跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡佾芩
研究生(外文):Yi-Chin Tsai
論文名稱:奈米碳材為基底之生物感測器的開發
論文名稱(外文):Development of Carbon-Based Nonomaterials Integrated Biosensors
指導教授:林淑萍林淑萍引用關係
指導教授(外文):Shu-Ping Lin
口試委員:林淑宜孫嘉良
口試委員(外文):Shu-Yi LinChia-Liang Sun
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:61
中文關鍵詞:奈米碳管石墨烯奈米帶表面特性電性量測分析
外文關鍵詞:carbon nanotubegraphene nanoribbonsurface propertyelectrical measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為發展單壁奈米碳管(Single-walled Carbon Nanotube, SWCNT)及石墨烯奈米帶(Graphene Oxide Nanoribbon, GONR)做為生物感測器,其製作方式是將(3-Aminopropyl) trimethoxysilane (APTMS)修飾於矽晶圓表面之SiO2層,使其表面具有氨根(-NH2)的自組裝單分子層(self-assembled monolayers, SAMs),接著將矽晶圓分別浸泡至酸化過的奈米碳管以及石墨烯奈米帶溶液中,利用EDC/NHS活化NH2及氧化官能基使其形成醯胺鍵結穩定的貼附於矽基材表面,另外再以聯胺液相還原方式消除GONR表面含氧官能基,接著利用電訊號量測系統來測定試片的基本電特性(Id-Vg及Id-Vd curves),接著利用微影製程將電極沉積於表面便完成元件的製作。透過基礎電訊號分析,SWCNT及GONR薄膜皆呈現p-type半導體,進一步計算電導值結果SWCNT平均約為300 nS;而GONR則平均約為6500 nS,GONR薄膜的電導值明顯優於SWCNT薄膜,就GONR本身則是以還原60及70分鐘後能提升其電導度表現,分別提升至21000 nS及26000 nS。在ESCA C1s區段掃描圖譜中可計算含氧官能基比例來確認還原程度,經由量化的結果可得知還原60分鐘為最佳參數,含氧官能基比例由還原前的0.19降至0.125,而再拉長還原時間至70分鐘含氧官能基比例則無再明顯下降,因此最後挑選GONR作為元件製做材料,並選擇60分鐘為還原時間參數。製成的元件初步以不同pH值溶液及3種常見的生理溶液(PBS、人工腦脊髓液、人工淚液)來做測試,發現其對於外界環境中不同溶液皆有明顯的電訊號的響應,在pH 2、4、5、6、7、8、9及11溶液中電流變化量分別為12.17、11.58、11.05、10.55、10.09、9.54、9.05、8.02 μA;而在PBS、人工腦脊髓液、人工淚液溶液中電流變化量分別為9.66 μA、10.24 μA及11.14 μA。

It is important to integrate a high density of carbon-based nanomaterials at precise areas for efficiently developing biosensing devices. Here, we used 3-aminopropyl trimethoxysilane (APTMS) self-assembled monolayer modified silicon substrates to chemically immobilize carbon-based nanomaterials, either single walled carbon nanotubes (SWCNT) or graphene oxide nanoribbon (GONR), for fabricating carbon-based biosensors. The surface properties of nanomaterials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM), and electron spectroscopy for chemical analysis (ESCA) and showed the successful integration of either SWCNT or GONR. Both SWCNT and GONR showed p-type semiconductivity. The transconductance of rGONR was 6,500 nS and showed better electrical property by contrast twith SWCNT (300 nS). The immobilized GONR was further reduced to form reduced GONR (rGONR) and showed the reduction time of 60 and 70 minutes improves the transconductance to 21,000 and 26,000 nS, respectively. In addition, the C1s spectra showed oxygen-contained functional groups in 60-minute reduction of GONR were significantly decreased from 0.19 to 0.125. Therefore, the 60-minute reduction of GONR were selected and integrated with patterned electric circuit devices to form rGONR field effect transistors. The rGONR field effect transistors were used to examine varied pH solutions (pH 2, 4, 5, 6, 7, 8, 9, 11) and physiological solutions, including phosphate buffered saline (PBS), artificial cerebrospinal fluid (aCSF), and artificial tears (AT). The signals of current change in pH sensing were decreased and showed 12.17, 11.58, 11.05, 10.55, 10.09, 9.54, 9.05, and 8.02 μA, respectively. On the other hand, the current changes in sensing PBS, aCSF, and AT were independently showed 9.66, 10.24, 11.14, and 8.02 μA. Overall, rGONR-integrated biosensors are sensitive enough to discriminate varied pH levels and physiological conditions.

致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 生物感測器 2
1-2-2 奈米材料 4
1-2-3 奈米碳管 4
1-2-4 石墨烯奈米帶 7
1-2-5 還原氧化石墨烯奈米帶 9
1-3 研究動機與目的 12
第二章 材料與方法 13
2-1 實驗材料 13
2-2 實驗流程與架構 15
2-3 單壁奈米碳管薄膜的製備 16
2-3-1 單壁奈米碳管的官能基化 16
2-3-2 固定單壁奈米碳管於基材上 17
2-4 氧化石墨烯奈米帶薄膜的製備 19
2-4-1 固定氧化石墨烯奈米帶於基材上 19
2-4-2 化學還原氧化石墨烯奈米帶 20
2-5 表面分析 22
2-6 pH值溶液及生理溶液感測 22
2-6-1 pH值溶液的配製 22
2-6-2 生理溶液的配製 22
2-6-3 溶液感測裝置 22
2-7 電訊號量測系統 23
2-8 元件製作及封裝 24
第三章 實驗結果 26
3-1 酸化奈米碳管 26
3-2 奈米碳材薄膜表面形貌 27
3-3 水滴角 28
3-4 表面元素化學分析 30
3-4-1 單壁奈米碳管薄膜表面化學元素分析 30
3-4-2 氧化石墨烯奈米帶薄膜表面化學元素分析 34
3-4-3 氧化還原石墨烯奈米帶薄膜表面化學元素分析 38
3-5 拉曼光譜分析 41
3-6 基礎電特性 42
3-6-1 單壁奈米碳管薄膜基礎電特性 42
3-6-2 石墨烯奈米帶薄膜基礎電特性 44
3-7 溶液感測 47
3-7-1 pH感測 47
3-7-2 生理溶液感測 47
3-8 元件製作及溶液感測 49
第四章 討論 51
4-1 奈米材料分析 51
4-1-1 薄膜表面特性分析 51
4-2 基礎電性分析 52
4-2 溶液感測 54
第五章 結論 56
第六章 參考資料 57
附錄 以還原石墨烯奈米帶元件對多巴胺溶液感測 61


[1]M. Gerard, A. Chaubey, and B. Malhotra, "Application of conducting polymers to biosensors," Biosensors and Bioelectronics, vol. 17, pp. 345-359, 2002.
[2]E. H. Yoo and S. Y. Lee, "Glucose biosensors: an overview of use in clinical practice," Sensors (Basel), vol. 10, pp. 4558-76, 2010.
[3]吳宗遠, "生物感測器:原理與應用之簡介," CHEMISTRY (The Chinese Chemical Society, Taipei), vol. 71, pp. 253-264.
[4]D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, "Electrochemical biosensors: recommended definitions and classification," Biosensors and Bioelectronics, vol. 16, pp. 121-131, 2001.
[5]U. E. Spichiger-Keller, Chemical sensors and biosensors for medical and biological applications: John Wiley & Sons, 2008.
[6]P. Vadgama and P. W. Crump, "Biosensors: recent trends. A review," Analyst, vol. 117, pp. 1657-1670, 1992.
[7]P. N. Prasad, Introduction to biophotonics: John Wiley & Sons, 2004.
[8]W. K. Leutwyler, S. L. Bürgi, and H. Burgl, "Semiconductor clusters, nanocrystals, and quantum dots," Science, vol. 271, pp. 933-937, 1996.
[9]S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[10]M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications: Academic press, 1996.
[11]O. Zhou, R. Fleming, D. Murphy, C. Chen, R. Haddon, A. Ramirez, et al., "Defects in carbon nanostructures," Science, vol. 263, pp. 1744-1747, 1994.
[12]S. Amelinckx, D. Bernaerts, X. Zhang, G. Van Tendeloo, and J. Van Landuyt, "A structure model and growth mechanism for multishell carbon nanotubes," Science, vol. 267, pp. 1334-1338, 1995.
[13]T. Ebbesen, H. Lezec, H. Hiura, J. Bennett, H. Ghaemi, and T. Thio, "Electrical conductivity of individual carbon nanotubes," 1996.
[14]J. Suehiro, H. Imakiire, S.-i. Hidaka, W. Ding, G. Zhou, K. Imasaka, et al., "Schottky-type response of carbon nanotube NO 2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis," Sensors and Actuators B: Chemical, vol. 114, pp. 943-949, 2006.
[15]C. Staii, A. T. Johnson, M. Chen, and A. Gelperin, "DNA-decorated carbon nanotubes for chemical sensing," Nano Letters, vol. 5, pp. 1774-1778, 2005.
[16]M. Penza, P. Aversa, G. Cassano, W. Wlodarski, and K. Kalantar-Zadeh, "Layered SAW gas sensor with single-walled carbon nanotube-based nanocomposite coating," Sensors and actuators B: Chemical, vol. 127, pp. 168-178, 2007.
[17]Q. Zhao, Z. Gan, and Q. Zhuang, "Electrochemical sensors based on carbon nanotubes," Electroanalysis, vol. 14, pp. 1609-1613, 2002.
[18]C. García-Aljaro, L. N. Cella, D. J. Shirale, M. Park, F. J. Muñoz, M. V. Yates, et al., "Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms," Biosensors and Bioelectronics, vol. 26, pp. 1437-1441, 2010.
[19]M. Trojanowicz, "Analytical applications of carbon nanotubes: a review," TrAC trends in analytical chemistry, vol. 25, pp. 480-489, 2006.
[20]B. L. Allen, P. D. Kichambare, and A. Star, "Carbon Nanotube Field-Effect-Transistor-Based Biosensors," Advanced Materials, vol. 19, pp. 1439-1451, 2007.
[21]K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, "Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes," Science, vol. 306, pp. 1362-1364, 2004.
[22]M. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes," Carbon, vol. 33, pp. 883-891, 1995.
[23]T. W. Ebbesen, Carbon nanotubes: preparation and properties: CRC press, 1996.
[24]K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, et al., "Electric field effect in atomically thin carbon films," science, vol. 306, pp. 666-669, 2004.
[25]Z. Wang, Q. Shi, Q. Li, X. Wang, J. Hou, H. Zheng, et al., "Z-shaped graphene nanoribbon quantum dot device," Applied Physics Letters, vol. 91, p. 053109, 2007.
[26]J. Li, Y. Zhang, and M. Zhang, "The electronic structure and its theoretical simulation of carbon nanotube with finite length. Part II: The energy gap and its oscillation properties of short armchair nanotubes," Chemical physics letters, vol. 364, pp. 338-344, 2002.
[27]V. Barone, O. Hod, and G. E. Scuseria, "Electronic structure and stability of semiconducting graphene nanoribbons," Nano letters, vol. 6, pp. 2748-2754, 2006.
[28]M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, "Energy band-gap engineering of graphene nanoribbons," Physical review letters, vol. 98, p. 206805, 2007.
[29]L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes," Nature, vol. 458, pp. 877-880, 2009.
[30]I. Janowska, O. Ersen, T. Jacob, P. Vennégues, D. Bégin, M.-J. Ledoux, et al., "Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation," Applied Catalysis A: General, vol. 371, pp. 22-30, 2009.
[31]D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, et al., "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons," Nature, vol. 458, pp. 872-876, 2009.
[32]C.-L. Sun, C.-T. Chang, H.-H. Lee, J. Zhou, J. Wang, T.-K. Sham, et al., "Microwave-assisted synthesis of a core–shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid," Acs Nano, vol. 5, pp. 7788-7795, 2011.
[33]M. Fernandez-Merino, L. Guardia, J. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, et al., "Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions," The Journal of Physical Chemistry C, vol. 114, pp. 6426-6432, 2010.
[34]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558-1565, 2007.
[35]D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chemical Society Reviews, vol. 39, pp. 228-240, 2010.
[36]S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, "A chemical route to graphene for device applications," Nano letters, vol. 7, pp. 3394-3398, 2007.
[37]S. Stankovich, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets," Carbon, vol. 44, pp. 3342-3347, 2006.
[38]V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nature nanotechnology, vol. 4, pp. 25-29, 2009.
[39]D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nature nanotechnology, vol. 3, pp. 101-105, 2008.
[40]C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, et al., "Electronic transport properties of individual chemically reduced graphene oxide sheets," Nano letters, vol. 7, pp. 3499-3503, 2007.
[41]G. Chen, D. Wu, W. Weng, and C. Wu, "Exfoliation of graphite flake and its nanocomposites," Carbon, vol. 41, pp. 619-621, 2003.
[42]J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W.-F. Hwang, and J. M. Tour, "Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets," Journal of the American Chemical Society, vol. 130, pp. 16201-16206, 2008.
[43]H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, et al., "Functionalized single graphene sheets derived from splitting graphite oxide," The Journal of Physical Chemistry B, vol. 110, pp. 8535-8539, 2006.
[44]G. Williams, B. Seger, and P. V. Kamat, "TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide," ACS nano, vol. 2, pp. 1487-1491, 2008.
[45]A. Hirsch and O. Vostrowsky, "Functionalization of carbon nanotubes," in Functional molecular nanostructures, ed: Springer, 2005, pp. 193-237.
[46]R. Tian, O. Seitz, M. Li, W. Hu, Y. J. Chabal, and J. Gao, "Infrared Characterization of Interfacial Si− O Bond Formation on Silanized Flat SiO2/Si Surfaces," Langmuir, vol. 26, pp. 4563-4566, 2010.
[47]S. Sam, L. Touahir, J. Salvador Andresa, P. Allongue, J.-N. Chazalviel, A. Gouget-Laemmel, et al., "Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces," Langmuir, vol. 26, pp. 809-814, 2009.
[48]X. Gao, J. Jang, and S. Nagase, "Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design," The Journal of Physical Chemistry C, vol. 114, pp. 832-842, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top