跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊偉強
研究生(外文):Wei-Chiang Yang
論文名稱:相移麥克森干涉顯微物鏡之研究
論文名稱(外文):A study of phase shift Michelson interference objective
指導教授:陳政雄陳政雄引用關係
指導教授(外文):Jenq-Shyong Chen
口試委員:李吉群劉建宏徐永源陳紹賢
口試委員(外文):Chi-chiun liJian-hung liuYung-yuan shiuShau-shian chen
口試日期:2015-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:74
中文關鍵詞:隨機相位移演算法麥克森干涉物鏡、位展開
外文關鍵詞:random phase shiftMichelson interference objectivephase unwrapping
相關次數:
  • 被引用被引用:2
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
運用相移干涉術來重建表面輪廓是一個非常常見的表面輪廓量測的技術,要運用相移干涉術來重建表面輪廓依靠的就是精密的位移平台來達成非常準確的相位移,還有可以快速擷取干涉條紋圖的工業用CCD,若是想要運用成本較低的開路式壓電材料(PZT)產生位移來取代精密的位移平台,就必須要克服開路式壓電材料(PZT)本身的磁滯現象,和相移機構受到環境中的震動,但因為運用數位干涉顯微鏡系統整重建表面輪廓,需要配合外部的精密位移平台,若是可以不需要配合外部的精密位移平台,便可以將整體系統簡化,傳統的麥克森干涉物鏡無法達到相位移的效果,若是麥克森干涉物鏡也可以達成相位移的效果就可以不需要外部位移平台,也可以量測體積較大或難以移動的物體。
為了簡化系統我們必須想出其他可以達成相位移的方法,於是想到了干涉原理中,不管是移動反射面或是移待側面都可以改變物光與參考光之間的光程差來達到干涉的目的,若是運用Miraue干涉物鏡其反射面包含在整個Miraue干涉物鏡之中,難以移動其反射面,但若是運用麥克森干涉物鏡其反射面位在側面,有移動之可能,所以將壓電塊至於麥克森干涉物鏡之後,推動其反射面便可以造成相位移達到不需要外部位移平台之結果。
在將壓電材料應用於麥克森干涉物鏡之反射面後,本文驗證了使用壓電材料推動麥克森干涉物鏡的反射面來做相位移,是否會與使用外部的精密位移平台相位移的結果相同,本文運用USAF 1951 target試片重建表面輪廓後來驗證兩個系統雖不同但卻有相同的結果,以此來證實本文所使用之架構系統並不會影響表面輪廓的重建的結果,表示本文所運用之系統是可行的,並且改變了原本需要用外部的位移平台移動物體的系統,也運用本文的麥克森干涉物鏡量測表面粗糙度不同的試片,並且運用KNT2060/01標準試片的R1凹槽驗證誤差值。


Phase shifting interferometry has been proven to reconstruct the surface profile at the nanometer resolution if the accurate shifted phase at every step can be precisely controlled. However, the conventional phase shifting interferometry requires expansive precision motion stage based on the closed-loop control of the PZT driving technology. The closed loop control is used to overcome the hysteresis of the PZT driver which happens in open loop control. The interferometer instrument must, also, put on anti-vibration table and protect by a cover to avoid the floor vibration and air-turbulence. Another drawback of the conventional phase shifting mechanism is bulky. In this thesis, we propose a novel low-cost and compact phase shifting interferometer to overcome the mentioned problems. We are exploiting the fast image capturing capability of modern digital CCD technology to quickly capture the fringe patterns of the interferograms under different phase-shifting conditions. To overcome the problem of conventional phase-shifting interferometer, we propose a phase-shifting Michelson interferometry microscope objective based on the Michelson interferometry principle. The phase shifting mechanism which drives the reflecting reference mirror is integrated into the microscope objective. One advantage of our technology is that no external motion stage is required to control the displacement of the measured object, especially when the measured object is bulky in size and difficult to be moved.
We must find out another method of phase shifting to simplify system. Using interference principle to achieve the purpose of intervention, we can move reflection surface or object surface. Miraue interference objective is included of reflection surface. The piezoelectric block is difficult to move its reflective surface. However the Michelson interference objective its reflective surface interference objective located on the side, it is possible to move. By placing piezoelectric block behind the reflective surface of Michelson interference objective to displace its reflective surface, it can generate phase shifting.
In this study, by using a piezoelectric material to displace the reflecting surfaces of Michelson interference objective would cause phase shifting. We not only use external precise displacement platform to reconstruct surface but also use USAF 1951 target specimen and the groove of KNT2060/01 standard test piece R1 to verify the error. According to the similar result of these two different methods, it proves the feasibility of this system.


目錄
摘要 I
Abstract II
第一章 緒論 1
1.1前言 1
1.2研究動機 1
1.3 研究之創新性與目標 2
第二章 文獻回顧 3
2.1相位取出 3
2.2隨機相位移演算法 6
第三章 數位干涉顯微鏡理論基礎 8
3.1數位干涉顯微鏡系統 8
3.2基本干涉原理 8
3.3相移干涉術 10
3.4各式相位移演算法 11
3.4.1 三步相位移法 11
3.4.2 四步相位移法 12
3.4.3 Carre''演算法 13
3.4.4 五步相移演算法 13
3.5隨機相位移演算法【8】 14
3.6相位展開 18
3.7干涉物鏡 20
3.7.1 Mirau式干涉物鏡 20
3.7.2麥克森式干涉物鏡 21
第四章 系統規格與元件設計 22
4.1本實驗之顯微鏡系統 22
4.2.1顯微鏡之規格 24
4.2.2照明光源 25
4.2.3 CCD 28
4.3麥克森干涉物鏡 29
4.4 壓電塊與夾具設計 30
4.4.1壓電塊 30
4.4.2夾具設計 31
4.5相移麥克森干涉顯微物鏡 34
4.6 PI 位移平台 35
4.6 完整實驗系統架構 36
第五章 量測結果驗證 37
5.1 相位移結果比較 38
5.2表面量測結果比較 40
5.2.1 表面輪廓重建結果比較 40
5.2.2表面輪廓重建剖面圖比較 48
5.3量測結果驗證 50
5.4 其他量測結果驗證 55
5.5量測誤差驗證 62
第六章 結論與未來展望 71
6.1研究結論 71
6.2未來展望 71
參考文獻 73


【1】Ichirou Yamaguchi ,and Tong Zhang,”Phase-shifting digital holography”, Opt. Express 22(16), 1268–1270 (1997).
【2】Tong Zhang ,and Ichirou Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography”, Opt. Express 23(15), 1221–1223 (1998).
【3】Ichirou Yamaguchi, Jun-ichi Kato, Sohgo Ohta,and Jun Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy”, Appl. Opt.40(34), 6177–6186(2001).
【4】 Ichirou Yamaguchi, Takashi Ida, Masayuki Yokota,and Kouji Yamashita,”Surface shape measurement by phase-shifting digital holography with a wavelength shift”, ” Appl. Opt.45(29), 7610–7616(2006).
【5】J. Xu, Y. Li, H. Wang, L. Chai, and Q. Xu, “Phase-shift extraction for phase-shifting interferometry by histogrammof phase difference,” Opt. Express 18(23), 24368–24378 (2010).
【6】 J. Vargas, J. A. Quiroga, and T. Belenguer, “Phase-shifting interferometry based on principal component analysis,” Opt. Lett. 36(8), 1326–1328 (2011).
【7】 In-Bok Kong, “General algorithm of phase-shifting interferometry by iterative least-squares fitting,” Optical Engineering 34(1), 183—188, 1995
【8】 Zhaoyang Wang, and Bongtae Han, ''Advanced Iterative Algorithm for Phase Extraction of Randomly Phase-Shifted Interferograms'', Optics Letters, 29 (2004), 1671-73.
【9】 C. J. Morgan, “ Least-squares estimation in phase-measurement interferometry”, Opt. Lett. 7(8), 368–370 (1982).
【10】K. Okada, A. Sato, and J. Tsujiuchi," Simultaneous calculation of phase distribution and scanning phase shift in phase shifting interferometry” Opt. Commun. 84,118 (1991).
【11】 Jiancheng Xu, Lili Sun, Yanli Li, and Yong Li,” Phase extraction from randomly phase-shifted interferograms by combining principal component analysis and least squares method”, Opt. Express 19( 21) ,20483–20492(2011).
【12】 Creath K., “Phase-Measurement Interfermetry Techniques,” in: Progress in OpticsVol.XXVI,E.WolfEd.,ElsevierSciencePublishers,Amsterdam,349-393,(1988).【13】 Zhaoyang Wang, “Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing,” Optical Engineering 45 045601, April 2006
【14】 Carre´ P. “ Installation et utilization du comparateur photoe´lectrigue et Interferentiel du Bureau International des Poids ek Measures, “ Metrologia, 1, 13-23 (1966).
【15】Hariharan P., “Phase-Stepping Interferometry: Effects of Multiple Reflected Beams,” Appl. Opt., 26, 2506(1987).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top