跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉誼凱
研究生(外文):Yi-Kai Liu
論文名稱:雷射直析技術運用於可撓式導電基板製程與熱流現象分析
論文名稱(外文):A Study of the Laser Direct Synthesis and Patterning Process for Fabrication of Flexible Electronics
指導教授:李明蒼
口試委員:劉建宏陳玉彬
口試日期:2015-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:51
中文關鍵詞:雷射直寫可撓性電路板微米製程
外文關鍵詞:laser direct writeflexible electronicsreactive silver ink
相關次數:
  • 被引用被引用:1
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
本研究將改良後的雷射直寫技術(雷射直析技術)應用於可撓性基板(聚酰亞氨薄膜、聚對苯二甲酸乙二酯薄膜)上製造微小的導電結構。製程中使用新開發的透明且無粒子的銀離子反應溶液為金屬源,並使用低成本的連續綠光雷射為加熱源,使銀離子反應溶液經由雷射加熱後,快速在基板上合成銀並成形微結構。此創新技術不須真空箱和光罩等昂貴的器材,可直接在常壓和室溫下進行。本研究經由實驗結果探討製程參數對於金屬微結構與導電率所造成的影響;探討的實驗參數包括:銀離子反應溶液比例、雷射功率、雷射掃描速度和掃描次數。同時,本研究運用數值模擬分析製程中加工區域附近的熱流現象,並且將模擬所得之熱流場與實驗量測所得之金屬線形貌、線寬與導電性數據進行比較,以進一步了解與分析各種實驗參數對於實驗結果所造成的影響。

In this study, a laser direct write technology is applied with a novel reactive silver ink to fabricate microscale conductive metal structures on a polymer substrate(polyimide film and polyethylene terephthalate film). In the process, green laser is focused on the polymer substrate and directed by using a scanning system. The laser power which absorbed by the polymer substrate is used to heat the transparent and particle-free reactive silver ink on the substrate, and thus trigger the chemical reactions to synthesis silver patterns selectively on the polyimide surface. The technology can be used to manufacture flexible electronics at atmospheric pressure and room temperature. The effects of laser power, scanning speed, number of scans and ink concentration on the properties of the resulted silver patterns are investigated. In addition, a numerical simulation analysis was carried out to analyze the thermofluidic transport phenomena in the process. The numerical results were compared with experimental measurements of the metal line morphology, line width and resistivity. Discussions based on the numerical results are provided to further understand the transport phenomena and the corresponding effects on the properties of the fabricated metal structures.

摘要 ........................................................................................................................ I
Abstract ................................................................................................................. II
圖目錄 ................................................................................................................... V
表目錄 ............................................................................................................... VIII
符號對照表 .......................................................................................................... IX
第1 章 緒論........................................................................................................ 1
1.1 前言........................................................................................................ 1
1.2 文獻回顧................................................................................................ 1
1.3 研究目的與動機.................................................................................... 6
第2 章 理論簡介................................................................................................ 7
2.1 熱傳遞統御方程式................................................................................ 7
2.1.1 熱傳導 .................................................................................................. 7
2.1.2 熱傳導方程式 ...................................................................................... 7
2.1.3 準穩態溫度場 ...................................................................................... 7
2.2 流體力學統御方程式............................................................................ 8
2.2.1 連續方程式 .......................................................................................... 8
2.2.2 動量方程式 .......................................................................................... 8
第3 章 實驗分析................................................................................................ 9
3.1 實驗架構................................................................................................ 9
3.1.1 雷射直析系統 ...................................................................................... 9
3.1.2 XXY 移動平台實驗架構...................................................................... 9
3.2 銀離子反應溶液製備.......................................................................... 10
3.3 實驗步驟.............................................................................................. 11
3.3.1 雷射振鏡掃描器實驗步驟 ................................................................ 11
3.3.2 XXY 平台實驗步驟............................................................................ 11
IV
3.4 實驗設備.............................................................................................. 12
第4 章 數值模擬.............................................................................................. 13
4.1 物理模型.............................................................................................. 13
4.2 統御方程式.......................................................................................... 13
4.3 邊界條件.............................................................................................. 14
4.4 網格收斂性.......................................................................................... 14
第5 章 結果與討論.......................................................................................... 16
5.1 雷射振鏡掃描器實驗結果.................................................................. 16
5.1.1 實驗參數對應銀導線的結果 ............................................................ 16
5.1.2 溶液濃度對應銀導線的結果 ............................................................ 17
5.1.3 溶液濃度與種類對應銀導線的元素比例 ........................................ 22
5.1.4 掃描次數對應電阻值結果 ................................................................ 25
5.1.5 成果展示 ............................................................................................ 28
5.2 雷射振鏡掃描器數值模擬結果.......................................................... 29
5.2.1 模擬熱流場對應銀導線結果 ............................................................ 29
5.2.2 模擬溫度場對應沉積速率結果 ........................................................ 33
5.3 XXY 平台實驗結果 ............................................................................ 44
5.3.1 添加石墨對應銀導線結果 ................................................................ 44
5.3.2 添加石墨種類與重量對應銀導線結果 ............................................ 44
第6 章 結論與建議.......................................................................................... 47
Reference .............................................................................................................. 49

[1] P. Buffat, J.P. Borel, Size effect on the melting temperature of gold particles,
Physical Review A, 13(6) (1976) 2287-2298.
[2] N.R. Bieri, J. Chung, S.E. Haferl, D. Poulikakos, C.P. Grigoropoulos,
Microstructuring by printing and laser curing of nanoparticle solutions, Applied
Physics Letters, 82(20) (2003) 3529-3531.
[3] D. Redinger, S. Molesa, Y. Shong, R. Farschi, V. Subramanian, An ink-jet-deposited
passive component process for RFID, Electron Devices, IEEE Transactions on,
51(12) (2004) 1978-1983.
[4] X. Li, X. Zeng, H. Li, X. Qi, Laser direct fabrication of silver conductors on glass
boards, Thin Solid Films, 483(1–2) (2005) 270-275.
[5] K. Kwok, W.K.S. Chiu, Growth kinetics and microstructure of carbon nanotubes
using open air laser chemical vapor deposition, Diamond and Related Materials,
15(9) (2006) 1438-1446.
[6] H.K. Seung, P. Heng, P.G. Costas, K.L. Christine, M.J.F. Jean, P. Dimos,
All-inkjet-printed flexible electronics fabrication on a polymer substrate by
low-temperature high-resolution selective laser sintering of metal nanoparticles,
Nanotechnology, 18(34) (2007) 345202.
[7] J. Yeo, S. Hong, D. Lee, N. Hotz, M.-T. Lee, C.P. Grigoropoulos, S.H. Ko, Next
Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser
Digital Direct Metal Patterning for a Large Area Flexible Electronics, PLoS ONE,
7(8) (2012) e42315.
[8] S.H. Ko, H. Pan, S.G. Ryu, N. Misra, C.P. Grigoropoulos, H.K. Park, Nanomaterial
enabled laser transfer for organic light emitting material direct writing, Applied
50
Physics Letters, 93(15) (2008) -.
[9] S.H. Ko, J. Chung, N. Hotz, K.H. Nam, C.P. Grigoropoulos, Metal nanoparticle
direct inkjet printing for low-temperature 3D micro metal structure fabrication,
Journal of Micromechanics and Microengineering, 20(12) (2010) 125010.
[10] M.-T. Lee, L. Daeho, A. Sherry, C.P. Grigoropoulos, Rapid selective metal
patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser
direct write, Journal of Micromechanics and Microengineering, 21(9) (2011)
095018.
[11] B. Kang, S. Ko, J. Kim, M. Yang, Microelectrode fabrication by laser direct curing
of tiny nanoparticle self-generated from organometallic ink, Opt. Express, 19(3)
(2011) 2573-2579.
[12] D.G. Lee, D.K. Kim, Y.J. Moon, S.J. Moon, Effect of laser-induced temperature
field on the characteristics of laser-sintered silver nanoparticle ink, Nanotechnology,
24(26) (2013) 265702.
[13] R. Deng, J. Li, H.K. Kang, H.J. Zhang, C.C. Wong, Laser directed deposition of
silver thin films, Thin Solid Films, 519(15) (2011) 5183-5187.
[14] S.B. Walker, J.A. Lewis, Reactive Silver Inks for Patterning High-Conductivity
Features at Mild Temperatures, J. Am. Chem. Soc., 134(3) (2012) 1419-1421.
[15] S. Kim, S. Won, G.-D. Sim, I. Park, S.-B. Lee, Tensile characteristics of metal
nanoparticle films on flexible polymer substrates for printed electronics
applications, Nanotechnology, 24(8) (2013) 085701.
[16] S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, S.H. Ko,
Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor
by Low-Temperature Selective Laser Sintering of Nanoparticle Ink, ACS Nano, 7(6)
(2013) 5024-5031.
51
[17] D.G. Lee, D.K. Kim, Y.J. Moon, S.-J. Moon, Estimation of the Properties of Silver
Nanoparticle Ink During Laser Sintering via Electrical Resistance Measurement,
Journal of Nanoscience and Nanotechnology, 13(9) (2013) 5982-5987.
[18] F.P. Incropera, D.P.D. Witt, Introduction to Heat Transfer (5th ed.), John Wiley &
Sons, (2007).
[19] C.P. Grigoropoulos, Transport in laser microfabrication: fundamentals and
applications, Cambridge University Press, (2009).
[20] M.N. Özisik, Heat Conduction (2nd ed.), John Wiley & Sons, (1993).
[21] Y.-K. Liu, M.-T. Lee, Laser Direct Synthesis and Patterning of Silver
Nano/Microstructures on a Polymer Substrate, ACS Applied Materials & Interfaces,
6(16) (2014) 14576-14582.
[22] Y.-B. Chen, Y.-C. Lee, Y.-F. Chang, Y.-H. Lin, P.-H. Chen, Tempering
Hemispherical Radiative Properties with a Resonance Compilation, Plasmonics,
(2014) 1-9.
[23] S.T. Yang, M.J. Matthews, S. Elhadj, D. Cooke, G.M. Guss, V.G. Draggoo, P.J.
Wegner, Comparing the use of mid-infrared versus far-infrared lasers for mitigating
damage growth on fused silica, Appl. Opt., 49(14) (2010) 2606-2616.
[24] A.F. Mills, Mass Transfer, Prentice Hall, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top