跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俊安
研究生(外文):Chun-An Lin
論文名稱:基於EtherCAT為基底六軸工業型機械手臂之力教導與阻抗式控制
論文名稱(外文):EtherCAT-based Force Compliance Teaching and Impedance Control of a 6-DOF Industrial Robotic Manipulator
指導教授:蔡清池
口試委員:黃國勝余國瑞呂奇璜
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:84
中文關鍵詞:阻抗控制六軸工業手臂力教導重力補償運動學牛頓歐拉
外文關鍵詞:Impedance ControlIndustrial Robotic ManipulatorCompliance TeachingEtherCATiterative Newton-Euler dynamicskinematics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文的主旨是針對EtherCAT為基底六軸工業型機械手臂,發展力教導與阻抗式控制的方法、技術。此手臂系統主要由六個自由度的工業型機械手臂、六軸力感測器與EtherCAT為通訊基底新漢公司所生產的實時控制器組成。首先運用機械手臂的DH(Denavit-Hartenberg)參數,推導出其正向與反向運動學,用於計算末端點的位置、姿態與手臂各軸角度之關係。並藉由上述所推導出的正、反向運動學與PI阻抗式控制器發展出以運動學為基底對六軸工業型機械手臂之PI阻抗式控制演算法,運用受力與位置誤差的關係式,達到即時的力與位置的綜合控制。力教導則運用牛頓歐拉公式,發展出重力補償、慣量補償、摩擦力補償與力教導等功能。可藉由對裝置在手臂末端的六軸力感測器的推、拉等自然施力,達到手臂直覺跟隨力方向移動的效果。本文所提出的方法皆運用許多電腦模擬與實作驗證成果,例證所提方法的效用性能與技術特點。

This thesis develops methodologies and techniques for impedance control and force compliance teaching of an EtherCAT-based 6-DOF industrial robotic manipulator. An EtherCAT-based control system along with a six-axis force/torque sensor and one industrial 6-DOF robotic manipulator from HIWIN is constructed in order to verify and test those proposed method. With the given mechanical structure of the HIWIN 6-DOF robotic manipulator, its forward kinematics is derived using its Denavit-Hartenberg (DH) parameters, and the inverse kinematics is presented to find all joint angles of the manipulator. A kinematics-based impedance control method is then designed and numerically verified by utilizing the developed forward and inverse kinematic equations, and PI impedance controller. A force compliance teaching method is proposed to carry out natural teaching via direct force sensing at the sixth joint when the user is moving the arm by pulling or pushing the manipulator. The effectiveness and merit of the proposed methods are well exemplified by conducting serval simulations and experimentations on the HIWIN 6-DOF industrial robotic manipulator.

誌謝辭..................................................i
中文摘要...............................................ii
Abstract.............................................iii
Contents..............................................iv
List of Figures......................................vii
List of Tables.........................................x
List of Nomenclature..................................xi
List of Acronyms.....................................xii
Chapter 1 Introduction.................................1
1.1 Introduction.......................................1
1.2 Related Work.......................................2
1.2.1 Related Work for Industrial Robotic Manipulator..2
1.2.2 Related Work for Force Control...................5
1.2.3 Related Work for Robot Teaching..................5
1.3 Motivation and Objectives..........................6
1.4 Main Contributions.................................7
1.5 Thesis Organization................................8
Chapter 2 Control System Design and Implementation.....9
2.1 Introduction.......................................9
2.2 Mechatronic Description...........................13
2.2.1 6-DOF HIWIN Industrial Robotic Manipulator ......................................................13
2.2.2 Industrial Communication Interface: EtherCAT ......................................................14
2.2.3 EtherCAT-based motor driver.....................16
2.2.4 Real-Time EtherCAT Controller:NET3600E-ECM ......................................................18
2.3 Six-Axial Force and Torque Sensor.................20
2.3.1 Analog Input /Output Module.....................22
2.3.2 Installation of Force and Torque Sensor.........22
2.3.3 Test and Calibration of Force and Torque Sensor ......................................................24
2.4 Concluding Remarks................................26
Chapter 3 PI Kinematics Impedance Control.............27
3.1 Introduction......................................27
3.2 Forward Kinematics................................28
3.2.1 Denavit-Hartenberg (DH) Parameters..............28
3.2.2 Forward Kinematics..............................31
3.3 Inverse Kinematics................................34
3.4 PI Kinematics Impedance Control...................38
3.4.1 PI Kinematic Impedance Control..................38
3.4.2 PID Torque Control..............................40
3.5 Verify Forward and Ieverse Kinematics.............41
3.5.1 Simulation 8 Kinds of Solution for Kinematics ......................................................41
3.5.2 Verification the Proposed Forward and Inverse Kinematics Equation...................................45
3.5.3 Experiment of Kinematics........................47
3.6 Verification of the PI Kinematic Impedance Control ......................................................49
3.6.1 Simulation of the Proposed PI Kinematic Impedance Control...............................................49
3.6.2 Experimental Results of the Proposed PI Kinematic Impedance Control Methods.............................51
3.6.3 Experiment of the Force Control Using Proposed PI Kinematic Impedance Control Methods...................55
3.7 Concluding Remarks................................58
Chapter 4 Force Compliance Teaching...................59
4.1 Introduction......................................59
4.2 Iterative Newton-Euler Forward Dynamics...........60
4.3 Inward Dynamics...................................62
4.4 Friction Estimation...............................64
4.5 Torque-Based Motor Driving........................66
4.6 Simulations and Discussion........................67
4.6.1 Verification of the Proposed Torque Generation Method................................................67
4.6.2 Verification of the Overall Force Compliant Teaching Method.......................................69
4.7 Experimental Results on Using the Friction and Gravity Compensation Methods..........................72
4.8 Concluding Remarks................................75
Chapter 5 Conclusions and Future Work.................76
5.1 Conclusions.......................................76
5.2 Future Work.......................................78
References............................................80


[1]I. Jung and S. Lim, “An EtherCAT based control system for human-robot cooperation,” in Proc. of 2011 16th International Conference on Methods and Models in Automation and Robotics (MMAR),pp.341-344, 22-25 Aug. 2011.
[2]I. Jung and S. Lim, “An EtherCAT based real-time centralized soft robot motion controller,” in Proc. of 2012 International Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), vol.1, pp.117-120, .25-28 Aug. 2012.
[3]D. Orfanus, R. Indergaard, G. Prytz and T. Wien, “EtherCAT -based platform for distributed control in high-performance industrial applications,” in Proc. of 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), pp.1-8, 10-13 Sept. 2013.
[4]H. Makino, M. Murata and N. Furuya, ”Development of the SCARA Robot,” in Proc. of Journal of the Japan Society of Precision Engineering (J. of JSPE), vol. 48, No. 3, pp. 378-383, 1982.
[5]H. Makino, A. Kato and Y. Yamazaki, “Research and Commercialization of SCARA Robot–The Case of Industry-University Joint Research and Development–,“ Int. J. of Automation Technology,vol.1, no.1, 2007.
[6]F. L. Lewis, D. M. Dawson and C. T. Abdallah, (2004). Robot Manipulator Control : Theory and Practice, 2nd edition. New York • Basel: Marcel Dekker.
[7]Bonev, I. Delta Parallel Robot—The Story of Success, 2003.
http://www.parallemic.org/Reviews/Review002.html.
[8]J. P. Merlet, (2008). Parallel Robots, 2nd Edition. Springer. ISBN 978-1-4020-4132-7.
[9]J. J. Craig, (2005). Introduction to Robotics Mechanics and Control, 3nd Edition. Pearson Education International. ISBN 0-13-123629-6.
[10]G. Zeng and A. Hemami, “An overview of robot force control,” Robotica, vol. 15,no. 5, pp 473-482,1997.
[11]B. Siciliano and L. Villani, Robot Force Control, Kluwer Academic Publishers, Boston, 2001.
[12]F. Caccavale , C.Natale, B. Siciliano and L. Villani,” Integration for the next generation: Embedding force control into industrial robots,” IEEE Robotics & Automation Magazine, vol.12, no.3, pp.53-64, Sept. 2005.
[13]R. V. Patel, J. Jayender and F.Shadpey, “A robust position and force control strategy for 7-DOF redundant manipulators,” IEEE/ASME Transactions on Mechatronics, vol. 14, no. 5, October 2009.
[14]O. M. Al-Jarrah and Y. F. Zheng,” Intelligent compliant motion control” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol28., no.1, pp.116-122, Feb 1998.
[15]I. Bonilla, M. Mendoza, E. J. Gonz´alez-Galv´an, C. Ch´avez-Olivares, A. Loredo-Flores,and F. Reyes,” Path-tracking maneuvers with industrial robot manipulators using uncalibrated vision and impedance control,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol.42, no.6, pp.1716-1729, Nov. 2012.
[16]S. Jung, T. C. Hsia and R. G. Bonitz, “Force tracking impedance control of robot manipulators under unknown environment,” IEEE Transactions on Control Systems Technology, vol.12, no.3, pp.474-483, May 2004.
[17]C. C. Tsai, P. R. Deng, C. C. Chan, C. A. Lin , “Fast Position and Posture Control of an Anthropomorphous 7 DOF Dual-Arm Mobile Robot,” Proc. of 2013 CACS International Automatic Control Conference, Sun-Moon Lake, Nantou, Taiwan, pp.227-232, Dec. 2-4, 2013.
[18]C. C. Cheah and D. Wang,” Learning impedance control for robotic manipulators,” in Proc. of 1995 IEEE International Conference on Robotics and Automation, 1995. Proceedings, vol. 2, pp2150-2155, 21-27 May 1995.
[19]S. Jung and T. C. Hsia, ” Neural network impedance force control of robot manipulator,” IEEE Transactions on Industrial Electronics, vol. 45, no. 3, pp. 451-461, Jun 1998.
[20]T. Tsuji and K. Ito, “Neural network learning of robot arm impedance in operational space,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol.26, no.2, pp.290-298, Apr 1996.
[21]F. Caccavale, P. Chiacchio and A. Marino,” Six-DOF impedance control of dual-arm cooperative manipulators,” IEEE/ASME Transactions on Mechatronics, vol.13, no.5, pp.1083-4435, Oct. 2008.
[22]M. K. Wu, Y.S. Kung, Y.H. Huang, and T. H. Jung, “Fixed-point computation of robot kinematics in FPGA” in Proc. of 2014 International Conference on Advanced Robotics and Intelligent Systems (ARIS 2014), Taipei, Taiwan, 2014.
[23]S. Kucuk and Z. Bingul,“The inverse kinematics solutions of industrial robot manipulators,” Proceedings of the IEEE International Conference on Mechatronics, ICM04, pp. 274-279, 2004.
[24]J.Zhao and N. I. Badler, “Inverse kinematics positioning using nonlinear programming for highly articulated figures,” ACM Transactions on Graphics, vol. 13, no.4, pp. 313-336, 1994.
[25]H. C. Huang and S. C. Lin “Hybrid GA-PSO Algorithm for Inverse Kinematics of 7-DOF Robot Manipulators,” Proceedings of 2011 International Conference on Service and Interactive Robots National Chung Hsing University, Taichung, Taiwan, Nov.25-27, 2011.
[26]B. Fagin, “Ada/Mindstorms 3.0,” IEEE Robotics & Automation Magazine, vol. 10, no.2, pp. 19-24, 2003.
[27]T. Hasegawa, T.Suehiro, K.Takase, “A model-based manipulation system with skill-based execution,” IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp. 535-544, 1992.
[28]M. Skubic, R. A. Volz, “Acquiring robust, force-based assembly skills from human demonstration,” IEEE Transactions on Robotics and Automation, vol. 16, no.6, pp. 772-781, 2000.
[29]S. Ahmad,” A laboratory experiment to teach some concepts on sensor-based robot assembly systems,” IEEE Transactions on Education, vol. 31, no.2, pp. 74-84, 1988.
[30]J. L. Patton, F. A. Mussa-Ivaldi, “Robot-assisted adaptive training: custom force fields for teaching movement patterns ,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 4, pp. 626-646, 2004.
[31]G. Hirzinger, “Robot Systems Completely Based on Sensory Feedback,” IEEE Transactions on Industrial Electronics, vol. IE-33, no.2, pp. 105-109, 1986.
[32]R. Gassert, J. Metzger, K. Leuenberger, W. L. Popp, M. R. Tucker,B. Vigaru, R. Zimmermann, O. Lambercy, “Physical Student–Robot Interaction With the ETHZ Haptic Paddle, ” IEEE Transactions on Education, vol. 56, no.1, pp. 9 – 17, 2013.
[33]S.H.L. McAmis, K.B. Reed, “Simultaneous Perception of Forces and Motions Using Bimanual Interactions,” IEEE Transactions on Haptics,, vol. 5, no.3, pp. 220-230, 2012.
[34]K.Suwanratchatamanee, M. Matsumoto, S. Hashimoto, “Robotic Tactile Sensor System and Applications ,” IEEE Transactions on Industrial Electronics, vol. 57, no.3, pp. 1074-1087, 2010.
[35]H. Asada, H. Izumi, “Automatic program generation from teaching data for the hybrid control of robots, ” IEEE Transactions on Robotics and Automation, vol. 5, no.2, pp. 166-173, 1989.
[36]H.Koch, A. Konig, A. Weigl-Seitz, K. Kleinmann, J. Suchy, “Multisensor Contour Following With Vision, Force, and Acceleration Sensors for an Industrial Robot,” IEEE Transactions on Instrumentation and Measurement, Vol. 62, no.2, pp. 268-280, 2013.
[37] D. Powell, M. K. O''Malley, “The Task-Dependent Efficacy of Shared-Control Haptic Guidance Paradigms,” IEEE Transactions on Haptics, vol. 5, no.3, pp. 208-219, 2012.
[38]C. C. Tsai, F. C. Tai and C. A. Lin, “EtherCAT-based Impedance Control of a 6-DOF Industrial Robotic Manipulator,” to appear in proc. of 2015 National Symposium on System Science and Engineering, Tatung University, Taipei, Taiwan, 17~19 July, 2015


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top