跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊佑
研究生(外文):Jun-You Chen
論文名稱:結合螺絲幫浦與微成型製程於拋棄式血型檢測晶片應用與薄膜轉印技術於奈米碳管之排列研究
論文名稱(外文):Combination of screw pump and microgap formation for blood typing test & A study of carbon nanotube arrangement using thin film transferring method
指導教授:陳建甫陳建甫引用關係
指導教授(外文):Chien-Fu Chen
口試委員:吳明勳林宗宏
口試委員(外文):Ming-Hsun WuZong-Hong Lin
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:65
中文關鍵詞:微流體元件熱塑性塑膠血型檢測單壁奈米碳管奈米碳管薄膜
外文關鍵詞:microfluidics devicethermoplasticblood typing detectionsingle carbon nanotubescarbon nanotubes films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究實現一次可拋棄式比色法血型檢測元件之研發與製造,元件使用熱塑性塑膠基材Cyclic olefin polymers (COP)作為基底,整合螺絲幫浦、微型過濾器以及微型混合器於此實驗室晶片系統中。實驗係利用市售直徑2 mm之螺絲製備螺絲幫浦,藉由螺絲轉動產生之壓力來驅動血液於微流道中流動,與下游預先儲存之抗體相互作用,經過微型混合器產生快速反應,使紅血球產生凝集現象,此凝結結果會在利用紫外光臭氧表面改質處理後,以溶劑接合方式產生一狹窄微流道之微型過濾器前,將凝集的紅血球細胞過濾聚集於微流道內部,結果便可直接透過肉眼進行觀察,達到不需要外在設備情況下,可以用肉眼快速判斷待測者ABO以及Rh血型之目的,所需血液量只需要1 μL,並於1分鐘內獲得無疑慮之結果。
本研究第二部分研究奈米薄膜轉印技術於奈米碳管之排列觀察,首先將奈米碳管溶液透過真空過濾法完成奈米碳管薄膜形成,接著利用熱壓合轉印技術,將奈米碳管薄膜轉印貼附於矽晶圓。此部分探討不同熱壓合轉印參數於奈米碳管薄膜成形結果,研究透過多功能掃描探針顯微鏡觀察,了解不同參數形成之奈米碳管排列情形,進一步實現奈米薄膜轉印技術之可行性。


In this study, a disposable colorimetric detection platform for rapid blood grouping has been developed. A screw pump, low-aspect-ratio filters and micromixers are integrated in the polymeric chip system. Commercial available screw with the diameter of 2 millimeter is used as the pressure source to actuate the blood flow in a microfluidic channel followed by rapid interacting with downstream antibodies through micromixers. The coagulated red blood cells are then blocked at low-aspect-ratio filters fabricated using selective solvent swelling method and showed as a red line. The ABO and Rh blood group tests can be directly observed by the naked eye without external equipment. In addition, the required amount of blood is only 1 μL, and unambiguous result can be obtained within one minute.
The second part of the study is carbon nanotube alignment test using thin film transferring method. Carbon nanotube solution is first through vacuum filtration to form the carbon nanotube film, followed by hot-pressing process to transfer nanotube film to the silicon wafer. Various transferring parameters are characterized through atomic force microscope and scanning electron microscope to observe the morphology of carbon nanotubes arrangement and test the feasibility of nanofilm transferring technology.


誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 前言 -1-
1.1研究動機 -1-
1.2文獻回顧 -4-
1.2.1微流體晶片系統 -4-
1.2.2微流體晶片製程材料 -6-
1.2.3微流體晶片接合方式 -10-
1.2.4血型系統檢測與分析 -14-
1.2.5奈米碳管之材料介紹與應用 -17-
1.3研究原理與方法 -21-
1.3.1微流體晶片溶劑接合方式 -21-
1.3.2紫外光臭氧表面改質處理 -22-
1.3.3血型分析方法 -23-
1.3.4奈米碳管薄膜組成方式 -24-
1.4研究目標 -25-
第二章 實驗材料與方法 -27-
2.1實驗藥品與材料 -27-
2.2儀器設備 -28-
2.3紫外光臭氧表面改質處理之COP材料性質變化 -29-
2.3.1水滴接觸角量測 -29-
2.3.2表面化學鍵結分析 -29-
2.3.3紫外光臭氧處理產生之狹窄微流道觀察 -29-
2.4 螺絲幫浦 -31-
2.4.1晶片製備與清潔 -31-
2.4.2流道晶片 -31-
2.4.3上蓋晶片 -31-
2.4.4溶劑接合 -32-
2.5血型檢測晶片製備 -34-
2.5.1蛇型微流道晶片 -34-
2.5.2螺絲幫浦上蓋晶片 -34-
2.5.3微型混合器 -35-
2.5.4微型過濾器 -35-
2.6血型玻片法檢測 -36-
2.7血型檢測晶片檢測方式 -36-
2.8單壁奈米碳管薄膜製備 -37-
2.8.1 Sodium dodecyl sulfate(SDS)溶液配置 -37-
2.8.2單壁奈米碳管溶液製備 -37-
2.8.3單壁奈米碳管薄膜形成 -37-
2.9單壁奈米碳管薄膜轉印製程 -39-
第三章 實驗結果與討論 -40-
3.1 COP基材紫外光臭氧表面改質處理 -40-
3.1.1 COP基材之表面化學鍵結分析 -41-
3.1.2 COP基材之材料性質變化 -43-
3.2螺絲幫浦耐壓測試 -44-
3.3血型檢測比色法分析 -45-
3.3.1血型玻片法 -45-
3.3.2血型檢測晶片 -46-
3.4單壁奈米碳管薄膜 -48-
3.5不同奈米薄膜轉印參數於奈米碳管排列觀察 -50-
第四章 結論 -58-
參考文獻 -60-


[1]Chin, C.D., V. Linder, and S.K. Sia, Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip, 2007. 7(1): p. 41-57.
[2]Yager, P., et al., Microfluidic diagnostic technologies for global public health. Nature, 2006. 442(7101): p. 412-418.
[3]Harrison, D.J., et al., Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Analytical Chemistry, 1992. 64(17): p. 1926-1932.
[4]Manz, A., N. Graber, and H.á. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1990. 1(1): p. 244-248.
[5]Malomgré, W. and B. Neumeister, Recent and future trends in blood group typing. Analytical and Bioanalytical Chemistry, 2009. 393(5): p. 1443-1451.
[6]Lapierre, Y., et al., The gel test: a new way to detect red cell antigen‐antibody reactions. Transfusion, 1990. 30(2): p. 109-113.
[7]Harmening, D., L. Lasky, and P. Latchaw, Blood preservation: historical perspectives, review of metabolism and current trends. Modern blood banking and transfusion practices. 4th ed. Philadelphia, PA: FA Davis co, 1999.
[8]Knight, R. and M. De Silva, New technologies for red-cell serology. Blood Reviews, 1996. 10(2): p. 101-110.
[9]Wong, E.W., P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997. 277(5334): p. 1971-1975.
[10]Hone, J., et al., Thermal conductivity of single-walled carbon nanotubes. Physical Review B, 1999. 59(4): p. R2514.
[11]Duesberg, G.S., et al., Growth of isolated carbon nanotubes with lithographically defined diameter and location. Nano letters, 2003. 3(2): p. 257-259.
[12]Yao, Z., C.L. Kane, and C. Dekker, High-field electrical transport in single-wall carbon nanotubes. Physical Review Letters, 2000. 84(13): p. 2941.
[13]Arora, A., et al., Latest developments in micro total analysis systems. Analytical Chemistry, 2010. 82(12): p. 4830-4847.
[14]Melin, J. and S.R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct., 2007. 36: p. 213-231.
[15]Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-373.
[16]Erickson, D. and D. Li, Integrated microfluidic devices. Analytica Chimica Acta, 2004. 507(1): p. 11-26.
[17]Kang, J.H. and J.-K. Park, Development of a microplate reader compatible microfluidic device for enzyme assay. Sensors and Actuators B: Chemical, 2005. 107(2): p. 980-985.
[18]Xu, B., BioMEMS enabled drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 2005. 1(2): p. 176-177.
[19]Burns, M.A., et al., An integrated nanoliter DNA analysis device. Science, 1998. 282(5388): p. 484-487.
[20]Kopp, M.U., A.J. De Mello, and A. Manz, Chemical amplification: continuous-flow PCR on a chip. Science, 1998. 280(5366): p. 1046-1048.
[21]Gray, B., et al., Novel interconnection technologies for integrated microfluidic systems. Sensors and Actuators A: Physical, 1999. 77(1): p. 57-65.
[22]Harrison, D.J., P. Glavina, and A. Manz, Towards miniaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors. Sensors and Actuators B: Chemical, 1993. 10(2): p. 107-116.
[23]Martynova, L., et al., Fabrication of plastic microfluid channels by imprinting methods. Analytical Chemistry, 1997. 69(23): p. 4783-4789.
[24]Anderson, J.R., et al., Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Analytical Chemistry, 2000. 72(14): p. 3158-3164.
[25]Duffy, D.C., et al., Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Analytical Chemistry, 1998. 70(23): p. 4974-4984.
[26]Xu, J., et al., Room-temperature imprinting method for plastic microchannel fabrication. Analytical Chemistry, 2000. 72(8): p. 1930-1933.
[27]McCormick, R.M., et al., Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Analytical Chemistry, 1997. 69(14): p. 2626-2630.
[28]Giselbrecht, S., et al., 3D tissue culture substrates produced by microthermoforming of pre-processed polymer films. Biomedical Microdevices, 2006. 8(3): p. 191-199.
[29]Fiorini, G.S. and D.T. Chiu, Disposable microfluidic devices: fabrication, function, and application. BioTechniques, 2005. 38(3): p. 429-446.
[30]Tsao, C.-W. and D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluidics and Nanofluidics, 2009. 6(1): p. 1-16.
[31]Becker, H. and C. Gärtner, Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, 2008. 390(1): p. 89-111.
[32]Dang, F., et al., Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method. Lab on a Chip, 2005. 5(4): p. 472-478.
[33]Thamdrup, L.H., A. Klukowska, and A. Kristensen, Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA. Nanotechnology, 2008. 19(12): p. 125301.
[34]Psaltis, D., S.R. Quake, and C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 2006. 442(7101): p. 381-386.
[35]Lee, J.N., C. Park, and G.M. Whitesides, Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Analytical Chemistry, 2003. 75(23): p. 6544-6554.
[36]Rolland, J.P., et al., Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. Journal of the American Chemical Society, 2004. 126(8): p. 2322-2323.
[37]Shin, J.Y., et al., Chemical structure and physical properties of cyclic olefin copolymers (IUPAC technical report). Pure and Applied Chemistry, 2005. 77(5): p. 801-814.
[38]Nunes, P.S., et al., Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluidics and Nanofluidics, 2010. 9(2-3): p. 145-161.
[39]Bustgens, B., et al. Micropump manufactured by thermoplastic molding. in Micro Electro Mechanical Systems, 1994, MEMS''94, Proceedings, IEEE Workshop on. 1994. IEEE.
[40]Schomburg, W., et al., AMANDA—low-cost production of microfluidic devices. Sensors and Actuators A: Physical, 1998. 70(1): p. 153-158.
[41]Wu, H., B. Huang, and R.N. Zare, Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab on a Chip, 2005. 5(12): p. 1393-1398.
[42]Abgrall, P., L.-N. Low, and N.-T. Nguyen, Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab on a Chip, 2007. 7(4): p. 520-522.
[43]Chen, G., F. Svec, and D.R. Knapp, Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer. Lab on a Chip, 2008. 8(7): p. 1198-1204.
[44]Kameoka, J., et al., A polymeric microfluidic chip for CE/MS determination of small molecules. Analytical Chemistry, 2001. 73(9): p. 1935-1941.
[45]Hromada, L.P., et al., Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip. Lab on a Chip, 2008. 8(4): p. 602-608.
[46]Bhattacharyya, A. and C.M. Klapperich, Mechanical and chemical analysis of plasma and ultraviolet–ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab on a Chip, 2007. 7(7): p. 876-882.
[47]Liston, E., L. Martinu, and M. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review. Journal of Adhesion Science and Technology, 1993. 7(10): p. 1091-1127.
[48]Chen, C., et al., High-pressure needle interface for thermoplastic microfluidics. Lab on a Chip, 2009. 9(1): p. 50-55.
[49]Ogilvie, I., et al., Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. Journal of Micromechanics and Microengineering, 2010. 20(6): p. 065016.
[50]Wallow, T.I., et al., Low-distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation. Lab on a Chip, 2007. 7(12): p. 1825-1831.
[51]Mair, D.A., et al., Room-temperature bonding for plastic high-pressure microfluidic chips. Analytical Chemistry, 2007. 79(13): p. 5097-5102.
[52]Mair, D.A., et al., Injection molded microfluidic chips featuring integrated interconnects. Lab on a Chip, 2006. 6(10): p. 1346-1354.
[53]Su, Y.-C. and L. Lin, Localized bonding processes for assembly and packaging of polymeric MEMS. Advanced Packaging, IEEE Transactions on, 2005. 28(4): p. 635-642.
[54]Lei, K.F., et al., Microwave bonding of polymer-based substrates for potential encapsulated micro/nanofluidic device fabrication. Sensors and Actuators A: Physical, 2004. 114(2): p. 340-346.
[55]Yussuf, A., et al., Microwave welding of polymeric-microfluidic devices. Journal of Micromechanics and Microengineering, 2005. 15(9): p. 1692.
[56]Bundgaard, F., G. Perozziello, and O. Geschke, Rapid prototyping tools and methods for all-Topas® cyclic olefin copolymer fluidic microsystems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006. 220(11): p. 1625-1632.
[57]Reid, M.E., C. Lomas-Francis, and M.L. Olsson, The blood group antigen factsbook. 2012: Academic Press.
[58]Wiener, A.S., Genetic Theory of the Rh Blood Types. Experimental Biology and Medicine, 1943. 54(3): p. 316-319.
[59]Kim, D.S., et al., Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab on a Chip, 2006. 6(6): p. 794-802.
[60]Choi, S.H., D.S. Kim, and T.H. Kwon, Microinjection molded disposable microfluidic lab-on-a-chip for efficient detection of agglutination. Microsystem Technologies, 2009. 15(2): p. 309-316.
[61]Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
[62]Henning, T. and F. Salama, Carbon in the Universe. Science, 1998. 282(5397): p. 2204-2210.
[63]Rao, C.N.R., et al., Nanotubes. ChemPhysChem, 2001. 2(2): p. 78-105.
[64]Dresselhaus, M., G. Dresselhaus, and R. Saito, Physics of carbon nanotubes. Carbon, 1995. 33(7): p. 883-891.
[65]Avouris, P., et al., Carbon nanotube electronics. Proceedings of the IEEE, 2003. 91(11): p. 1772-1784.
[66]Ebbesen, T. and P. Ajayan, Large-scale synthesis of carbon nanotubes. Nature, 1992. 358(6383): p. 220-222.
[67]Thess, A., et al., Crystalline ropes of metallic carbon nanotubes. Science-AAAS-Weekly Paper Edition, 1996. 273(5274): p. 483-487.
[68]Soh, H.T., et al., Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Applied Physics Letters, 1999. 75(5): p. 627-629.
[69]De Volder, M.F., et al., Carbon nanotubes: present and future commercial applications. Science, 2013. 339(6119): p. 535-539.
[70]Saito, N., et al., Safe clinical use of carbon nanotubes as innovative biomaterials. Chemical Reviews, 2014. 114(11): p. 6040-6079.
[71]Tans, S.J., A.R. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature, 1998. 393(6680): p. 49-52.
[72]Kong, J., et al., Nanotube molecular wires as chemical sensors. Science, 2000. 287(5453): p. 622-625.
[73]Tsao, C., et al., Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab on a Chip, 2007. 7(4): p. 499-505.
[74]Kim, S., M. Park, and K. Han, Transfusion medicine. 1999.
[75]Migeot, V., et al., Reliability of bedside ABO testing before transfusion. Transfusion, 2002. 42(10): p. 1348-1355.
[76]Rowell, M.W., et al., Organic solar cells with carbon nanotube network electrodes. Applied Physics Letters, 2006. 88(23): p. 233506.
[77]Safadi, B., R. Andrews, and E. Grulke, Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. Journal of Applied Polymer Science, 2002. 84(14): p. 2660-2669.
[78]Kaempgen, M., et al., Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Letters, 2009. 9(5): p. 1872-1876.
[79]Zavodchikova, M.Y., et al., Carbon nanotube thin film transistors based on aerosol methods. Nanotechnology, 2009. 20(8): p. 085201.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top