跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 12:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉彥甫
研究生(外文):Yan-Fu Liu
論文名稱:整合交流電動渦流於電化學阻抗免疫感測晶片的研發
論文名稱(外文):Development of Electrochemical Impedimtric Immunosensor Chips Integrated with An AC Electrokinetic Vortex
指導教授:吳靖宙
口試委員:林其昌洪敏勝鄭志雄
口試日期:2015-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物產業機電工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:70
中文關鍵詞:治療藥物監測交流電動流免疫感測晶片電化學阻抗頻譜
外文關鍵詞:Therapeutic drug monitoringAC electrokineticflowImmunosensor ChipsElectrochemical Impedance Spectroscopy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
治療藥物監測(therapeutic drug monitoring, TDM)是一種必須保持抑制免疫療效且同時減少藥物毒性的臨床監測行為,因此開發快速與準確的TDM檢測平台具有臨床的重要性。本研究開發一單盤多環電極晶片,可結合直流偏壓-交流電動流 (alternating current AC electrokineticflow, ACEKF) 混合器與電化學阻抗量測於同一晶片上,藉由ACEKF控制液體產生渦流,以促進生物分子與辨識元件的親合反應,結果顯示經8 min使protein A與二級抗體達到親和性飽和,且比靜置狀態下結合量提高了3.5倍。並以晶片式電極經阻抗法量測其檢量線,在1 ng/ml ~ 10 μm/ml濃度有良好的線性度,可實現TMD快速與準確檢測之目的。

Therapeutic drug monitoring (TDM) is an important issue in clinical monitoring, that simultaneously maintains the suppression of immune ability and reduces the drug toxicity. Therefore, it is important to develop a fast and accurate TDM for clinical detection. In this research, a single-disk multi-ring electrode chip was construct with the integration of the alternating current electrokinetic flow (ACEKF) mixer and the electrochemical impedance spectrum measurement. The ACEKF could produce a vortex to improve bioaffinity interaction between biological molecules and recognition elements. The results showed that the secondary antibody reached an affinity plateau with protein A under ACEKF control for 8 min. The numbers of bound antibody at saturation driven by ACEKF was 3.5 times larger than that kept in stationary solution. The EIS-based sensing chip had a good linearity in the range of 1 ng/mL-10 μm/mL for IgG antibody. The chip design can achieve the purpose of rapid and accurate detection for TMD.

摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 FK506藥物簡介 3
1.2.1 FK506藥物之作用機制 3
1.2.2 FK506檢測方式 5
1.3 免標定式阻抗免疫感測器簡介 6
1.3.1 免標定式阻抗檢測的原理 6
1.4 電熱電動力的驅動原理與控制模式 14
1.4.1 ACETF原理與控制應用概念 14
1.4.2 DC-biased ACEKF原理與控制應用概念 20
1.5 研究目的與架構圖 22
第二章 材料與方法 24
2.1 實驗試劑與設備 24
2.1.1 實驗試劑 24
2.1.2 實驗設備 29
2.2 免疫感測器晶片製作 33
2.2.1 薄膜金電極設計與製作 33
2.2.2 白金層的電沉積 37
2.3 DC-biased ACEKF量化流程 38
2.3.1 DC-biased ACEKF流速量化 38
2.3.2 以光學量化DC-biased ACEKF對生物親合反應的影響 38
2.4 FK506檢測流程 41
2.5 電化學量測 43
2.5.1 CV與EIS檢測條件與分析 43
2.5.2 EIS等效電路分析 44
第三章 結果與討論 46
3.1 ACETF與DC-biased ACEKF現象探討 46
3.2 以光學法評估DC-biased ACEKF於生物分子收集效果的影響 52
3.2.1 不同驅動電壓下對抗體分子收集率之影響 52
3.2.2 電沉積Pt於雙環電極對親和性反應之影響 54
3.3 阻抗感測器檢測特性 56
3.3.1 電化學方式探討不同修飾步驟的介面阻抗 56
3.3.2 FK506最佳親合時間與檢量線 58
3.3.3 標定螢光的二級抗體最佳親合時間與檢量線 61
3.3.4 檢測極限與靈敏度 63
第四章 結論 65
參考文獻 66


王怡婷,以電化學阻抗法檢測沙門氏菌之免標定式核酸感測器的研發,中興大學生物產業機電工程學系碩士學位論文,2010。
林家鴻,非標定式阻抗分析免疫感測器於Enrofloxacin藥物的檢測,中興大學生物產業機電工程學系碩士學位論文, 2008。
楊東潔,整合交流電滲流之阻抗式核酸生物感測晶片的研發,中興大學生物產業機電工程學系碩士學位論文, 2011。
黃文清,整合直流偏壓-交流電滲流混合器之阻抗式核酸生物感測晶片的研發, 中興大學生物產業機電工程學系碩士學位論文, 2011。
Alak A.M., Moy S., Cook M., Lizak P., Niggebiugge A., Menard S., Chilton A., An HPLC/MS/MS assay for tacrolimus in patient blood samples. Correlation with results of an ELISA assay, J Pharm Biomed Anal, 16, 7–13, 1997.
Adam B.S., Tony M.H., Michael J.T., Electrochemical quantitation of DNA immobilized on gold, Anal Chem., 70, 4670–4677, 1998.
Ajdari A., Pumping liquids using asymmetric electrode arrays,Physical Review E 61, R45–R48, 2000.
Alexandre S.S., Soler J. M., Geometry and electronic structure of M-DNA, Physical Review B73, 205112, 2006.
Bard A.J. Larry R.F., Electrochemical methods fundamentals and applications, 2ndEd., John Wiley & Sons Inc., New York, 2000.
Brown A.B.D., Smith C.G., Rennie A.R., Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes, Physical Review E63, 016305, 2000.
Bazant M.Z., Ben Y., Theoretical prediction of fast 3D AC electro-osmotic pumps, Lab Chip, 6, 1455–1461, 2006.
Cohen S., Duffus J.E., Larsen R.C., Liu H.Y., Flock R.A.,Purification,serology,and vector relationships of squash leaf curl virus, awhitefly-transmitted geminivirus, Phytopathology, 73, 1669–1673, 1983.
Chen Y., Reboud J., Wang K.Y.P., Tang K.C., Ng S.Y., Zhang L., Wong P.,Moe K.T. and Shim W., Label-free impedance delection of low levels of circulating endothelial progenitor cells for point-of-care diagnosis, Biosens Bioelectron, 25, 1095–1101, 2010.
Cheng I.F., Senapati S., Cheng X., Basuray S., Chang H.G., ChangH.G.,A rapid field-use assay for mismatch number and location of hybridized DNAs, Lab Chip, 10, 828–831, 2010.
Du E., Manoochehri S.,Microfluidic pumping optimization in microgrooved channels with ac electrothermal actuations,ApplPhysLett, 96, 034102 , 2010.
Fang X., Tan O.K., Tse M.S., Ooi E.E., A label-free immunosensor for diagnosis of dengue infection with simple electrical measurements, Biosens Bioelectron, 25, 1137–1142, 2010.
Gonschior A.K., Christians U., Winkler M., Schiebel H.M., Linck A., Sewing K.F., SimpliWed high-performance liquid chromatography-mass spectrometry assay for measurement of tacrolimus and its metabolites and cross-validation with microparticle enzyme immunoassay, Ther Drug Monit, 17,504–510, 1995.
Hashi S., Masuda S., Kikuchi M., Uesugi M.,Assessment of Four Methodologies (Microparticle Enzyme Immunoassay, Chemiluminescent Enzyme Immunoassay, Affinity Column-Mediated Immunoassay and Flow Injection Assay-Tandem Mass Spectrometry) for Measuring Tacrolimus Blood Concentration in Japanese Liver Transplant Recipients,Transpl P, 46,758-760 , 2014.
Hong F.J., Cao J., Cheng P., A parametric study of AC electrothermal flow in icrochannels with asymmetrical interdigitated electrodes,Int CommunHeat Mass Transf, 38, 275–279, 2011.
Henry O.Y.F., Maliszewska A., O’Sullivan C.K., DNA surface nanopatterning by selective reductive desorption from polycrystalline gold electrode, ElectrochemCommun, 11, 664–667, 2009.
Jiang H., et al., Electric-triple-layer Model based AC electroosmosis flow, physicsclass-ph, ar Xiv:1006. 4061.
Liao M.Y., Lai P.S., Innovative ligand-assisted synthesis of NIR-activated iron oxide forcancer theranostics, Chem Commun, 48, 5319-5321, 2012.
Liu, T.M., Mandy L.Y., Electrokinetic stringency control in self-assembled monolayer-based biosensors for multiplex urinary tract infection diagnosis, Nanomedicine, 10,159–166, 2014.
Macdonald J.R., Impedance Spectroscopy Theory, Experiment, and Applications, 2nd Ed, John Wiley & Sons, 2005.
Murakami Y., Endoa T., On-chip micro-flow polystyrene bead-based immunoassay for quantitative detection of tacrolimus (FK506), AnalBiochem,111–116, 2004.
MorganH., et al., Theoretical Model of Electrode Polarization and AC
Electroosmotic Fluid Flow in Planar Electrode Arrays, J Colloid
Interface Sci, 238, 449–451, 2001.
Ng W.Y., Ramos A., Lam Y. C., Wijaya I.P. DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow, Lab Chip, 11, 4241–4247, 2011.
Oh J., Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel, Lab Chip, 10,1093, 2008.
Park C., Steven T.W., Rapid generation and manipulation of microfluidic
vortex flows induced by AC electrokinetics with optical
illumination, Lab Chip, 2013, 13, 1289.
Peterlinz K.A., Georgiadis R.M., Herne T.M., Tarlov M.J., Observation of Hybridization and Dehybridization of Thiol-Tethered DNA Using Two-Color Surface Plasmon Resonance Spectroscopy, Jam Chem Soc, 119, 3401–3402,1997.
Quershi A., Gurbuz Y., Kang W.P., Davidson J. L., A novel interdigitated capacitor based biosensor for delection of cardiovascular risk marker, Biosens Bioelectron, 25, 877–882, 2009.
Staatz C.E., Taylor P.J., Tett S.E., Comparison of an ELISA and an LC/MS/MS method for measuring tacrolimus concentrations and making dosage decisions in transplant recipients, Ther Drug Monit, 24,607–615, 2002.
Wanga R., Wang Y., Lassiter K., Li Y., Hargis B., Tung S., Berghman L., Bottje W., Interdigitated array microelectrode based impedance immunosensor delection of avian influenza virus H5N1, Talanta, 79, 159–164, 2009.
Wong E.L.S., Chow E., Gooding J.J., DNA Recognition Interfaces:  The Influence of Interfacial Design on the Efficiency and Kinetics of Hybridization, Langmuir,21, 6957–6965, 2005.
Wu C.C., Yang D.J., A label-free impedimetric DNA sensing chip integrated with AC electroosmotic stirring,Biosens Bioelectron, 43, 348-354, 2013.
Yan J., Label-free monitoring of site-specific DNA cleavage by EcoRI endonuclease using cyclic voltammetry and electrochemical impedance, AnalChimActa, 634, 44–48, 2009.
Yuan Q., Wu J., Thermally biased AC electrokinetic pumping effect
for Lab-on-a-chip based delivery of biofluids, Biomed Microdevices, 15,125–133, 2013


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊