跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 22:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇裕閔
研究生(外文):Yu-Min Su
論文名稱:以血液抹片為基礎-惡性瘧疾診斷系統
論文名稱(外文):Plasmodium Falciparum Diagnosis System Based On Blood Smear Image
指導教授:詹永寬詹永寬引用關係
指導教授(外文):Yung-Kuan Chan
口試委員:洪國龍王圳木陳永福陳牧言
口試委員(外文):Kuo-Lung HungWang Chuin-MuYung-Fu ChenMu-Yen Chen
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:資訊管理學系所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:58
中文關鍵詞:瘧疾惡性瘧原蟲影像切割影像辨識
外文關鍵詞:PlasmodiumMalariaImage SegmentImage recognition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
瘧疾是透過蚊蟲叮咬或是血液交換引起的全球性的傳染性疾病,普遍存在於熱帶區域,主要流行於非洲、東南亞、中南美洲等熱帶地區,每年受瘧疾所苦的病患上億也造成大量人口死亡。瘧疾病況變化迅速,早期的診斷及正確的治療是決定病患生命並且控制傳染散播的關鍵,尤其是惡性瘧原蟲的病徵反應特別猛烈,若是不能早期治療會引發多項併發症,病人死亡率大幅提升。若是能辨識出瘧疾原蟲的週期特性,或許可以找到防治甚至消滅的方法,因此本研究將針對惡性瘧原蟲進行分析,找出受感染的紅血球病並且自動辨識其為第幾週期。若是能提供快速並且準確的自動診斷系統,可以加速醫療人員對病患施予治療的流程,專家系統的輔助也可以減少醫療人員的誤判,將可以大幅提提升病患的生存機率並降低醫療成本。本研究中以血液抹片為基礎的惡性瘧疾診斷系統(PFD系統),會自動切割血液抹片影像中受感染的紅血球和瘧疾蟲,最後再結合單顆紅血球與其瘧疾蟲的資訊,利用不同週期有不同形狀的特性,取出各週期具有代表性的特徵做分析比較,將受惡性瘧原蟲感染的週期分類出來。根據實驗結果,本篇方法可以提供 85%以上的準確度。

Malaria is an infectious disease caused by mosquito bites or transmitted through blood transfusions. It is a common disease in Africa, Southeast Asia, and South America where are in the Tropic zone, and causing millions of people died of malaria every year. The control programs should focus on the provision of early diagnosis and prompt treatment, and an immediate, vigorous, and wide-scale response to epidemics. Malaria caused by Plasmodium falciparum (P. Falciparum) is responsible for 85 % of the malaria cases, and is the most dangerous malaria with rapidly progressive severe illness or death. Hence, the urgent initiation of appropriate therapy is especially critical. Knowing the life cycle is helpful in the understanding the properties of P. Falciparum and in the Derivatives for the Prevention and Treatment. In this research, an automatic P. Falciparum diagnosis system (PFD system) based on blood smear images is hence proposed. The PFD system separates the parasites and infected erythrocytes from a blood smear image; it then identifies the life cycle stages of P. Falciparum based on the features derived from the extracted infected erythrocytes and parasites. Experiment results illustrate that the PFD system achieves a recognition rate of over 85%.

摘要 i
Abstract ii
Table of contents iii
List of Tables v
List of Figures vi
Chapter1. Introduction 1
1.1 Motivation 4
1.2 Organization 5
Chapter2. Related work 7
2.1 Otsu’s Algorithm 7
2.2 Mathematical morphology 9
2.2.1 Dilation, Erosion, Opening, Closing 9
2.2.2 Region Filling 11
2.3 Region Labeling 13
2.4 Thinning and Spur Trimming 15
2.5 Weight Sobel Operation and Gradient Direction Weight 16
2.6 Run-Length 18
2.7 Segment Error Measure 18
2.8 MP Detector 19
Chapter3. PFD Segmentation 22
3.1 Information of erythrocyte 22
3.1.1 Enhance erythrocytes of image 22
3.1.2 Image binarization of erythrocytes 24
3.1.3 Single erythrocyte determination 27
3.2 Segmentation of single erythrocyte 29
3.2.1 Regions of interested 29
3.2.2 Erythrocyte edges enhancement 32
3.2.3 Image binarization of erythrocytes edges 36
3.2.4 Contours of infected erythrocytes 40
3.3 Genetic Algorithm 43
Chapter4. PFD identification 46
4.1 Features of P. Falciparum 46
4.2 Identification of growth stages for P. Falciparum 47
4.3 Genetic Algorithm 49
Chapter5. Experiment 50
5.1 Testing data in experiment 50
5.2 Evaluation of experiment 50
5.3 Experiment results and discussions 51
Chapter6. Conclusion 56
Reference 57


[1]Chiu-Wen Lee,〈An Automated Method for Malaria Parasite Detection and Segmentation from Thin Blood Smear Image〉, Graduate Institute of Biomedical Informatics Taipei Medical University, Master’s thesis, 2010.
[2]World Health Organization (WHO), “World Malaria Report 2011,” Geneva: World Health Organization, 2011.
[3]World Health Organization (WHO), “World Malaria Report 2013,” Geneva: World Health Organization, 2013.
[4]杜文圓譯,《醫用寄生蟲學手冊》71-95頁,藝軒圖書出版社,2001
[5]Trampuz A., M. Jereb, I. Muzlovic, and R. M. Prabhu, “Clinical Review: Severe Malaria,” Critical Care, Vol. 7, pp. 315 - 323, August 2003.
[6]Chiodini P. L., A. H Moody, and D. W. Manser, “Atlas of Medical Helminthology and Protozoology,” 4th ed. Edinburgh, New York, Churchill Livingstone, 2001.
[7]Cross C., “Malaria Control Measure,” Wellcome Trust,
(http://malaria.wellcome.ac.uk/doc_WTD023987.html), November 2004.
[8]Tsutsumi Y. “Case 206: Malaria Falciparum,” Pathology of Infectious Diseases, (http://www.fujita-hu.ac.jp/~tsutsumi/case/case206.htm), 2014.
[9]Perez-Jorge E. V., and T. Herchline, “Malaria: eMedicine Infectious Diseases,” (http://emedicine.medscape.com/article/221134-overview), 2014
[10]Moody A. H. and P. L. Chiodini, “Methods for the Detection of Blood Parasites,” Clinical & Laboratory Haematology, Vol. 22, No. 4, pp. 189 - 201, August 2000.
[11]Payne D., “Use and Limitations of Light Microscopy for Diagnosing Malaria at the Primary Health Care Level,” Bulletin of the World Health Organization, Vol. 66, No. 5, pp. 621 - 626, 1988.
[12]Ross N. E., C. J. Pritchard, D. M. Rubin, and A. G. Dusé, “Automated Image Processing Method for the Diagnosis and Classification of Malaria on Thin Blood Smears,” Medical and Biological Engineering and Computing, Vol. 44, No. 5, pp. 427 - 436, May 2006.
[13]Gonzalez R. C., and R. E. Woods, Digital Image Processing, Prentice-Hall, 2002.
[14]Gonzalez R. C., and R. E. Woods, “Digital image processing,” 3rd ed. Upper Saddle River, N.J., Prentice Hall, 2008.
[15]Otsu N., “A Threshold Selection Method from Gray-Level Histograms,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62 - 66, January 1979.
[16]Shys-Fan Yang-Mao, Yung-Kuan Chan, Yen-Ping Chu. "Edge Enhancement Nucleus and Cytoplasm Contour Detector of Cervical Smear Images," IEEE Transactions on Systems, Man and Cybernetics, Vol.38, No. 2, pp. 353 - 366, April 2008.
[17]Haupt R. L., and S. E. Haupt, “Practical Genetic Algorithms,” 2nd ed. Hoboken, N.J., John Wiley, 2004.
[18]Sezgin M., and B. Sankur, “Survey over Image Thresholding Techniques and Quantitative Performance Evaluation,” Journal of Electronic Imaging, Vol. 13, No. 1, pp. 146 - 165, January 2004.
[19]Wikipedia, The Free Encyclopedia, “Gamma_correction,”
(http://en.wikipedia.org/wiki/ Gamma_correction), 2015
[20]Yung-Kuan Chan, Der-Chen Huang, Kuo-Ching Liu, Rong-Tai Chen and Xiaoyi Jiang. “An Automatic Indirect Immunofluorescence Cell Segmentation System”. Vol. 2014, Article ID 501206, pp. 1-13.
[21]Yung-Kuan Chan, Meng-Hsiun Tsai, Der-Chen Huang, Zong-Han Zheng, Kun-Ding Hung. “Leukocyte nucleus segmentation and nucleus lobe counting”. BMC Bioinformatics, Vol. 11, No. 11. pp. 558, 2010.
[22]Sio S. W. S., W. Sun, S. Kumar, W. Z. Bin, S. S. Tan, S. H. Ong, H. Kikuchi, Y. Oshima, and K. S. W. Tan, “MalariaCount: An Image Analysis-Based Program for the Accurate Determination of Parasitemia,” Journal of Microbiological Methods, Vol. 68, No. 1, pp. 11-18, January 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳永甡(2001)。〈漫談決策品質〉。《品質月刊》 37 卷 11 期,頁 26-29。
2. 郭重吉(1987) 〈英美等國晚近對學生學習風格之研究〉《資優教育季刊》,22 期,頁 2-8。
3. 馬秀如(1999) 〈內部控制、內部稽核及內部審核範圍之探討〉《主計月報》,第 87 卷第 5 期,頁 26-33。
4. 柯承恩(1999)〈強化內部審核提升行政績效〉《主計月報》。。,第 87 卷第 5 期,頁 10-11。
5. 周光漢(2001)〈決策品質的另類思考〉《品質月刊》。。,第 37 卷 11 期,頁 33-39。
6. 陳錦烽(2004)。〈公司治理變革—對內部稽核之意涵〉。《內部稽核季刊》第 47 期,頁 10-15。
7. 黃振育(2001)〈牽動決策成敗的因素〉《品質月刊》。。,第 37 卷 11 期 頁 30-32。
8. 黃永傳(1999)〈我國公營事業內部審核制度之演進〉《今日會計》。。,第75 期,頁 52-55。
9. 。《政府審計季刊》,黃凱苹(2012)。〈會計法研修重點及相關問題之檢討第 32 卷,第 4 期,頁 92-103。
10. 賴文恭(1991)〈內部審核實務上之作業重點探討〉《今日會計》。。,第 49期,頁 32-44。
11. 賴森本(2004)。〈風險導向稽核〉。《內部稽核季刊》,第 48 期,頁 17-24。
12. 謝明志(2006) 〈領導風格與決策品質〉 《黃埔學報》。。,第 51 期,頁265-272。
13. 簡禎富(2008)〈全面決策品質提昇及紫式決策分析〉《品質月刊》。。,第44 卷 12 期,頁 12-18。