跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 09:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宥霖
研究生(外文):Yu-Lin Chen
論文名稱:一氧化碳氧化鋅感測器
論文名稱(外文):ZnO nanowire based CO gas sensor
指導教授:何孟書
指導教授(外文):Mon-Shu Ho
口試委員:謝輝煌吳秋賢
口試委員(外文):Hui-Huang HsiehChiu-Hsien Wu
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立中興大學
系所名稱:奈米科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:53
中文關鍵詞:氧化鋅奈米線水浴法介電泳法一氧化碳感測器
外文關鍵詞:ZnOnanowireaqueous solution methoddielectrophoresis methodCO sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究以旋轉塗佈法來製作氧化鋅晶種層,並接著以水溶液法來成長大量高品質氧化鋅奈米線,之後將成長好的奈米線與自製的陣列電極藉由介電泳法互相結合,成功製作出室溫一氧化碳氣體感測元件。
從場發掃描式電子顯微鏡(FE-SEM)、能量分散光譜儀(EDS)、低掠角X光繞射儀(GIXRD)、場發穿透式電子顯微鏡(FE-TEM)、螢光光譜儀(PL)等分析儀器可得知,所成長的氧化鋅奈米線為單晶的六方鮮鋅礦結構,且長度與直徑會隨著成長時間拉長而增加。當成長時間由半小時增加到六小時,平均線長由0.69 ± 0.03微米增加至2.40 ± 0.06微米,而平均直徑則是由21.36 ± 0.48奈米增加至96.17 ± 4.31奈米。而奈米線經過兩小時後,沿著[1]方向生長的趨勢會略漸明顯,其中又以成長六小時的奈米線結晶性最好。而所有的奈米線在波長約為378 ~ 383奈米處,皆有明顯的能隙放光特性。
另一方面,我們經由一系列的半導體製程製作出含有60對間距約為2.28微米的電極,大小約為2.6 x 2.6平方公分的晶片,接著利用介電泳法將奈米線置於電極之間製作成元件。由I-V曲線可得知元件為蕭特基接觸。最後在10 % 一氧化碳氣體與大氣作切換的室溫環境下,我們通入1~3伏特的驅動電壓,發現在2伏特時的測試結果最好。平均反應與恢復時間約為48.37和65.61秒,而反應程度約為6.8%。


In this research, we used spin coating method to make ZnO seed layer, and then growing massive high quality nanowires via aqueous solution method. After growth, we combined grew nanowires and self-make arrayed electrodes by dielectrophoresis method, and successfully produced room temperature CO sensing device.
With the characterization of field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), grazing incidence X-ray diffraction (GIXRD), field emission transmission electron microscope (FE-TEM), and photoluminescence (PL), we knew that the grew nanowires were single crystalline and belongs to the wurtzite structure. As the growth time increasing from half hour to six hours, the average length would increase from 0.69 ± 0.03 μm to 2.40 ± 0.06 μm, and the average diameter would increase from 21.36 ± 0.48 nm to 96.17 ± 4.31 nm. After growing for two hours, the nanowire prefer to grow along [002], and the crystalline is best for growing for six hours. All the nanowires possess energy gap-emission at the wave length of about 378 ~ 383 nm.
On the other hand, we fabricated a chip that contains 60 pairs of electrodes which the gap are about 2.28 μm, and put nanowires cross onto the electrodes to make sensing devices. From the I-V curve, we can know that the device are Schottky contact. And finally, we test the devices under room temperature and the alternating ambient between 10% CO and air. The best driving voltage were found as 2 V among 1 V to 3 V, and the average response and recovery time were about 48.37 and 65.61 seconds, and the response magnitude is about 6.8% at room temperature.


摘要 ii
Abstract iii
Chapter 1 Introduction 1
1.1 Nanotechnology 1
1.2 Motivation and goal of research 2
Chapter 2 Literature review 6
2.1 Properties of zinc oxide (ZnO) 6
2.2 Mechanism of thermal decomposition deposition 7
2.3 Mechanism of aqueous solution method 7
2.4 Mechanism of dielectrophoresis (DEP) 10
2.5 Mechanism of CO sensing 11
Chapter 3 Experimental materials and characteristic instruments 13
3.1 Materials used in experiments 13
3.1.1 Synthesis of ZnO nanowires 13
3.1.2 Fabrication of sensor chips 13
3.2 Instruments for characteristics 14
3.2.1 Scanning electron microscope (SEM) 14
3.2.2 Energy-dispersive X-ray spectroscopy (EDS) 15
3.2.3 X-ray diffraction (XRD) 17
3.2.4 Transmission electron microscope (TEM) 20
3.2.5 Atomic force microscope (AFM) 22
3.2.6 Photoluminescence (PL) 23
Chapter 4 Experimental details 25
4.1 Experimental sections 25
4.2 ZnO seed layer preparation 27
4.3 Synthesis of ZnO nanowires 28
4.4 Design of the array chip 29
4.5 Fabrication of the chip 29
4.5.1 Cleaning 30
4.5.2 Spin coating and soft baking 30
4.5.3 Exposure 30
4.5.4 Development 31
4.5.5 Thermal evaporation 31
4.5.6 Lift off 31
4.6 Dielectrophoresis 32
4.7 CO sensing measurement 34
Chapter 5 Results and discussion 35
5.1 The properties of ZnO nanowires 35
5.1.1 Morphology 35
5.1.2 Elemental analysis 38
5.1.3 Structure 39
5.1.4 Opto-electronic analysis 41
5.2 The results of the fabricated chips 41
5.3 The results of the assembled device 42
5.4 The performance of sensing devices 43
5.4.1 Electrical measurement 43
5.4.2 Gas sensing performance 44
Chapter 6 Conclusion 47
Chapter 7 Reference 48


1.An, S., et al., Enhanced gas sensing properties of branched ZnO nanowires. Thin Solid Films, 2013. 547: p. 241-245.
2.Moore, G.E., Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965). Proceedings of the Ieee, 1998. 86(1): p. 82-85.
3.Sun, Y. and Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 2002. 298(5601): p. 2176-2179.
4.Fernandez-Ujados, M., et al., One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction. Nanotechnology, 2013. 24(49): p. 495601.
5.Zinovyev, V.A., et al., Strain-Induced Formation of Fourfold Symmetric SiGe Quantum Dot Molecules. Physical Review Letters, 2013. 111(26): p. 265501.
6.Tien, L.-C., et al., Direct vapor transport synthesis of ZnGa2O4 nanowires with superior photocatalytic activity. Journal of Alloys and Compounds, 2013. 555(0): p. 325-329.
7.Liu, B. and E.S. Aydil, Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009. 131(11): p. 3985-3990.
8.Xie, R., et al., Diameter and wall number control of carbon nanotubes by chemical vapor deposition. Journal of Applied Physics, 2013. 114(24): p. 244302.
9.Blanquart, T., et al., Optical and Dielectric Characterization of Atomic Layer Deposited Nb2O5 Thin Films. ECS Solid State Letters, 2012. 1(1): p. N1-N3.
10.Chen, C., et al., Ultralong Rutile TiO2 Nanorod Arrays with Large Surface Area for CdS/CdSe Quantum Dot-sensitized Solar Cells. Electrochimica Acta, 2014. 121: p. 175-182.
11.Nasr, B., et al., High-Speed, Low-Voltage, and Environmentally Stable Operation of Electrochemically Gated Zinc Oxide Nanowire Field-Effect Transistors. Advanced Functional Materials, 2013. 23(14): p. 1750-1758.
12.Yoo, K.S., S.H. Park, and J.H. Kang, Nano-grained thin-film indium tin oxide gas sensors for H2 detection. Sensors and Actuators B: Chemical, 2005. 108(1-2): p. 159-164.
13.Song, M., et al., Low frequency wideband nano generators for energy harvesting from natural environment. Nano Energy, 2014. 6: p. 66-72.
14.Das, S.N., et al., ZnO single nanowire-based UV detectors. Applied Physics Letters, 2010. 97(2): p. 022103.
15.Liu, Z., et al., Electrical and optical properties of reactive sputtered TiO x thin films for uncooled IR detector applications. Journal of Materials Science: Materials in Electronics, 2012. 24(4): p. 1292-1297.
16.Khoang, N.D., et al., On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sensors and Actuators B: Chemical, 2013. 181: p. 529-536.
17.Izu, N., W. Shin, and N. Murayama, Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sensors and Actuators B: Chemical, 2003. 93(1-3): p. 449-453.
18.Jung, J. and S.P. Lee, Physical Properties of Nano-Structured Carbon Nitride Film for Integrated Humidity Sensors. Journal of Nanoscience and Nanotechnology, 2013. 13(10): p. 7030-7032.
19.Lei, N., et al., Simple graphene chemiresistors as pH sensors: fabrication and characterization. Measurement Science and Technology, 2011. 22(10): p. 107002.
20.Bakhoum, E.G. and M.H.M. Cheng, Ultrahigh-Sensitivity Pressure and Vibration Sensor. Sensors Journal, IEEE, 2011. 11(12): p. 3288-3294.
21.Lee, J. and N.A. Kotov, Thermometer design at the nanoscale. Nano Today, 2007. 2(1): p. 48-51.
22.Fine, G.F., et al., Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 2010. 10(6): p. 5469-5502.
23.Wang, Z.L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics-Condensed Matter, 2004. 16(25): p. R829-R858.
24.Qiu, J., et al., The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology, 2009. 20(15): p. 155603.
25.Kiasari, N.M., et al., Environmental Gas and Light Sensing Using ZnO Nanowires. Nanotechnology, IEEE Transactions on, 2014. 13(2): p. 368-374.
26.Chang, Y.K. and F.C. Hong, The fabrication of ZnO nanowire field-effect transistors combining dielectrophoresis and hot-pressing. Nanotechnology, 2009. 20(23): p. 235202.
27.Lai, Y., et al., Plasma enhanced multistate storage capability of single ZnO nanowire based memory. Applied Physics Letters, 2015. 106(3): p. 031603.
28.Senthilraja, A., et al., Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation. Spectrochim Acta A Mol Biomol Spectrosc, 2015. 138: p. 31-7.
29.Chen, Z. and L. Gao, A facile route to ZnO nanorod arrays using wet chemical method. Journal of Crystal Growth, 2006. 293(2): p. 522-527.
30.Choi, H.-J., Vapor–Liquid–Solid Growth of Semiconductor Nanowires, in Semiconductor Nanostructures for Optoelectronic Devices, G.-C. Yi, Editor. 2012, Springer Berlin Heidelberg. p. 1-36.
31.Chiou, W.-T., W.-Y. Wu, and J.-M. Ting, Growth of single crystal ZnO nanowires using sputter deposition. Diamond and Related Materials, 2003. 12(10–11): p. 1841-1844.
32.Sun, Y., D.J. Riley, and M.N.R. Ashfold, Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates. The Journal of Physical Chemistry B, 2006. 110(31): p. 15186-15192.
33.Kim, K., et al., Fabrication and characterization of Ga-doped ZnO nanowire gas sensor for the detection of CO. Thin Solid Films, 2009. 518(4): p. 1190-1193.
34.Byrappa, K. and M. Yoshimura, Handbook of Hydrothermal Technology. 2 ed. 2011: William Andrew.
35.Govender, K., et al., Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. Journal of Materials Chemistry, 2004. 14(16): p. 2575.
36.Diao, K., et al., Highly controllable and reproducible ZnO nanowire arrays growth with focused ion beam and low-temperature hydrothermal method. Applied Surface Science, 2014. 317: p. 220-225.
37.Sugunan, A., et al., Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology, 2006. 39(1): p. 49-56.
38.Madaria, A.R., et al., Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Research, 2010. 3(8): p. 564-573.
39.Kiasari, N.M. and P. Servati, Dielectrophoresis-Assembled ZnO Nanowire Oxygen Sensors. Electron Device Letters, IEEE, 2011. 32(7): p. 982-984.
40.Langford, R.M., et al., Comparison of different methods to contact to nanowires. Journal of Vacuum Science & Technology B, 2006. 24(5): p. 2306-2311.
41.Thelander, C., L. Thelander, and Samuelson, AFM manipulation of carbon nanotubes: realization of ultra-fine nanoelectrodes. Nanotechnology, 2002. 13(1): p. 108-113.
42.Yoon, A., W.-K. Hong, and T. Lee, Fabrication and Characterization of Directly-Assembled ZnO Nanowire Field Effect Transistors with Polymer Gate Dielectrics. Journal of Nanoscience and Nanotechnology, 2007. 7(11): p. 4101-4105.
43.Suehiro, J., Fabrication and characterization of nanomaterial-based sensors using dielectrophoresis. Biomicrofluidics, 2010. 4(2): p. 022804.
44.Quan, T., J. Minlin, and L. Guangyong, Simulation and Experimental Study of Nanowire Assembly by Dielectrophoresis. Nanotechnology, IEEE Transactions on, 2014. 13(3): p. 517-526.
45.Liu, C.-Y., C.-F. Chen, and J.-P. Leu, Fabrication and CO Sensing Properties of Mesostructured ZnO Gas Sensors. Journal of The Electrochemical Society, 2009. 156(1): p. J16.
46.Hsueh, T.-J., et al., ZnO Nanowire-Based CO Sensors Prepared at Various Temperatures. Journal of The Electrochemical Society, 2007. 154(12): p. J393.
47.Zhang, H.-D., et al., Fabrication of comb-like ZnO nanostructures for room-temperature CO gas sensing application. Vacuum, 2014. 101: p. 113-117.
48.Wang, C.Y., et al., Oxidation behaviour of carbon monoxide at the photostimulated surface of ZnO nanowires. Journal of Physics D: Applied Physics, 2011. 44(30): p. 305302.
49.Yang, P.D., et al., Controlled growth of ZnO nanowires and their optical properties. Advanced Functional Materials, 2002. 12(5): p. 323-331.
50.Rajabi, M., R.S. Dariani, and A. Iraji zad, Effect of growth conditions on zinc oxide nanowire array synthesized on Si (100) without catalyst. Materials Science in Semiconductor Processing, 2013. 16(1): p. 171-178.
51.Dhara, S. and P. Giri, Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires. Nanoscale Res Lett, 2011. 6: p. 504.
52.Wei, T.-Y., et al., Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor. Journal of the American Chemical Society, 2009. 131(48): p. 17690-17695.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top