跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 01:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉冠霆
研究生(外文):Kuan-Ting Liu
論文名稱:篩選及應用拮抗細菌與植物萃取液防治芒果炭疽病
論文名稱(外文):Screening and application of antagonistic bacteria and plant extracts to control anthracnose disease on mango
指導教授:李敏惠李敏惠引用關係黃振文
口試委員:安寶貞謝廷芳
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:93
中文關鍵詞:芒果炭疽病Colletotrichum gloeosporioides生物防治植物萃取液
外文關鍵詞:Mango anthracnoseColletotrichum gloeosporioidesbiological controlplant extracts
相關次數:
  • 被引用被引用:2
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
芒果為台灣重要的外銷出口作物,位居果品出口總產值第一,而炭疽病菌Colletotrichum gloeosporioides Penz.為芒果栽培之最重要病原菌,可以感染芒果樹的葉、花穗、枝條及採收前與採收後果實,並造成產量及品質嚴重受損。目前以套袋及化學藥劑噴灑為主要防治方式,然而後者所衍生的病原菌抗藥性及藥劑殘留過量等問題亦相應而生,本研究透過微生物源與植物源資材的篩選與運用,提供防治芒果炭疽病的參考。由於芒果果實一年一穫,因此以芒果切離葉片作為分析之材料。為建立切離葉接種平台的穩定性,進行不同葉齡葉片接種,結果顯示8天內之葉齡發病穩定。葉表與葉背在接種後24小時,孢子發芽率與附著器生成率並無顯著差異。利用乙醇萃取17種植物材料,發現其中4種萃取液對C. gloeosporioides TYC-2菌絲生長抑制率將近50%。植物A乙醇萃取液於濃度0.08 mg/ml下可完全抑制孢子發芽。將植物A乙醇萃取液與TYC-2孢子同時接種至果實上,分別於0.08 mg/ml下可完全抑制病害發生。自土壤、芒果葉片及芒果花中分離出45株酵母菌及83株細菌具有抑制TYC-2菌絲生長能力。酵母菌分離株中,3H-4菌株於PDA培養基上與TYC-2菌株共培養後,具有優異之競爭能力;於細菌分離株中,菌株A與菌株B對於15株不同寄主來源之炭疽病菌亦具有抑制效果,經由16S rDNA以及Biolog鑑定後,皆為Bacillus amyloliquefaciens。經由切離葉與果實接種試驗發現菌株A與菌株B於培養液 (SSM) 4天之發酵液經稀釋100倍後,可抑制病斑之產生,並且於切離葉接種試驗中發現菌株B於稀釋600倍後仍具有80%之病斑面積抑制效果。將菌株B之SSM發酵液靜置於室溫下20週,其菌量可由1.48 × 109cfu/ml上升至2.6 × 109cfu/ml;經由100℃處理菌株B之SSM發酵濾液20分鐘,其抑菌能力並無降低的現象。為了促進菌株B發酵液之抑病能力,因而添加不同植物油於SSM培養液中,在SSM中添加0.5%植物油A稀釋200倍後,可提升菌株B發酵液之病斑面積抑制率由43%至100%。經由切離葉接種分析,發現菌株B SSM發酵液之有效成分為發酵濾液,將發酵濾液與TYC-2孢子於玻片上共培養後,發現其具有抑制發芽並造成發芽管不正常膨脹的能力。經由掃描式電子顯微鏡觀察,芒果葉片上菌株B SSM發酵液可使TYC-2發芽管形態異常。在果實上則顯示菌株B SSM發酵液處理32小時後,菌絲產生許多空泡結構,並於接種後72小時仍無法觀察到果表壞疽病斑的產生,而對照組於接種48小時後即產生顯微壞疽病斑。利用薄層色層分析法分析菌株B於SSM與SSM添加0.5%植物油A之酸沉降萃取液,皆可發現Rf值0.045與Rf值0.38具有抗生活性,將此兩區間之TLC活性回收液與酸沉降萃取液進一步使用高效液相層析法分析,皆可發現於Rf值0.38之TLC活性回收液具有與iturin A標準品相同滯留時間的波峰,此外,兩發酵液之酸沉降萃取液皆可發現與iturin A標準品及surfactin標準品相似滯留時間的波峰。綜合上述結果,植物A乙醇萃取液與B. amyloliquefaciens 菌株B具有進一步發展為田間應用的生物防治藥劑潛力。
Mango is one of the most important fruit crops and is the highest value of exported fresh fruits in Taiwan. Colletotrichum gloeosporioides causes mango anthracnose and is one of the major pathogens in mango. It can infect mango leaves, flowers, branches and fruit, and causes considerable fruit disqualified during postharvest period. Currently, the disease management strategies majorly rely on fruit bagging and chemical fungicides application. However, fungicide application can result in fungicide resistance and excessive chemical residues. The purpose of this study is to screen and apply microbe- and plant-derived materials to control mango anthracnose. Since mango fruit is seasonally available, a stable inoculation platform for using mango leaf as inoculation material was established in the beginning in my thesis study. Mango (cv. Irwin) leaf with age within 8-days is highly susceptible to the infection of C. gloeosporioides TYC-2 and the infection is stable and repeatable. In addition, anthracnose lesions appeared earlier on the abaxial than the adaxial surface of a leaf, which is not related to the ability of germination and appressorial formation of the pathogen on both surfaces. Among 17 tested plants, ethanol extracts from 4 different plants showed nearly 50% of inhibition on mycelial growth of TYC-2. Plant A ethanol-extracts showed complete inhibition on TYC-2 spore germination at 0.08 mg/ml in vitro. The anthracnose lesion was not appeared when mango leaf and fruit were co-inoculated with TYC-2 and plant A ethanol-extracts (0.08 mg/ml). Total 45 yeast isolates and 83 bacterial isolates were isolated from the soil, leaves or flowers of mango and showed inhibitory ability to the mycelial growth of TYC-2. Among all yeast isolates, isolate 3H-4 showed strong competition against the growth of C. gloeosporioides in PDA medium. Among all bacterial isolates, strain A and B has significant inhibitory effect to 15 Colletotrichum isolates which cause the anthracnose of mango, Chinese cabbage and chili pepper. Strain A and B were identified as Bacillus amyloliquefaciens based on the comparison of 16S rDNA sequence and Biolog analysis. The 100-fold dilution of 4-day-old culture liquid of strain A or B cultured in culture medium (strain A-SSM or strain B-SSM) could completely inhibit anthracnose lesion production on detached leaves and fruit. Moreover, it showed 80% lesion area reduction when treated with 600-fold dilution of strain B-SSM on detached leaf. The bacteria population of strain B -SSM could increase slightly from 1.48 × 109cfu/ml to 2.6 × 109cfu/ml after stored for 20 weeks under room temperature. In addition, the antagonistic activity of strain B -SSM was resistant to heat treatment, 100℃ for 20 minutes. It indicates that strain B -SSM had great stability during short-time storage assay. To improve the antagonistic activity of strain B, various plant oils were added into SSM to culture this bacterial strain. The results showed that 0.5% (v/v) plant oil A amended SSM could increase the antagonistic activity of strain B by increasing the lesion area reduction from 43% to 100% when 200-fold diluted bacterial culture was applied. The active ingredient of strain B -SSM remained in the culture filtrate but not the culture pellets after the bioactivity assay on the detached leaf. Culture filtrate of strain B -SSM could inhibit spore germination and cause abnormal swelling of germ tubes of TYC-2 in vitro and in planta under the examination of light microscopy as well as scanning electron microscopy. There were many vacuole-like structures formed in hyphal 32 h after treated with strain B -SSM, and no necrosis lesion was observed on fruit 72 h after treatment. Thin layer chromatographic (TLC) analysis revealed that two regions (Rf 0.045 and 0.38) with antifungal activity were identified in strain B -SSM and strain B -SSM with 0.5% plant oil A. The bioactive components were recovered from the TLC plate and analyzed by high-performance liquid chromatography (HPLC). The data revealed that the bioactive components contain iturin A. Based on the results presented in this study, the ethanol-extracts of plant A and bacterial strain B has great potential for further development of biological control agents in field applications to control mango anthracnose.
摘要 i
Abstract iii
目次 vi
前言 1
材料與方法 6
一、 儀器設備及藥品 6
二、 供試菌株來源、培養、接種源製備及保存 6
(一) 菌株來源 6
(二) 培養、接種源製備及保存 6
三、 芒果切離葉接種平台建立 7
(一) 不同葉齡之芒果葉對芒果炭疽病菌菌株TYC-2之感受性 7
(二) TYC-2於葉片上之發芽、附著器形成及侵染試驗 8
(三) 角質層染色觀察 8
(四) 不同品種芒果成熟葉片葉背接種 8
四、 具拮抗效力之植物萃取液篩選 9
(一) 植物萃取液製備 9
(二) 對菌絲生長之抑制效果篩選 9
(三) 迷迭香品系A萃取液對TYC-2孢子發芽之抑制效果 9
(四) 迷迭香品系A乙醇萃取液於植物體上之防治效果 10
五、 拮抗微生物之篩選 10
(一) 拮抗微生物之分離與保存 10
(二) 對峙培養試驗 11
(三) 拮抗細菌分離株4A-1、4A-24與4nC-7菌株與其他炭疽病菌分離株之對峙效果 11
(四) 酵母菌分離株3H-4、3H-8及3L-16菌株之競爭性對峙測試 12
(五) 拮抗細菌之鑑定 12
六、 拮抗細菌4A-1與4A-24之發酵基質配製 14
(一) 培養液之製備 14
(二) 拮抗菌發酵液之製備 15
七、 拮抗細菌4A-1與4A-24菌株發酵基質篩選試驗 15
(一) 於固態發酵用培養液上之對峙效果 15
(二) 切離葉生物分析法 15
(三) 不同培養基之拮抗菌發酵液對於防病效果評估 16
(四) 病害調查 16
八、 拮抗細菌4A-24菌株SSM發酵液特性分析 16
(一) 發酵液之逐日取樣分析 16
(二) 儲架壽命試驗 17
(三) 溫度耐受性試驗 17
九、 各類油劑對拮抗細菌4A-24菌株SSM發酵液之抑菌及抑病評估 17
(一) 添加不同植物油之發酵液的抑病效果評估 17
(二) 添加不同濃度葵花油之發酵液的抑病效果評估 18
十、 果實採收後之防病測試 18
(一) 採收後果實生物分析法 18
(二) 拮抗細菌4A-1與4A-24菌株芒果果實病害防治試驗 18
十一、 拮抗細菌拮抗機制探討 18
(一) 拮抗細菌4A-1與4A-24菌株發酵液有效性成分分析 18
(二) 拮抗細菌4A-24菌株發酵濾液對TYC-2孢子發芽之影響 19
(三) 以掃描式電子顯微鏡觀察4A-24菌株發酵液於芒果葉片上對TYC-2菌株之影響 19
(四) 拮抗細菌4A-24菌株發酵液於芒果果實對TYC-2菌株之影響 20
(五) 拮抗細菌4A-24菌株發酵濾液之拮抗物質分離及生物活性檢測 20
(六) 高效液相層析 (High-performance liquid chromatography, HPLC) 分析 22
十二、 統計分析 22
結果 23
一、 芒果切離葉接種平台之建立 23
(一) 不同葉齡之芒果葉對芒果炭疽病菌菌株TYC-2之感受性 23
(二) TYC-2於葉片上之發芽、附著器形成及侵染試驗 23
(三) 角質層染色觀察 24
(四) 不同品種芒果成熟葉片葉背接種 24
二、 具拮抗效力之植物萃取液篩選 24
(一) 對菌絲生長之抑制效果篩選 24
(二) 迷迭香品系A萃取液對TYC-2孢子發芽之抑制效果 25
(三) 迷迭香品系A乙醇萃取液於植物體上之防治效果 25
三、 拮抗微生物之篩選 26
(一) 拮抗微生物之分離 26
(二) 對峙培養試驗 26
(三) 酵母菌分離株3H-4、3H-8及3L-16菌株之競爭性對峙測試 27
(四) 拮抗細菌分離株4A-1、4A-24及4nC-7菌株與其他炭疽病菌分離株之對峙效果 27
(五) 拮抗細菌之鑑定 27
四、 拮抗細菌4A-1與4A-24菌株發酵基質篩選試驗 28
(一) 於固態發酵用培養液上之對峙效果 28
(二) 不同液態培養基之拮抗菌發酵液對於防病效果評估 28
五、 拮抗細菌4A-24菌株SSM發酵液特性分析 29
(一) 發酵液之逐日取樣分析 29
(二) 儲架壽命試驗 29
(三) 溫度耐受性試驗 30
六、 各類油劑對4A-24菌株SSM發酵液之抑菌及抑病評估 30
(一) 添加不同植物油之發酵液的抑病效果評估 30
(二) 添加不同濃度葵花油之發酵液的抑病效果評估 30
七、 果實採收後之防病測試 31
(一) 拮抗細菌4A-1與4A-24菌株芒果果實病害防治試驗 31
八、 拮抗菌拮抗機制探討 31
(一) 拮抗細菌4A-1與4A-24菌株發酵液有效性成分分析 31
(二) 拮抗細菌4A-24菌株發酵濾液對TYC-2孢子之發芽影響現象 31
(三) 以掃描式電子顯微鏡觀察4A-24菌株發酵液於芒果葉片上對TYC-2菌株之影響 32
(四) 拮抗細菌4A-24菌株發酵液於芒果果實對TYC-2菌株之影響 32
(五) 拮抗細菌4A-24菌株發酵濾液之拮抗物質分離及生物活性檢測 33
(六) 高效液相層析 (HPLC) 分析發酵濾液之拮抗物質 34
討論 35
參考文獻 43
附錄一、供試植物病原真菌菌株來源 83
附錄二、17種供試植物來源列表 84
附錄三、具有抑制Colletotrichum spp.生長能力植物列表 85
附錄四、芒果防治田間試驗 86
附錄五、拮抗細菌4A-24菌株發酵液於白菜炭疽病害之防治 91
安寶貞、呂理燊、莊再揚、高清文。1998。套袋與地面覆蓋對檬果炭疽病與蒂腐病之防治效果。植物病理學會刊 7: 19-26。
安寶貞、黃瑞卿、陳茂發。1994。環境因子對檬果炭疽病發生之影響。植物病理學會刊 3: 34-44。
安寶貞。2003。檬果炭疽病。76-81頁。植物保護圖鑑系列10-檬果保護。郭克忠、鄒慧娟、施季汎。行政院農業委員會動植物防疫檢疫局。台北,台灣。195頁。
江迪蔚。2006。枯草桿菌Bacillus subtilis WG6-14於檬果黑斑病防治之應用潛力與作用機制。國立中興大學植物病理學系碩士論文。79頁。
余芳儀。2010。桃褐腐病菌抗生物質之分離及聚酮化合物生合成基因之選殖。國立中興大學植物病理學系碩士論文。55頁。
呂理燊、楊秀珠、簡和順、曾錫恩。1988。檬果對炭疽病之抗病測定。植物保護學會會刊 30: 337-48。
林皓崙。2014。研發微生物源植物保護製劑防治甜椒疫病。國立中興大學植物病理學系碩士論文。55頁。
孫彩玉。2011。十字花科蔬菜炭疽病菌的病性與存活。國立中興大學植物病理學系碩士論文。68頁。
高郁琇。2013。萵苣黑斑病菌之鑑定及其微生物防治試驗。國立中興大學植物病理學系碩士論文。84頁。
莊再揚、安寶貞。1997。芒果炭疽病之生物防治。植物保護學會會刊 39 (3): 227-40。
莊再揚、呂理燊、安寶貞、楊秀珠、楊宏仁、高清文。1999。外銷芒果之炭疽病防治流程。109-116頁。芒果綜合管理。楊秀珠、吳育郎、黃裕銘、鄭慶生。農業藥物毒物試驗所。台中,台灣。248頁。
郭芝延。2013。枯草桿菌TKS1-1於十字花科蔬菜黑斑病防治之應用潛力與作用機制。國立中興大學植物病理學系碩士論文。77頁。
郭建志、陳俊位、廖君達、陳葦玲、蔡宜?。2014。液化澱粉芽孢桿菌在作物病害防治的開發與應用。69-86頁。農業生物資材產業發展研討會專刊特刊第121號。廖君達、白桂芳、張致盛。行政院農業委會臺中區農業改良場。彰化,台灣。175頁。
陳俊位、鄧雅靜、曾德賜。2009。功能性微生物製劑在有機作物栽培病害管理上之應用。147-81頁。有機農業產業發展研討會專輯--特刊96號。陳榮五、白桂芳、蔡宜峰。行政院農業委會臺中區農業改良場。彰化,台灣。198頁。
黃巧雯。2008。台灣由Streptomyces scabies所引起之馬鈴薯瘡痂病-病原菌生物特性及應用拮抗性枯草桿菌於其生物防治之初探。國立中興大學植物病理學系碩士論文。92頁。
劉銘峰。1999。品種、引種及育種。5-10頁。芒果綜合管理。楊秀珠、吳育郎、黃裕銘、鄭慶生。農業藥物毒物試驗所。台中,台灣。248頁。
蔡志濃、安寶貞、胡瓊月、鄭秀芳。2006。抑制三種果樹炭疽病菌之化學藥劑篩選。植物病理學會刊 15: 39-54。
蔡政彥、張采蘋、黃啟東。2013。芒果國際流通概況。49-60頁。提昇臺灣芒果產業價值鏈研討會專刊。張錦興、張嵐雁、黃士晃、黃惠琳。行政院農業委員會臺南區農業改良場、台灣園藝學會。台南,台灣。71頁。
賴默亞。2013。日本芒果市場現況及主要銷售品種。7-10頁。提昇臺灣芒果產業價值鏈研討會專刊。張錦興、張嵐雁、黃士晃、黃惠琳。行政院農業委員會臺南區農業改良場、台灣園藝學會。台南,台灣。71頁。
謝廷芳、陳俊宏、蔡志濃。2014。植物精油對果樹炭疽病菌孢子發芽之抑制效果。植物病理學會刊 23 (1): 31-41。
謝廷芳、黃晉興、謝麗娟、胡敏夫、柯文雄。2005。植物萃取液對植物病原真菌之抑菌效果。植物病理學會刊 14 (1): 59-66。
謝奉家。2013。具商品化潛力之多功能液化澱粉芽孢桿菌。農業生技產業季刊 32: 42-47。
謝慶昌。2013。芒果貯運保鮮技術之改進。17-24頁。提昇臺灣芒果產業價值鏈研討會專刊。張錦興、張嵐雁、黃士晃、黃惠琳。行政院農業委員會臺南區農業改良場、台灣園藝學會。台南,台灣。71頁。
羅佩昕、黃盈潔、鍾文全、鄭安秀、鍾文鑫。2010。利用 PCR-RFLP 調查臺南地區抗苯並咪唑類 (benzimidazoles) 殺菌劑芒果炭疽病菌的發生。植物病理學會刊 19: 255-60。
Adaskaveg, J. E. 1992. Defens mechanisms in leaves and fruit of trees to fungal infection. pp. 41-61. In: Defense Mechanisms of Woody Plants Against Fungi. Blanchette, R. A., Biggs, A. R., eds. Springer Verlag, Berlin.
Ahimou, F., Jacques, P., and Deleu, M. 2000. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology 27: 749-54.
Ahmad, I., Alam, M. D., and Islam, M. S. 2012. Antifungal activities of some medicinal plant extracts against Colletotrichum gloeosporioides (Die-back) and Pestalotia theae (Grey blight) of tea. International Journal of Tea Science (IJTS) 8: 10-7.
Al-Hussaini, R., and Mahasneh, A. M. 2011. Antibacterial and antifungal activity of ethanol extract of different parts of medicinal plants in Jordan. Jordan Journal of Pharmaceutical Sciences 4: 57-69.
Alvindia, D. G., and Acda, M. A. 2014. The antagonistic effect and mechanisms of Bacillus amyloliquefaciens DGA14 against anthracnose in mango cv.‘Carabao’. Biocontrol Science and Technology: 1-26.
Ammon, H. P., and Wahl, M. A. 1991. Pharmacology of Curcuma longa. Planta Medica 57: 1-7.
Arauz, L. F. 2000. Mango anthracnose: economic impact and current options for integrated managaement. Plant Disease 84: 600-11.
Arbab, I. A., Abdul, A. B., Aspollah, M., et al. 2012. A review of traditional uses, phytochemical and pharmacological aspects of selected members of Clausena genus (Rutaceae). Journal of Medicinal Plants Research 6: 5107-18.
Arrebola, E., Jacobs, R., and Korsten, L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology 108: 386-95.
Ashwini, N., and Srividya, S. 2014. Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech 4: 127-36.
Athukorala, S. N. P., Fernando, W. G. D., and Rashid, K. Y. 2009. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Canadian Journal of Microbiology 55: 1021-32.
Bais, H. P., Walker, T. S., Schweizer, H. P., and Vivanco, J. M. 2002. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiology and Biochemistry 40: 983-95.
Bautista-Rosales, P. U., Calderon-Santoyo, M., Servín-Villegas, R., Ochoa- lvarez, N. A., and Ragazzo-Sánchez, J. A. 2013. Action mechanisms of the yeast Meyerozyma caribbica for the control of the phytopathogen Colletotrichum gloeosporioides in mangoes. Biological Control 65: 293-301.
Besson, F., Petpoux, F., Michel, G., and Delcambe, L. 1976. Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. The Journal of Antibiotics 29: 1043-9.
Bukhalid, R. A., Takeuchi, T., Labeda, D., and Loria, R. 2002. Horizontal transfer of the plant virulence gene, nec1, and flanking sequences among genetically distinct Streptomyces strains in the Diastatochromogenes cluster. Applied and Environmental Microbiology 68: 738-44.
Bussaman, P., Namsena, P., Rattanasena, P., and Chandrapatya, A. 2012. Effect of Crude Leaf Extracts on Colletotrichum gloeosporioides (Penz.) Sacc. Psyche A Journal of Entomology 2012: 1-6.
Caldeira, A. T., Santos Arteiro, J. M., Coelho, A. V., and Roseiro, J. C. 2011. Combined use of LC–ESI-MS and antifungal tests for rapid identification of bioactive lipopeptides produced by Bacillus amyloliquefaciens CCMI 1051. Process Biochemistry 46: 1738-46.
Carrillo, C., Teruel, J. A., Aranda, F. J., and Ortiz, A. 2003. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochimica et Biophysica Acta (BBA) - Biomembranes 1611: 91-7.
Chang, C. H., Lin, T. S., and Yang, W. J. 2013. Invading time of Colletotrichum gloeosporioides affects fruit drop and infection rate in ‘Irwin’ mango (Mangifera indica L.). Horticulture, Environment, and Biotechnology 53: 452-9.
Cho, J.-Y., Gyung, J. C., Lee, S.-W., et al. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. Journal of Microbiology and Biotechnology 16: 280-5.
Chowdhury, H., Banerjee, T., and Walia, S. 2008. In vitro screening of Curcuma longa L and its derivatives sa antifungal agents against Helminthosporrum oryzae and Fusarium solani. Pesticide Research Journal 20: 6-9.
Cia, P., Pascholati, S. F., Benato, E. A., Camili, E. C., and Santos, C. A. 2007. Effects of gamma and UV-C irradiation on the postharvest control of papaya anthracnose. Postharvest Biology and Technology 43: 366-73.
Cohen, L. I. 1967. The pathology of Hypodermella laricis on larch, Larix occidentalis. American Journal of Botany: 118-24.
Cowan, M. M. 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews 12: 564-82.
Dambreville, A., Lauri, P.-., Trottier, C., Guédon, Y., and Normand, F. 2013. Deciphering structural and temporal interplays during the architectural development of mango trees. Journal of Experimental Botany 64: 2467-80.
Deleu, M., Paquot, M., and Nylander, T. 2008. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophysical Journal 94: 2667-79.
Dellavalle, P. D., Cabrera, A., Alem, D., Larrañaga, P., Ferreira, F., and Rizza, M. D. 2011. Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chilean Journal of Agricultural Research 71: 231-9.
Ebrahim, S., Usha, K., and Singh, B. 2012. Plant architectural traits and their role in defense mechanism against malformation in mango (Mangifera Indica L.). Scientia Horticulturae 139: 25-31.
Farag, M. A., Zhang, H., and Ryu, C. M. 2013. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. Journal of Chemical Ecology 39: 1007-18.
Gamagae, S. U., Sivakumar, D., Wijeratnam, R. S., and Wijesundera, R. L. C. 2003. Use of sodium bicarbonate and Candida oleophila to control anthracnose in papaya during storage. Crop Protection 22: 775-9.
Ghelardi, E., Salvetti, S., Ceragioli, M., Gueye, S. A., Celandroni, F., and Senesi, S. 2012. Contribution of surfactin and SwrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Applied and Environmental Microbiology 78: 6540-4.
Govender, V., Korsten, L., and Sivakumar, D. 2005. Semi-commercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharvest Biology and Technology 38: 57-65.
Govindasamy, V., Senthilkumar, M., Magheshwaran, V., et al. 2011. Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture. pp. 333-64. In: Plant Growth and Health Promoting Bacteria. Maheshwari, D. K., ed. Springer, Germany.
Grossman, A. D., and Losick, R. 1988. Extracellular control of spore formation in Bacillus subtilis. Proceedings of the National Academy of Sciences 85: 4369-73.
Hanson, J. R. 2003. Natural products: the secondary metabolites. Royal Society of Chemistry, Cambridge, UK.
Havenga, W., De Jager, E. S., and Korsten, L. 1999. Factors affecting biocontrol efficacy of Bacillus subtilis against Colletotrichum gloeosporioides. South African Avocado Growers Association Yearbooks 22: 12-20.
Hernández-Albíter, R. C., Barrera-Necha, L. L., Bautista-Baños, S., and Bravo-Luna, L. 2007. Antifungal potential of crude plant extracts on conidial germination of two isolates of Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. Revista Mexicana de Fitopatología 25: 180-5.
Imtiaj, A., Rahman, S. A., Alam, S., et al. 2005. Effect of fungicides and plant extracts on the conidial germination of Colletotrichum gloeosporioides causing mango anthracnose. Mycobiology 33: 200-5.
Jacobi, K. K., Macrae, E. A., and Hetherington, S. E. 2000. Effects of hot air conditioning of ‘Kensington’ mango fruit on the response to hot water treatment. Postharvest Biology and Technology 21: 39-49.
Johnny, L., Yusuf, U. K., and Nulit, R. 2010. The effect of herbal plant extracts on the growth and sporulation of Colletotrichum gloeosporioides. Journal of Applied Biosciences 34: 2218-24.
Katz, E., and Demain, A. L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriological Reviews 41: 449.
Kefialew, Y., and Ayalew, A. 2008. Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology 50: 8-11.
Khan, A. W. 2012. Production of iturin A through glass column reactor (GCR) from soybean curd residue (okara) by Bacillus subtilis RB14-CS under solid state fermentation (SSF). Advances in Bioscience and Biotechnology 3: 143-8.
Kumar, A., and Johri, B. N. 2012. Antimicrobial lipopeptides of Bacillus: natural weapons for biocontrol of plant pathogens. pp. 91-111. In: Microorganisms in Sustainable Agriculture and Biotechnology. Satyanarayana, T., Johri, B. N., Prakash, A., eds. Springer, New York, USA.
Kumar, V., Gupta, V. P., Babu, A. M., Mishra, R. K., Thiagarajan, V., and Datta, R. K. 2001. Surface ultrastructural studies on penetration and infection process of Colletotrichum gloeosporioides on mulberry leaf causing black spot disease. Journal of Phytopathology 149: 629-33.
Lambert, R. J. W., Skandamis, P. N., Coote, P. J., and Nychas, G. J. E. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology 91: 453-62.
Li, X. P., Zhu, X. Y., Zhao, N., et al. 2013. Effects of hot water treatment on anthracnose disease in papaya fruit and its possible mechanism. Postharvest Biology and Technology 86: 437-46.
Liu, J., Sui, Y., Wisniewski, M., Droby, S., and Liu, Y. 2013. Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology 167: 153-60.
Mansour, F. S., Abd-El-Aziz, S. A., and Helal, G. A. 2006. Effect of fruit heat treatment in three mango varieties on incidence of postharvest fungal disease. Journal of Plant Pathology: 141-8.
Miles, T. D., Vandervoort, C., Nair, M. G., and Schilder, A. C. 2013. Characterization and biological activity of flavonoids from ripe fruit of an anthracnose-resistant blueberry cultivar. Physiological and Molecular Plant Pathology 83: 8-16.
Mireles, J. R., Toguchi, A., and Harshey, R. M. 2001. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. Journal of Bacteriology 183: 5848-54.
Moorthy, K. K., Subramaniam, P., and Senguttuvan, A. J. 2013. In vitro antifungal activity of various extracts of leaf and steam parts of Solena amplexicaulis (Lam.) Gandhi. International Journal of Pharmacy and Pharmaceutical Sciences 5: 745-7.
Moreno, S., Scheyer, T., Romano, C. S., and Vojnov, A. A. 2006. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research 40: 223-31.
Nelson, S. C. 2008. Mango anthracnose (Colletotrichum gloeosporioides). University of Hawaii at Manoa, College of Tropical Agriculture and Human Resources, Cooperative Extension Service, Hawaii, USA.
Niranjana, S. R., and Hariprasad, P. 2014. Understanding the mechanism involved in PGPR-mediated growth promotion and suppression of biotic and abiotic stress in plants. pp. 59-108. In: Future Challenges in Crop Protection Against Fungal Pathogens. Goyal, A., Manoharachary, C., eds. Springer, New York, USA.
Ogbebor, N. O., Adekunle, A. T., and Enobakhare, D. A. 2007. Inhibition of Colletotrichum gloeosporioides (Penz) Sac. causal organism of rubber (Hevea brasiliensis Muell. Arg.) leaf spot using plant extracts. African Journal of Biotechnology 6: 213-8.
zyilmaz, , and Benlioglu, K. 2013. Enhanced biological control of phytophthora blight of pepper by biosurfactant-producing Pseudomonas. The Plant Pathology Journal 29: 418-26.
Pérez-García, A., Romero, D., and De Vicente, A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22: 187-93.
Patiño‐Vera, M., Jimenez, B., Balderas, K., et al. 2005. Pilot‐scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. Journal of Applied Microbiology 99: 540-50.
Peraza-Sánchez, S. R., Chan-Che, E. O., and Ruiz-Sánchez, E. 2005. Screening of Yucatecan plant extracts to control Colletotrichum gloeosporioides and isolation of a new pimarene from Acacia pennatula. Journal of Agricultural and Food Chemistry 53: 2429-32.
Prusky, D., Alkan, N., Mengiste, T., and Fluhr, R. 2013. Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annual Review of Phytopathology 51: 155-76.
Ruangwong, O., Liang, W.-J., Zhang, S., and Chang, C.-I. 2012. Inhibition on conidial germination of Colletotrichum gloeosporiodes and Pestalotiopsis eugeniae by Bacillus subtilis LB5. World Academy of Science, Engineering and Technology 6: 1026-30.
Shan, B., Cai, Y.-Z., Brooks, J. D., and Corke, H. 2007. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. International Journal of Food Microbiology 117: 112-9.
Shinde, J. U., and Gawai, D. U. 2011. Effect of aqueous and alcoholic extracts of some medicinal plants on growth of Colletotrichum gloeosporoides Penz. & Sacc. E-International Scientific Research Journal 3: 295-8.
Silimela, M., and Korsten, L. 2007. Evaluation of pre-harvest Bacillus licheniformis sprays to control mango fruit diseases. Crop Protection 26: 1474-81.
Silva, P. A., Oliveira, D. F., Prado, N. R. T. D., Carvalho, D. a. D., and Carvalho, G. a. D. 2008. Evaluation of the antifungal activity by plant extracts against Colletotrichum gloeosporioides Penz. Ciência e Agrotecnologia 32: 420-8.
Singh, P. 2011. Integrated management of storage anthracnose of mango. Journal of Mycology and Plant Pathology 41: 63-6.
Smyth, T. J. P., Perfumo, A., Mcclean, S., Marchant, R., and Banat, I. M. 2010. Isolation and analysis of lipopeptides and high molecular weight biosurfactants. pp. 3687-704. In: Handbook of Hydrocarbon and Lipid Microbiology. Timmis, K. N., ed. Springer, Germany.
Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular microbiology 56: 845-57.
Sunthitikawinsakul, A., Kongkathip, N., Kongkathip, B., et al. 2003. Coumarins and carbazoles from Clausena excavata exhibited antimycobacterial and antifungal activities. Planta Medica 69: 155-7.
Varadavenkatesan, T., and Murty, V. R. 2013. Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. ISRN Microbiology 2013: 1-8.
Vivekananthan, R., Ravi, M., Ramanathan, A., and Samiyappan, R. 2004. Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in mango. World Journal of Microbiology and Biotechnology 20: 235-44.
Wall, P. E. 2009. Chromatography: thin-layer (planar)/spray reagents. pp. 907-15. In: Handbook of Methods and Instrumentation in Separation Science. Adlard, E. R., Cooke, M., Polle, C. F., Wilson, I. D., eds. Academic press, California, USA.
Wang, D., Li, K., Wang, Y., Yang, Y., and Zhang, J. 2014. Purification and Characterization of Antifungal Lipopeptide from Bacillus amyloliquefaciens BI2. pp. 465-75. In: Zhang, T. C., Ouyang, P., Kaplan, S., Skarnes, B., eds. Proceedings, 2012 International Conference on Applied Biotechnology (ICAB 2012), 2012. Tianjin, China.
Witkowska, A. M., Hickey, D. K., Alonso-Gomez, M., and Wilkinson, M. 2013. Evaluation of antimicrobial activities of commercial herb and spice extracts against selected food-borne bacteria. Journal of Food Research 2: 37-54.
Wu, T.-S., Huang, S.-C., Wu, P.-L., and Teng, C.-M. 1996. Carbazole alkaloids from Clausena excavata and their biological activity. Phytochemistry 43: 133-40.
Yakimov, M. M., Timmis, K. N., Wray, V., and Fredrickson, H. L. 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Applied and Environmental Microbiology 61: 1706-13.
Yenjit, P., Intanoo, W., Chamswarng, C., Siripanich, J., and Intana, W. 2004. Use of promising bacterial strains for controlling anthracnose on leaf and fruit of mango caused by Colletotrichum gloeosporioides. Walailak Journal of Science and Technology (WJST) 1: 56-69.
Yu, G. Y., Sinclair, J. B., Hartman, G. L., and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry 34: 955-63.
Yulia, E., Shipton, W. A., and Coventry, R. J. 2006. Activity of some plant oils and extracts against Collectotrichum gloeosporioides. Plant Pathology Journal 5: 253-7.
Zheng, M., Shi, J. Y., Shi, J., Wang, Q. G., and Li, Y. H. 2013. Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biological Control 65: 200-6.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top