跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 10:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林致宇
研究生(外文):Chih-Yu Lin
論文名稱:利用第一原理計算探討含缺陷之碳微環C360和C420儲氫結構
論文名稱(外文):Caron Nanotorus C360 and C420 with Defects for Hydrogen Storage: An Ab-initio Study
指導教授:劉柏良劉柏良引用關係
指導教授(外文):Po-Liang Liu
口試委員:李明憲洪銘聰
口試委員(外文):Ming-Hsien LeeMing-Tsung Hung
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:90
中文關鍵詞:第一原理儲氫碳微環空位缺陷
外文關鍵詞:ab initiohydrogen storagecarbon nanotorusvacancy defect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用第一原理(ab initio)計算密度泛函計算含有雙孔空位缺陷(Vacancy defect)、肆孔空位缺陷以及陸孔空位缺陷的碳微環C360和C420結構。藉由氫分子與含有缺陷之碳微環儲氫結構之交互作用能,分析氫分子經由空位缺陷進入碳微環儲氫結構所需之能障,找尋能有效降低穿越碳微環能障的結構。含有空位缺陷的碳微環C360結構中,能障最低的結構為具有肆孔空位缺陷之碳微環C360結構,氫分子經由路徑ε穿過碳微環C360表面之空位缺陷所需能量為3.69 eV。另外,含有空位缺陷的碳微環C420結構中,能障最低的結構為具有雙孔缺陷之碳微環C420結構,氫分子經由路徑η進入儲氫結構穿過碳微環C420表面之空位缺陷所需能量趨近於1.49 eV。

This work examined the structures of C360 and C420 carbon nanotorus that passes two-, four-, and six-vacancy defects by using ab initio calculations. By analyzing the energy barrier for molecular hydrogen to get a physical absorption to C360 and C420 carbon nanotorus the most favorable structure for C360 and C420 being used as a hydrogen storage material could be proposed.The results revealed that C360 carbon nanotorus with four-vacancy defects provided the lowest energy barrier at 3.69 eV, allowed molecular hydrogen to reach vacancy defect via path ε.For C420, the lowest energy barrier was obtained as hydrogen passed through C420 with two-vacancy defects via path η, which was approximately 1.49 eV.

致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
1-3論文架構 2
第二章 背景介紹與文獻回顧 4
2-1奈米碳管簡介 4
2-2碳微環簡介 5
2-3空位缺陷(Vacancy defects) 7
2-5碳微環之儲氫研究 10
第三章 理論計算與方法 19
3-1前言 19
3-2 Hohenberg-Kohn Theorem[49] 20
3-3 Generalized Gradient Approximation[50] 21
3-4膺勢[53] 22
3-5過渡態理論[54] 22
第四章 多孔空位缺陷之碳微環C360儲氫結構 25
4-1前言 25
4-2計算設定與模型建構 25
4-3結果與討論 27
4-4結論 30
第五章 多孔空位缺陷之碳微環C420儲氫 53
5-1前言 53
5-2計算設定與模型建構 53
5-3結果與討論5 5
5-4結論 58
第六章 總結論 82
參考文獻 83


1.M. Höök and X. Tang, “Depletion of fossil fuels and anthropogenic climate change,” Energy Policy, Vol. 52, pp. 797-809, 2013. DOI: 10.1016/j.enpol.2012.10.046
2.J. Andrews and B. Shabani, “Re-envisioning the role of hydrogen in a sustainable energy economy,” International Journal of Hydrogen Energy, Vol. 37, pp.1184-1203, 2012. DOI:10.1016/j.ijhydene.2011.09.137
3.L. Schlapbach, “Hydrogen-fuelled vehicles,” Nature, Vol. 460, pp. 809-811, 2009. DOI: 10.1038/460809a
4.G. Wanga, J. Zhou, S. Huc, S. Dong, and P. Wei, “Investigations of filling mass with the dependence of heat transfer during fast filling of hydrogen cylinders,” International Journal of Hydrogen Energy, Vol. 39, pp.4380-4388, 2014. DOI: 10.1016/j.ijhydene.2013.12.189
5.D. J. Durbin and C. M. Jugroot, “Review of hydrogen storage techniques for on board vehicle applications,” International Journal of Hydrogen Energy, Vol. 38, pp. 14595 -14617, 2013. DOI: 10.1016/j.ijhydene.2013.07.058
6.A. Leon, E .J. Knystautas, J. Huota, and R. Schulz, “Hydrogenation characteristics of air-exposed magnesium films,” Journal of Alloys and Compounds, Vol. 345, pp. 158-166, 2002. DOI: 10.1016/S0925-8388(02)00394-8H
7.V. Tozzini and V. Pellegrini, “Prospects for hydrogen storage in graphene,” Phys Chem Chem Phys, Vol. 15, pp. 80, 2013. DOI: 10.1039/C2CP42538F
8.G. Seifert, “Hydrogen on and in carbon nanostructures,” Solid State Ionics, Vol. 168, pp. 265-269, 2004. DOI: 10.1016/j.ssi.2003.02.002
9.R. E. B. Barraza and R. A. G. Lopez, “Clustering of H2 molecules encapsulated in fullerene structures,” Physical Review B, Vol. 66, pp. 155426-1-155426-12, 2002. DOI: 10.1103/PhysRevB.66.155426
10.A. C. Torres, F. DE L. C. Alvarado, J. O. Lopez, and J. S. Arellano, “Hydrogen storage inside a toroidal carbon nanostructure C120: Density functional theory computer simulation,” International Journal of Quantum Chemistry Vol. 110, pp. 2496-2508, 2010. DOI: 10.1002/qua.22711
11.Y. Kubota, M. Takata, R. Matsuda, R. Kitaura, S. Kitagawa, K. Kato, M. Sakata, and T. C. Kobayashi, “Direct Observation of Hydrogen Molecules Adsorbed onto a Microporous Coordination Polymer,” Angewandte Chemie International Edition, Vol. 44, pp. 920-923, 2005. DOI: 10.1002/anie.200461895
12.Y. Yürüm, A. Taralp, and T. N. Veziroglu, “Storage of hydrogen in nanostructured carbon materials,” International Journal of Hydrogen Energy, Vol. 34, pp. 3784-3798, 2009. DOI: 10.1016/j.ijhydene.2009.03.001
13.A.C. Dillon and M.J. Heben, “Hydrogen storage using carbon adsorbents: past, present and future,” Applied Physics A, Vol. 72, pp. 133-142, 2001. DOI: 10.1007/s003390100788
14.R. Ströbela, J. Garcheb, P. T. Moseleyc, L. Jörissenb, and G. Wolfn, “Hydrogen Storage by Carbon Materials,” Journal of Power Sources, Vol. 159, pp. 781-801, 2006. DOI: 10.1016/j.jpowsour.2006.03.047
15.F de L. C. Alvarado, J. O. López, J. S. Arellano, and A. C. Torres, “Hydrogen Storage on Beryllium-Coated Toroidal Carbon Nanostructure C120 modeled with Density Functional Theory,” Advances in Science and Technology, Vol. 72, pp. 188-195, 2010. DOI: 10.4028/www.scientific.net/AST.72.188
16.S. Itoh and S. Ihara, “Toroidal form of carbon C360,” Physical Review B, Vol. 47, pp. 1703-1704, 1993. DOI: 10.1103/PhysRevB.47.1703
17.L. Liu, L. Zhang , H. Gao, and J. Zhao, “Structure, energetics, and heteroatom doping of armchair carbon nanotori,” Carbon 49, Vol. 49, pp. 4518-4523, 2003. DOI:10.1016/j.carbon.2011.06.062
18.S. Iijima, “Helical microtubules of graphitic,” Nature, Vol 354, pp. 56-58, 1991. DOI: 10.1038/354056a0
19.R. Saito, M. Fujita, G. Dresselhaus, and M. S Dresselhaus, “Electronic structure of chiral graphene tubules,” Applied Physics Letters, Vol. 60, pp. 2204-2206, 1992. DOI: 10.1063/1.107080
20.R. Heyd, and A. Charlier,” Uniaxial-stress effects on the electronic properties of carbon nanotubes,” Physical Review B, Vol. 55, pp. 6820-6824, 1997. DOI: 10.1103/PhysRevB.55.6820
21.Q. Zhao, M. B. Nardelli, and J. Bernholc,” Ultimate strength of carbon nanotubes: A theoretical study,” Physical Review B, Vol. 65, pp. 144105, 2002. DOI: 10.1103/PhysRevB.65.144105
22.Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, L. Zhou, K. T. Yue, and S. Zhang, “Mass-production of single-wall carbon nanotubes by arc discharge method,” Carbon, Vol. 37, pp. 1449 -1453, 1999. DOI: 10.1016/S0008-6223(99)00007-X
23.R. Heyd, and A. Charlier,” Uniaxial-stress effects on the electronic properties of carbon nanotubes,” Physical Review B, Vol. 55, pp. 6820-6824, 1997. DOI: 10.1103/PhysRevB.55.6820
24.B. I . Dunlap, “Connecting carbon tubules,” Physical Review B, Vol. 46, pp. 1933-1936. DOI: 10.1103/PhysRevB.46.1933
25.J. Liu, H. Dai, J. H. H. D. T. Colbert, and R. E. Samlley, “Fullerene crop circles,” Nature, Vol. 385, pp. 27, 1997. DOI: 10.1038/385780b0
26.D. H. Oh, J. M. Park, and K. S. Kim, “Structures and electronic properties of small carbon nanotube tori,” Physical Review B, Vol. 62, pp. 3, 2000. DOI: 10.1103/PhysRevB.62.1600
27.I. L. Chang and J. W. Chou, “A molecular analysis of carbon nanotori formation,” Journal of Applied Physics, Vol. 112, pp. 063523, 2012. DOI: 10.1063/1.4754538
28.M. Sano, A. Kamino, J. Okamura, and S. Shinkai, “Ring Closure of Carbon Nanotubes,” Science, Vol. 293, pp. 17, 2001. DOI: 10.1126/science.1061050
29.L. Song, L. Ci, L. Sun, C. Jin, L. Liu, W. Ma, D. Liu, X. Zhao, S. Luo, Z. Zhang, Y. Xiang, J. Zhou, W. Zhou, Y. Ding, Z. Wang, and S. Xie, “Large-Scale Synthesis of Rings of Bundled Single-Walled Carbon Nanotubes by Floating Chemical Vapor Deposition,” Advanced Materials, Vol. 18, pp. 1817-1821, 2006. DOI: 10.1002/adma.200502372
30.N. Komatsu, T. Shimawaki, S. Aonuma, and T. Kimura, “Ultrasonic isolation of toroidal aggregates of single-walled carbon nanotubes,” Carbon, Vol. 44, pp. 2089–2108, 2006. DOI: 10.1016/j.carbon.2006.04.025
31.B. Dong, X. Bai, Y. Wang, L. Xu, J. Chen, D. Li, and H. Song, “ Silver nanotorus and nanoparticles on silica wafer: optical properties and investigation of PVA in the formation process,” Journal of Materials Science: Materials in Electronics, Vol. 22, pp. 64-71, 2011. DOI: 10.1007/s10854-010-0085-z
32.W. Orellana, “Reaction and incorporation of H2 molecules inside single-wall carbon nanotubes through multivacancy defects,” Physical Review B, Vol. 80, pp.075421-1-075421-5, 2009. DOI: 10.1103/PhysRevB Vol.80.075421
33.J. A. Robinson, E. S. Snow, Stefan C. Badescu, T. L. Reinecke, and F. K. Perkins, “Role of defects in single-walled Carbon nanotube chemical sensors,” Nano Letter, Vol. 6, pp. 1747-4751, 2006. DOI: 10.1021/nl0612289
34.A. V. Krasheninnikov, K. Nordlund, M. Sirvio, E. Salonen, and J. Keinonen, “Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes,” Physical Review B, Vol. 63, pp. 245405, 2001. DOI: 10.1103/PhysRevB.63.245405
35.L. Chen, K. Xia, L. Huang, L. Li, L. Pei, and S. Fei, “Facile synthesis and hydrogen storage application of nitrogen-doped carbon nanotubes with bamboo-like structure,” International Journal of Hydrogen Energy, Vol. 38, pp. 3297-3303, 2013. DOI: 10.1016/j.ijhydene.2013.01.055
36.Z. Zhou, X. Gao, J. Yan, and D. Song i, “Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations,” Carbon, Vol. 44, pp. 939–947, 2006. DOI: 10.1016/j.carbon.2005.10.016
37.E. Durgun, Y. R. Jang, and S. Ciraci, “Hydrogen storage capacity of Ti-doped boron-nitride and B/Be-substituted carbon nanotubes,” Physical Review B, Vol. 76, pp. 073413, 2007. DOI: 10.1103/PhysRevB.76.073413
38.W. Liu, Y. H. Zhao, Y. Li, Q. Jiang, and E. J. Lavernia, “Enhanced Hydrogen Storage on Li-Dispersed Carbon Nanotubes,” Journal of Physical Chemistry C, Vol. 113, pp. 2028-2033, 2009. DOI: 10.1021/jp8091418
39.C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, “Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature,” Science, Vol. 286, pp. 1127, 1999. DOI: 10.1126/science.286.5442.1127
40.R. Bhowmick, S. Rajasekaran, D. Friebel, C. Beasley, L. Jiao, H. Ogasawara, Hongjie Dai, B. Clemens, and A. Nilsson, “Hydrogen Spillover in Pt-Single-Walled Carbon Nanotube Composites: Formation of Stable C-H Bonds,” Journal of the American Chemical Society, Vol. 133, pp. 5580-5586, 2011. DOI: 10.1021/ja200403m
41.D. Silambarasan, V. J. Surya, V. Vasu, and K. Iyakutti, “One-step process of hydrogen storage in single walled carbon nanotubes-tin oxide nano composite,” International Journal of Hydrogen Energy, Vol. 38, pp. 4011-4016, 2013. DOI: 10.1016/j.ijhydene.2013.01.129
42.Y. W. Wen, H. J. Liu, L. Pan, X.J. Tan, H. Y. Lv, J. Shi, and X. F. Tang, “A Triplet Form of (5,0) Carbon Nanotube with Higher Hydrogen Storage Capacity,” Journal of Physical Chemistry C, Vol. 115, pp. 9227-9231, 2011. DOI: 10.1021/jp1120433
43.S. M. Lee and Y. H. Lee, “Hydrogen storage in single-walled carbon nanotubes,” Applied Physics Letters, Vol. 76, pp. 2877-2879, 2000. DOI: 10.1063/1.126503
44.Y. Ma, Y. Xia, M. Zhao, M. Ying, X. Liu, and P. Liu, “Collision of hydrogen atom with single-walled carbon nanotube: Adsorption, insertion, and healing,” Journal of Chemical Physics, Vol. 15, pp. 17, 2001. DOI: 10.1063/1.1409541
45.F de L. C. Alvarado, J. O. López, J. S. Arellano, and A. C. Torres, “Hydrogen Storage on Beryllium-Coated Toroidal Carbon Nanostructure C120 modeled with Density Functional Theory,” Advances in Science and Technology, Vol. 72, pp. 188-195, 2010. DOI: 10.4028/www.scientific.net/AST.72.188
46.L. Türker, I. Eroglu, M. Yücel, and U. Gündüz, “Hydrogen storage capability of carbon nanotube Be@C120,” International Journal of Hydrogen Energy, Vol. 29, pp. 1643-1647, 2004. DOI: 10.1016/j.ijhydene.2004.02.017
47.Lemi Türker and Selc¸uk Gümüs, “Hydrogen storage capacity of Mg@C120 system,” Journal of Molecular Structure, Vol. 719, pp. 103-107, 2005. DOI: 10.1016/j.theochem.2004.12.037
48.L. Türker, “Hydrogen storage capability of Se@C120 system,”International Journal of Hydrogen Energy, Vol. 32, pp. 1933-1938, 2007. DOI: 10.1016/j.ijhydene.2006.10.043
49.P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review, Vol. 136, pp. B864, 1964. DOI: 10.1103/PhysRev.136.B864
50.J. P. Perdew and Y. Wang, “Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation,” Physical Review B, Vol. 33, pp. 8800, 1986. DOI: 10.1103/PhysRevB.33.8800
51.J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Physical Review B, Vol. 46, pp. 6671, 1992. DOI: 10.1103/PhysRevB.46.6671
52.J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, pp. 3865, 1996. DOI: 10.1103/PhysRevLett.77.3865
53.M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias, and J. D. Joannopouios, “Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045-1097 (1992). DOI:10.1103/RevModPhys.64.1045
54.T. A. Halgren and W. N. Lipscomb, “The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States,” Chemical Physics Letters, Vol. 49, pp. 225-232, 1977. DOI: 10.1016/0009-2614(77)80574-5
55.E. Yazgan, E. Taşci, O. B. Malcioğlu, and S. Erkoc¸, “Electronic properties of carbon nanotoroidal structures,” Journal of Molecular Structure, Vol. 681, pp. 231-234, 2004. DOI: 10.1016/j.theochem.2004.05.029
56.B. J. Cox and J. M. Hill, “New Carbon Molecules in the Form of Elbow-Connected Nanotori,” Journal of Physical Chemistry C, Vol. 111, pp.10855-10860, 2007. DOI: 10.1021/jp0721402
57.M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles Simulation: Ideas, Illustrations and the CASTEP code,” Journal of Physics. Condensed Matter, Vol. 14, pp. 2717-2744, 2002. DOI: 10.1088/0953-8984/14/11/301
58.S. Itoh and S. Ihara, “Isomers of the toroidal forms of graphitic carbon,” Physical Review B, Vol. 49, pp.19,1994. DOI: 10.1103/PhysRevB.49.13970
59.J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, and S. Yip, “Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures,” Journal of Chemical Physics, Vol. 119, pp. 2376, 2003. DOI: 10.1063/1.1582831
60.R. G. Amorim, A. Fazzio, A. Antonelli, F. D. Novaes, and and Antônio J. R. da Silva, “Divacancies in Graphene and Carbon Nanotubes,” Nano Lett, Vol. 7, pp.8, 2007. DOI: 10.1021/nl071217v


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊