跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 10:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:管言倫
研究生(外文):Yan-Lun Guan
論文名稱:撓性關節平面雙機械臂之階層式強健位置與力量控制
論文名稱(外文):Hierarchical Robust Motion and Force Control of Planar Dual Arm Robot with Flexible Joints
指導教授:林仕亭
口試委員:陳昭亮林南州
口試日期:2015-07-17
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:79
中文關鍵詞:雙機械臂撓性關節強健控制
外文關鍵詞:Dual Arm RobotFlexible JointsRobust Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
夾持物件後的雙機械臂系統,我們將其視為閉練的多體機械系統。建立此系統的動態方程式時,應用Lagrange Multiplier定理,可將系統的拘束方程式帶入動態方程式之中,求得拘束動態方程式。本文以控制Lagrange Multiplier控制法間接達到力量控制的觀念,應用於撓性關節機械臂系統上,在控制器的推導上,使用階層式的概念,將系統分解兩個二階系統,將撓性關節平面雙機械臂分解為兩個子系統手臂端系統與馬達端系統。為了解決系統參數不確定的問題,將順滑控制觀念導入Lagrange Multiplier控制法,設計順滑位置力量控制策略。最後由電腦數值模擬結果得知,本文所設計的控制法在具有參數誤差的情況下,仍可得到良好的控制效果。
Dual-arm robots holding an object can be seen as a closed chain multi-body mechanical system. The Lagrange multiplier theory can be used to derive the constrained dynamic equations of motor. This thesis extends the force control that Lagrange Multiplier is used to dual-arms robot with flexible joints. The original 4th order dynamic system is first decomposed into two subsystem, an arm system and a motor system, then a hierarchical controller is designed for these two subsystem. To overcome the problem of uncertain parameter, the concept of sliding control is employed to Lagrange Multiplier control, and then proposing the sliding controller. Simulation results show that both the position and force of the dual-arm system can be controlled effectively by the proposed control method.
致謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 論文大綱 4
第二章 平面撓性關節機械臂動態方程式 6
2.1 Lagrange 運動方程式 6
2.1.1 Lagrange法 6
2.1.2平面撓性關節單機械臂動態方程式推導 7
2.1.3平面撓性關節雙機械臂動態方程式推導 13
2.2 Lagrange Multiplier 定理 15
2.2.1 平面撓性關節雙機械臂動態方程式(含拘束方程式) 15
第三章 強健性順滑控制法 19
3.1 順滑控制法 19
3.2 關節座標階層式位置控制 22
3.2.1撓性關節機械臂-手臂端位置控制 22
3.2.2撓性關節機械臂-馬達端位置控制 24
3.2.3撓性關節機械臂-四階位置控制法 26
3.3 關節座標階層式位置力量控制 28
3.3.1撓性關節機械臂-手臂端 28
3.3.2撓性關節機械臂-手臂端位置控制 32
3.3.3撓性關節機械臂-手臂端力量控制 34
3.3.4撓性關節機械臂-馬達端 37
3.4 抖動 40
第四章 數值模擬 43
4.1 物件搬運 44
4.2 鉗子夾持 54
4.3 零件組裝 64
4.4 結果與討論 74
第五章 結論與未來展望 75
參考文獻 77
[1] L. M. Sweet and M. C. Good, “Redefinition on the robot motion control problem:effects of plant dynamics,drive system constraints,and user requirement” IEEE Conference on Decision and Control, pp. 724-732, 1984
[2] D. Li, J. W. Zu and A. A. Goldenberg, “Dynamic modeling and mode analysis of flexible-link, flexible-joint robots” Mechanism and Machine Theory, vol. 33, no. 7, pp. 1031-1044, Oct. 1998
[3] M. W. Spong, “Modeling and control of elastic joint robots” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 109, no. 4, pp. 310-319, Dec. 1987
[4] N. Hogan, “Impedance Control: an Approach to Manipulation. Part I - Theory” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1-7 ,1985
[5] N. Hogan, “Impedance Control: an Approach to Manipulation. Part II - Implementation” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 8-16,1985
[6] N. Hogan, “Impedance Control: an Approach to Manipulation. Part III - Application” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 17-24,1985
[7] N. Hogan, “Stable Execution of Contact Tasks Using Impedance Control” IEEE International Conference on Robotics & Automation, vol. 2, pp. 1047-1054,1987
[8] Christian Ott, “On the Passivity-Based Impedance Control of Flexible Joint Robots” IEEE International Conference on Robotics and Automation, Page(s): 416 - 429, 2008
[9] M. T. Mason, “Compliance and Force Control for Computer Controlled Manipulators” IEEE Transaction on Systems, Man and Cybernetics , vol. SMC-11, pp. 418-432, 1981
[10] M. H. Raibert and J. J. Craig, “Hybrid Position/Force Control of Manipulators” ASME Journal of Dynamic Systems, Measurement, and Control, pp.126-133, 1981
[11] J.T. Wen and K. Kenneth, “Motion and force control of multiple robotic manipulators” Automatica, vol. 28, no. 4, pp. 729-743, 1992.
[12] J. K. Mills and A. A. Goldenberg, “Force and Position Control of Manipulators During Constrained Motion Tasks” IEEE Trans. in Robotics and Automation, vol. 5,no. 4, pp. 30-46 , Feb. 1989
[13] K. P. Jankowski and H. Van Brussel, “Inverse dynamics task control of flexible joint robots - I continuous-time approach” Mechanism and Machine Theory, vol. 28, no. 6, pp. 741-749, Nov. 1993
[14] J. Wittenburg, “Nonlinear Equations of Motion for Arbitary System of Interconnected Rigid Bodies” Symposium on the Dynamics of Multibody System, Munich, Germany, Pro. Published by Spring-Verlag, K. Magnus, editor , 1987
[15] J. Wittenburg and U. Wolz, “MESA VERGE: A Symbolic Program for Nonlinear Articulater Rigid Body Dynamics” ASME Design Engineering Technical Conference, 1985
[16] R. P. Paul, “Modeling , Trajectory Calculation,and Servoing of a Computer Controlled arm”,1972
[17] J.J.E. Slotine and S.S. Sastry, “Tracking control of nonlinear systers using sliding surfaces with application to robot manipulators” Int. J. Control, vol.38,pp.465-492,1983
[18] K.S. Yeung and Y.P.Chen, “A new controller design for manipulators using the theory of variable structure systems, ”IEEE Trans. On Automation Control,Vol.33,pp.200-206,1988
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top