
[5]Slowing, II, J. L. Vivero-Escoto, C. W. Wu, and V. S. Lin, "Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers," Adv Drug Deliv Rev, vol. 60, pp. 1278-88, 2008.
[6]E. Jimi, S. Hirata, K. Osawa, M. Terashita, C. Kitamura, and H. Fukushima, "The current and future therapies of bone regeneration to repair bone defects," Int J Dent, vol. 2012, p. 148261, 2012.
[7]K. J. Burg, S. Porter, and J. F. Kellam, "Biomaterial developments for bone tissue engineering," Biomaterials, vol. 21, pp. 2347-59, 2000.
[8]A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, "Bone tissue engineering: recent advances and challenges," Crit Rev Biomed Eng, vol. 40, pp. 363-408, 2012.
[9]S. Bose, M. Roy, and A. Bandyopadhyay, "Recent advances in bone tissue engineering scaffolds," Trends Biotechnol, vol. 30, pp. 546-54, 2012.
[10]J. Zhang, H. Zhou, K. Yang, Y. Yuan, and C. Liu, "RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration," Biomaterials, vol. 34, pp. 9381-92, 2013.
[11]F. Yang, J. Wang, J. Hou, H. Guo, and C. Liu, "Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2," Biomaterials, vol. 34, pp. 1514-28, 2013.
[12]H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science, vol. 268, pp. 1466-8, 1995.
[13]A. M. M. Jani, D. Losic, and N. H. Voelcker, "Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications," Progress in Materials Science, vol. 58, pp. 636-704, 2013.
[14]D. W. Gong, V. Yadavalli, M. Paulose, M. Pishko, and C. A. Grimes, "Controlled molecular release using nanoporous alumina capsules," Biomedical Microdevices, vol. 5, pp. 75-80, 2003.
[15]B. Y. Yoo, R. K. Hendricks, M. Ozkan, and N. V. Myung, "Three-dimensional alumina nanotemplate," Electrochimica Acta, vol. 51, pp. 3543-3550, 2006.
[16]H. G. Shin, Y. M. Park, B. H. Kim, and Y. H. Seo, "Fabrication of Hemispherical Nano Structure on a Curved Al Surface Using Low-Temperature and High-Voltage Anodizing Method," Journal of Nanoscience and Nanotechnology, vol. 11, pp. 427-431, 2011.
[17]L. Zaraska, G. D. Sulka, J. Szeremeta, and M. Jaskula, "Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum," Electrochimica Acta, vol. 55, pp. 4377-4386, 2010.
[18]M. Michalska-Domanska, M. Norek, W. J. Stepniowski, and B. Budner, "Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum-A comparative study with the AAO produced on high purity aluminum," Electrochimica Acta, vol. 105, pp. 424-432, 2013.
[19]P. Erdogan, B. Yuksel, and Y. Birol, "Effect of chemical etching on the morphology of anodic aluminum oxides in the two-step anodization process," Applied Surface Science, vol. 258, pp. 4544-4550, 2012.
[20]Br, #xfc, and D. ggemann, "Nanoporous Aluminium Oxide Membranes as Cell Interfaces," Journal of Nanomaterials, vol. 2013, p. 18, 2013.
[21]王英翔(2011), "圖案化陽極氧化鋁膜之藥物釋放應用," 國立中興大學,機械工程學系,研究所碩士論文,台中市.
[22]G. E. Poinern, D. Fawcett, Y. J. Ng, N. Ali, R. K. Brundavanam, and Z. T. Jiang, "Nanoengineering a biocompatible inorganic scaffold for skin wound healing," J Biomed Nanotechnol, vol. 6, pp. 497-510, 2010.
[23]M. Rinaudo, "Chitin and chitosan: Properties and applications," Progress in Polymer Science, vol. 31, pp. 603-632, 2006.
[24]F. L. Mi, S. S. Shyu, Y. B. Wu, S. T. Lee, J. Y. Shyong, and R. N. Huang, "Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing," Biomaterials, vol. 22, pp. 165-173, 2001.
[25]H. W. Kang, Y. Tabata, and Y. Ikada, "Fabrication of porous gelatin scaffolds for tissue engineering," Biomaterials, vol. 20, pp. 1339-44, 1999.
[26]J. S. Mao, L. G. Zhao, Y. J. Yin, and K. D. Yao, "Structure and properties of bilayer chitosan-gelatin scaffolds," Biomaterials, vol. 24, pp. 1067-74, 2003.
[27]H. Tan, J. Wu, L. Lao, and C. Gao, "Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering," Acta Biomater, vol. 5, pp. 328-37, 2009.
[28]M. Alizadeh, F. Abbasi, A. B. Khoshfetrat, and H. Ghaleh, "Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method," Mater Sci Eng C Mater Biol Appl, vol. 33, pp. 3958-67, 2013.
[29]L. P. Yan, Y. J. Wang, L. Ren, G. Wu, S. G. Caridade, J. B. Fan, et al., "Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications," J Biomed Mater Res A, vol. 95, pp. 465-75, 2010.
[30]E. Salter, B. Goh, B. Hung, D. Hutton, N. Ghone, and W. L. Grayson, "Bone tissue engineering bioreactors: a role in the clinic?," Tissue Eng Part B Rev, vol. 18, pp. 62-75, 2012.
[31]M. Senba, K. Kawai, and N. Mori, "Pathogenesis of Metastatic Calcification and Acute Pancreatitis in Adult T-Cell Leukemia under Hypercalcemic State," Leuk Res Treatment, vol. 2012, p. 128617, 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top