跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊彝綱
研究生(外文):Yi-Kang Yang
論文名稱:含生質物環氧樹脂/聚胺基甲酸酯複合材料之製備及性質
論文名稱(外文):Preparation and properties of epoxy/polyurethane composites containing biomass
指導教授:李文昭李文昭引用關係
指導教授(外文):Wen-Chao Lee
口試委員:劉正字宋憶青黃金城陳奕君
口試委員(外文):Cheng-Tzu LiuYi-Ching SungChin-Cheng HuangYi-Chun Chang
口試日期:2015-07-30
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:93
中文關鍵詞:柳杉環氧樹脂液化木材聚摻合樹脂聚胺基甲酸酯樹脂
外文關鍵詞:Japanese cedarepoxy resinliquefied woodblended resinspolyurethanes resins
相關次數:
  • 被引用被引用:0
  • 點閱點閱:870
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將柳杉 (Cryptomeria japonica) 木材以酚/雙酚A混合液及聚乙二醇/丙三醇混合液為溶劑進行液化處理得兩種液化木材 (Liquefied wood; LW)。環氧樹脂 (Epoxy resins; ER) 合成時利用雙酚A及酚/雙酚A液化柳杉與環氧氯丙烷反應合成雙酚A型 (ER) 及液化柳杉型 (LWER) 兩種ER樹脂,並探討兩種ER樹脂在不同三乙基四胺 (Triethylenetetramine; TETA) 添加量條件反應性及硬化樹脂性質。聚胺基甲酸酯樹脂 (Polyurethane resins; PU) 合成時以聚乙二醇及聚乙二醇/丙三醇液化柳杉為多元醇原料,異氟爾酮二異氰酸酯 (Isophorone diisocyanate; IPDI) 為異氰酸酯原料,1,4-丁二醇(1,4-BD)及乙二胺(EDA)為鏈延長劑合成不同末端基(-NH, -OH, -NCO)之PU及LWPU樹脂。進一步將不同種類ER樹脂與不同末端基PU樹脂以不同重量比混合製備聚摻合樹脂(ER/PU),探討不同條件聚摻合樹脂之反應性及硬化樹脂之性質。由試驗結果顯示,ER樹脂添加TETA後之反應性大於LWER樹脂,其中ER樹脂及LWER樹脂分別在環氧基當量/胺當量1/1及1/0.9時有較佳之反應性。不同末端基PU樹脂性質比較,以1,4-丁二醇對PU樹脂分子鏈之延長效果優於乙二胺,其合成樹脂之分子量較大,NH-PU樹脂之分子鏈具備尿素結構,並存在局部架橋構造,LW可提高PU樹脂之熱抵抗性。ER/PU聚摻合樹脂之DSC分析顯示,ER樹脂可與三種末端基PU樹脂發生架橋反應,其中以NCO-PU之反應較為明顯,添加TETA可促進並參與其架橋反應。以ER樹脂為主之硬化ER/PU聚摻合樹脂之性質分析顯示,添加PU樹脂可降低ER樹脂之剛性,提高LWER樹脂之機械強度,添加LWPU可提高ER樹脂之熱抵抗性。而以PU為主之PU/ER聚摻合樹脂之性質分析顯示,於PU樹脂中添加ER樹脂可獲得較佳之拉伸強度,然隨ER樹脂添加量增加,其斷裂伸長率下降。添加ER樹脂可提高OH-PU之Tg溫度,增加NH-PU之熱穩定性。

In this study, Cryptomeria japonica(Japanese cedar) were liquefied with polyethylene(PEG)/glycerol and phenol/bisphenol A as the solvent. Two type epoxy resins were synthesized by bisphenol A and phenol/bisphenol A liqueied Cryptomeria japonica which reacted with epichlorohydrin. To explore two kinds of ER resins reaction and properties with added different triethylenetetramine (TETA) ratios. Polyurethane resins(PU) used polyethylene(PEG) and polyethylene(PEG)/glycerol liqueied Cryptomeria japonica as polyol which reactived with isophorone diisocyanate(IPDI),which used 1,4-Butanediol(1,4-BD) and Ethylenediamine(EDA) as chain extender to synthesize PU containing different terminated groups. Further,blended ER resins with differents PU resins had different ratios then investigated reactivity of two resin and properties of ER/PU curing resins.In the result, ER had better reactivity by adding TETA.ER resin and LWER resin had best reactivity when TETA added with epoxy equivalent / amine equivalent ratios was 1/1 and 1/0.9.Compared with PU resins containing different terminated groups,1,4-BD had better chain-extending than EDA,which had higher molecular weight. PU resins used EDA as chain-extender had urea structure and partial bridge structure.Used polyethylene(PEG)/glycerol liqueied Cryptomeria japonica as polyol with raw can improve PU resin''s thermal resistance. In ER/PU blended resins, ER can reacted with PU containing three different terminated groups that NCO-PU had obvious reactivity ,and added TETA can improve the crosslinking reaction. In ER/PU curing resins,ER resins added PU resins could reduce the rigidity of ER resin and improved mechanical properties of LWER resin, added LWPU resins can improve ER resins thermal resistance.In PU / ER blended resin,PU resin added ER resin had better tensile strength,when the amount of the increase of ER resin the breaking elongation was decreased.Added ER resins in PU resins could increase the Tg of the OH-PU resins, increase the thermal stability of the NH-PU resins.

目錄

摘要……………………………….………………………………..……………………i
Summary ……………………………………………….……………………………… ii
目錄……………………………………………………………………………………..iv
表目錄…………………………………………….…………………………………….vi
圖目錄…………………………………………………………………………………...x
第一章 前言…………………………………………………………………………….1
第二章 文獻回顧……………………………………………………………………….3
第三章 環氧樹脂之製備及硬化樹脂之性質……………………………………...15
一、材料與方法…………………...…………………………………………..…15
(一) 試驗材料……………………………………………………………….15
(二) 試驗方法……………………………………………………………….15
二、結果與討論………………………………………………………………...19
(一) 環氧樹脂之基本性質…………………………………………………..19
(二) 環氧樹脂之硬化性……………………………………………………..20
(三) 硬化樹脂之FTIR性質………………………………………………...24
(四) 溶出試驗重量保留率…………………………………………………..26
(五) 硬化樹脂之動態熱機械分析…………………………………………..27
(六) 硬化樹脂之熱重分析…………………………………………………..29
第四章 不同末端基聚胺基甲酸酯樹脂之性質……………………………………...32
一、 材料與方法………………………………………………………………….32
(一)試驗材料………………………………………………………………….32
(二)試驗方法………………………………………………………………….32
二、結果與討論…………………………………………………………………..35
(一) 不同末端基PU樹脂之分子量…………………………………………35
(二) 不同末端基PU樹脂之FTIR分析……………………………………..37
(三) 不同末端基PU樹脂之DSC熱分析……………………………………39
(四) 不同末端基PU樹脂之耐溶劑性………………………………………41
(五) 不同末端基PU樹脂之DMA熱分析…………………………………..41
(六) 不同末端基PU樹脂之TGA熱分析…..………………………………43
第五章 環氧樹脂/聚胺基甲酸酯樹脂聚摻合樹脂之性質…………………………..46
一、 材料與方法………………………………………………………………….46
(一)試驗材料………………………………………………………………….46
(二)試驗方法………………………………………………………………….46
二、 結果與討論………………………………………………………………….49
(一) ER/PU聚摻合樹脂之DSC熱分析…………….……………………….49
(二) ER/PU聚摻合樹脂FTIR圖譜分析…………………………………….52
(三) ER/PU聚摻合樹脂之機械性質分析…………………………………...54
(四) ER/PU聚摻合樹脂之DMA熱分析…………………………………….58
(五) ER/PU聚摻合樹脂之TGA熱分析……………………………………..64
第六章 聚胺基甲酸酯樹脂/環氧樹脂聚摻合樹脂之性質…………………………..70
一、 材料與方法………………………………………………………………….70
(一)試驗材料………………………………………………………………….70
(二)試驗方法………………………………………………………………….70
二、 結果與討論………………………………………………………………….73
(一) PU/ER聚摻合樹脂之DSC熱分析….…………………………………..73
(二) PU/ER聚摻合樹脂之FTIR分析………………………………….…….75
(三) PU/ER聚摻合樹脂之機械性質……………………………….………...77
(四) PU/Epoxy聚摻合樹脂之DMA分析……………………………………78
(五) PU/Epoxy聚摻合樹脂之TGA分析…………………………………….83
第七章 結論……………………………………..…………………………………….87
參考文獻……………………………………..………………………………………...89


1.李文昭、劉正字 (2001) 液化杉木樹皮製造酚-甲醛樹枝木材膠合劑。林產工業20(3):205-214。
2.李文昭、張嘉芳 (2003) 聚乙二醇液化之探討-杉木及相思樹。林產工業 22(3):205-214。
3.吳秋昌、李文昭 (2009) 酚/雙酚A混合液液化柳杉木材之性質。林產工業 28(2):85-98。
4.康甄玲、吳秋昌、李文昭(2009)環氧樹脂/酚液化柳杉摻合樹脂製作環氧發泡體 28(3):177-188。
5.謝漢民、張國峻、許玲瑛、李文昭 (2010) 以酚液化相思樹為基質NovolaK型酚甲醛樹脂含浸木粉製造成型板性質之研究。林業研究季刊 32(4):61-70。
6.薛敬和 編譯 (1986) 黏著劑全書。高立圖書有限公司。Pp.705-709;729-733
7.Achary, P. S., P. B. Latha and R. Ramasamy (1990) Room Temperature Curing of CTBN Toughened Epoxy Adhesive with Elevated Temperature Service Capability.J. Appl. Polym. Sci.41, 151-162.
8.Alma, M.H., M. Yoshioka ,Y. Yao, N. Shiraishi (1996a)The Preparation and Flow Properties of HC1 Catalyzed Phenolated Wood and its Blends with Commercial Novolak Resin. Holzforschung 50:85-90.
9.Alma, M.H., M. Yoshioka ,Y. Yao, N. Shiraishi (1996b)Phenolation of wood using oxalic acid as a catalyst: Effects of temperature and hydrochloric acid addition.J. Appl. Polym. Sci. 61:675-683.
10.Alma, M.H. and M. A. Basturk (2006)Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application to phenol–formaldehyde type adhesive.Ind.Crop. Prod.24:171-176.
11.Ahn, T.O., L.S. Choi,H.M. Jeong and K. Cho (1993) Thermal and mechanical properties of thermoplastic polyurethane elastomers from different polymerization methods. Poly.Int. 31:329-333.
12.Ashrafi, B., J. Guan, V. Mirjalili, Y. Zhang , L. Chun , P. Hubert ,B. Simard , C. T. Kingston, O. Bourne , A. Johnston,(2011) Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes Compos. Sci. Technol. 71 :1569–1578.
13.Chen, C. H. and M. H. Chen(2006)Synthesis, thermal properties, and morphology of blocked polyurethane/epoxy full-interpenetrating polymer network.J. Appl. Polym. Sci.Vol.100 323-328.
14.Chen, S.,Q. Wang, X. Pei, T. Wang (2009) Dynamic mechanical properties of castor oil-based polyurethane/epoxy graft interpenetrating Network Composites polymer. J. Appl. Polym. Sci 1144-1151.
15.Chiou, T.M. Lee (2011)Thermal conductivity and structure of non-covalentfunctionalized graphene/epoxy composites. Carbon49: 5107 – 5116.
16.Dimitry, O. I. H.,Z. I. Abdeen, E. A. Ismail and A. L. G. Saad(2010)Preparation and properties of elastomeric polyurethane/organically modified montmorillonite nanocomposites.J. Polym. Res. 17:801–813.
17.Fu H., H. Huanga, Q. Wanga, H. Zhanga and H. Chen,(2009)Properties of aqueous polyurethane dispersion modified by epoxide resin and their use as adhesive.J. Disper. Sci. Technol. 30:634–638.
18.Garder,K. and J.Blackwell(1947a) Structure of native cellulose.Biopolymers1 13:1975-2001.
19.Garder,K. and J.Blackwell(1947b) The hydrogenbonding in cellulose. Biochim.Biophys.Acta.343:232-237.
20.Gulmine J.V. , P.R. Janissek, H.M. Heise, L. Akcelrud (2001) Polyethylene characterization by FTIR. Polym.Test. 21 (2002) 557–563.
21.Hsieh K. H. and J. L. HAN (1990) Graft Interpenetrating Polymer Networks of Polyurethane and Epoxy. I. Mechanical Behavior. J. Polym. Sci. Pol. Phys. 28, 623-630.
22.Irusta,L. and M. K. J. Fernandez-Berrdi (1999) Photooxidative behavior of segment aliphatic polyurethanes. Polm. Degrad.Stab.63:113-119.
23.Jiang, H.,Z. Zheng, W. Song,Z.Li and X.Wang(2007)Alkoxysilane functionalized polyurethane/polysiloxane copolymers: synthesis and the effect of end-capping agent. Polym. Bull. 59:63
24.Krassig H.A.(1993) Cellulose:structure, accessibility.Yverdon,Switzerland:Gordon & Breach.
25.Kurimoto,Y., M.Doi and Y.Tamura(1999) Species Effects on Wood-Liquefaction in Polyhydric Alcohols.Holzforschung 53:617-622.
26.Kurimoto,Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi, Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI.Bioresource Technol. 74:151-157
27.Kurimoto,Y., S. Doia, Y. Tamuraa, H. Onob (2001a)Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood.Biomass and Bioenergy 21:381-390.
28.Kurimoto,Y.,M. Takedab, S. Doia, Y. Tamuraa, H. Onoc(2001b)Network structures and thermal properties of polyurethane films prepared from liquefied wood.Bioresource Technol. 77:33-40.
29.Lee,W.J. and C.T.Liu (2003) Preparation of liquefied bark-based resol resin and its application to particleboard.J.Appl.Polym. Sci. 87:1837-1841.
30.Laza J. M.,J. L. Vilas, F. Mijangos, M. Rodrı´guez and L. M. Leo´n (2005) Analysis of the Crosslinking Process of Epoxy–Phenolic Mixtures by Thermal Scanning Rheometry. J. Appl. Polym. Sci. , 98, 818 –824.
31.Li, M. S.,C. C. M. Ma,M. L. Lin and F.C.Chang (1997) Chemical reaction occurring during the preparation of polycarbonate-epoxy blends.Polym.38(19) 4903-4913.
32.Lin M. S., C. C. Liu and C. T. Lee(1999)Toughened interpenetrating polymer network materials based on unsaturated polyester and epoxy.J. Appl. Polym. Sci. 72, 585–592.
33.Liu, Y.L.,C.Y. Hsu,W.L. Wei and R.J.Jenng(2003) Preparation and thermal propertises of multifunctional epoxy resin with methylhexahydrophthalic anhydride. J.Appl.Polym.Sci. 103:2041-2048.
34.Liu H., S. Zheng(2005)Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane.Macromol.Rapid Commum. 26:196-200.
35.Liu, Y.,Z. Du,C. Zhang, C. Li and H. Li (2007) Curing behavior and thermal properties of multifunctional epoxy resin with methlhexahexahydrophthalic anhydride. J. Appl. Polym. Sci.103:2041-2048.
36.Narayan,R., D.K. Chattopadhyay,B. Sreedhar,K. V. S. N. Raju,N. N.Mallikarjuna and T. M. Aminabhavi (2006)Synthesis and characterization of crosslinked polyurethane dispersions based on hydroxylated polyesters.J. Appl. Polym. Sci.Vol.99:368-380
37.Nevell, T.P.,S.H. Zeronian(1985)Cellulose chemistry fundamentals, In:Kennedy JF,Philips GO, Wedlock DJ, Williams PA,editors. Cellulose chemistry and its applications.Chichester:John wiley&Sons.p.15-29.
35.Petrovic, Z.S. and J.Ferguson(1991) Polyurethane elastomers. Pro. Polym. Sci.16:695-836.
38.Rigail-Ceden~o and C.S.P. Sung(2005) Fluorescence and IR characterization of epoxy cured with aliphatic amines. Poly.46:9378-9384.
39.Teng,C. C.,C. M. Ma,, C.C. Lu, S.Y. Yang, S.H. Lee,M. C. Hsiao, M.Y. Yen, K.C. Chiou, T.M. Lee(2011)Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon49: 5107 – 5116.
40.Wang, X. and Q. Zhang (2003) Synthesis,characterization,and cure properties of phosphorus-containing epoxy resins for flame retardance. European Polym.J. 40:385-395.
41.Wilhelm, C. and J. L. Gardette (1998) Infrared analysis of the photochemical behavior of segmented polyurethane: aliphatic poly(ether-urethane)s. Polymer.39:5873-5980.
42.Widaier,J. M. and G. Bonilla(2006) In situ synthesis of optically transparent interpenetrating organic/inorganic networks.Poly. Adv.Technol.17:636-640.
43.Yao, Y.,M. Yoshioka and N.H. Ono(1995) Rigid polyurethane foams from combined liquefied mixtures wood and starch. Mokuzai Gakkaishi 41:659-668.
44.Yao, Y.,M. Yoshioka and N.Shiraishi(1996) Water-absorbing polyurethane foam from liquefiedstarch.J.Appl.Polym.Sci.60:1939-1949
45.Zhang, Y.,A. Ikeda,N. Hori,A. Takemura,H. Ono,T. Yamada(2006) Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid.Bioresource Technol.313-321.
46.Zou, X.,T. Qin,L. Huang,X. Zhang,Z. Yang and Y. Wang(2009) Mechanisms and main regularities of biomass liquefaction with alcoholic solvents.Energy Fuels 23:5213-5218.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top