跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/15 12:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴冠憓
研究生(外文):Guan-Huei Lai
論文名稱:聚亞醯胺/磷酸鋯與聚(醯胺-亞醯胺)/磷酸鋯奈米複合薄膜之阻水及防腐蝕性質研究
論文名稱(外文):Moisture Barrier and Anticorrosion Properties of Polyimide/Zirconium Phosphate and Poly(amide-imide)/Zirconium Phosphate Nanocomposites Film
指導教授:駱安亞
指導教授(外文):An-Ya Lo
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:92
中文關鍵詞:聚亞醯胺聚醯胺亞醯胺磷酸鋯水氣阻隔防腐蝕
外文關鍵詞:PolyimidePoly(amide-imide)Zirconium phosphateWater vapor transmission rateAnticorrosion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分為兩個部份,第一部份是層狀材料-磷酸鋯之製備與鑑定;第二部分為聚亞醯胺/磷酸鋯及聚(醯胺-亞醯胺)/磷酸鋯奈米複合薄膜之製備與特性研究。磷酸鋯之製備主要是利用熱迴流法製備奈米層狀材料-磷酸鋯 ( α-zirconium phosphate, α-ZrP ),並藉由FTIR、XRD、SEM、TEM對其結構加以鑑定。而複合薄膜之部分則是將本研究所合成出來之人工層狀材料與4,4'-Oxydianiline ( ODA )、Pyromellitic dianhydride ( PMDA )、Trimellitic Anhydride Chloride (TMAC) 三種單體進行聚縮合反應而得,其中改變酸酐單體PMDA與TMAC之比例,再進行一系列薄膜特性分析。
首先經由傅利葉紅外線光譜 ( FTIR ) 分析得到聚亞醯胺 ( PI )及聚(醯胺-亞醯胺) ( PAI ) 在亞醯胺化前後官能基的改變情形,藉此推測成功的進行聚縮合反應以達到亞醯胺化之目的。PI-1-TMAC/ZrP系列複合薄膜之水氣降幅高於PI-0.5-TMAC/ZrP系列複合薄膜,當中PI-1-TMAC/ZrP系列複合薄膜在添加3 wt%的ZrP後,可由原本的116.36g/m2-day降至13.43 g/m2-day,降幅更達88%。由於PI-1-TMAC中醯胺基能幫助ZrP在基材內分散,加上ZrP本身具有高表面積比,能夠延長水氣透過路徑,故使Water Vapor Transmission Rate ( WVTR ) 值下降。在腐蝕電化學分析中複合薄膜在添加5 wt%之ZrP後呈現最佳的防腐蝕效果。

The main studies of this dissertation are divided into two parts: (1) preparation and appraisal of the α-Zirconium Phosphate ( α-ZrP );(2) synthesize and characterize of the Polyimide/Zirconium Phosphate ( PI/ZrP ) and Poly(amide-imide)/Zirconium Phosphate ( PAI/ZrP ) nanocomposite films.
In this study, – the α-zirconium phosphate ( α-ZrP ) was prepared by thermal reflex method.The characterization and structure was confirmed by FTIR, XRD spectroscopy and SEM, TEM images. The composite films are synthesized from 4,4'-oxydianiline ( ODA ), Pyromellitic dianhydride ( PMDA ) and trimellitic anhydride chloride ( TMAC ) via polymerization method, which change molar ratio of anhydride monomer PMDA and TMAC, the contents of ZrP, and then a series of composite films characteristic analysis.
The water vapor transmission rate ( WVTR ) of series of PI-1-TMAC/ZrP films are the lowest one compared with series of PI-0.5-TMAC/ZrP films. A significant decrease in WVTR by 88%, from 116.36 to 13.43 g/ m2-day, was observed upon the addition of 5 wt% of ZrP in PI-1-TMAC matrix. The the strong interfacial adhesion between ZrP and PI-1-TMAC matrix, distribution of ZrP with the features of high aspect ratio and high specific surface area in PI-1-TMAC matrix could effectively extend the path of the water vapor passing through the thin film, thus significantly improved water vapor barrier property. In electrochemical corrosion measurements of PI/ZrP nanocomposites. The CRS coated with PI/5 shows the best anticorrosion than those coated with pure PI and uncoated CRS.

摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1前言 1
1-2研究動機 3
第二章 理論與文獻回顧 5
2-1聚亞醯胺簡介 5
2-1-1縮合型聚亞醯胺 7
2-1-2加成型聚亞醯胺 8
2-2聚(醯胺-亞醯胺)簡介 9
2-3聚醯胺及聚(醯胺-亞醯胺)之特性比較與應用 15
2-4磷酸鋯 17
2-5氣體阻障層 23
2-6防腐蝕原理 29
第三章 實驗方法 34
3-1實驗藥品 34
3-2儀器設備 37
3-3實驗步驟 39
3-3-1 單體純化 39
3-3-2 聚亞醯胺與聚(醯胺-亞醯胺)薄膜之製備 39
3-3-3 磷酸鋯之製備 41
3-3-4 聚亞醯胺與聚(醯胺-亞醯胺)/磷酸鋯薄膜之製備 41
3-3-5 防腐蝕測試之試片製作 43
3-3-6 代號說明 43
第四章 結果與討論 44
4-1 磷酸鋯合成之鑑定 44
4-1-1磷酸鋯之型態鑑定 44
4-1-2 磷酸鋯之晶格鑑定 46
4-1-3磷酸鋯之官能基鑑定 47
4-2複合薄膜之特性分析 48
4-2-1複合薄膜之FTIR鑑定 48
4-2-2複合薄膜之SEM鑑定 50
4-2-3複合薄膜之熱穩定性分析 52
4-2-4複合薄膜之尺寸安定性分析 56
4-2-5複合薄膜水氣透過率分析 60
4-2-6複合薄膜之電化學特性分析 63
第五章 結論 69
第六章 參考文獻 70

1. 田宏隆, 可撓式顯示器用奈米類玻璃基板材料. 工業材料雜誌, 226 164-170, (2005).
2. 呂奇明、蘇俊瑋, 可撓式顯示器基板材料與成型技術. 工業材料雜誌, 273 (2009).
3. Myeon-Cheon Choi, Youngkyoo Kim, and Chang-Sik Ha, Polymers for flexible displays: From material selection to device applications. Progress in Polymer Science, 33 (6), 581-630, (2008).
4. 鄭培毓, 可撓式塑膠基板拓展新應用領域. 光連雙月刊, 37 52-55, (2002).
5. 田宏隆, 平面顯示器用可撓式塑膠基材技術與應用. 工業材料雜誌, 195 156-162, (2003).
6. 葉瑞銘、翁暢健, 有機無機混成奈米複合材料. THE CHINESE CHEM. SOC., 62 473-482, (2004).
7. 王登彥, 林東穎, 張均豪, 有機薄膜製程與影響均勻度參數探討. 機械工業雜誌, 21-24, (2008).
8. 謝俊雄, 工程塑膠. (1983).
9. Roemer Rex Renshaw Marston Taylor Bogert <4-AMINO-0-PHTHALIC ACID AND SOME OF ITS DERIVATIVES..pdf>. J. Am. Chem. Soc., 30 1135-1144, (1908).
10. E.W. M and M.R. Ivan, Polyimides of pyromellitic acid, (1955).
11. Malay Ghosh, Polyimides: fundamentals and applications. (1996).
12. Marc JM Abadie and Alexander L Rusanov, Practical Guide to Polyimides: Processable Aromatic Polyimides Based on Non-traditional Raw Materials. (2007).
13. D. Likhatchev, C. Gutierrez-Wing, I. Kardash, and R. Vera-Graziano, Soluble aromatic polyimides based on 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane: Synthesis and properties. Journal of Applied Polymer Science, 59 (4), 725-735, (1996).
14. 李政佳, 聚(苯胺-鄰苯胺磺酸)/聚亞醯胺摻合膜之研究與應用, 化工與材料工程系, 183, (2014).
15. 江仁吉, 奈米碳管/氮化硼/石墨烯/聚亞醯胺奈米複合薄膜之研究, 化工與材料工程系, 213, (2012).
16. 蔡孟峰, 含氟可溶性聚醯胺-醯亞胺之合成及性質研究, 化學工程學系碩博士班, 97, (2003).
17. G.W. F, N.J.M. A, Novel polyimides, (1956).
18. 蔡育維, 銀填充多層奈米碳管/聚(醯胺-亞醯胺)奈米複合膜材之製備與特性分析, 化工與材料工程系, 64, (2009).
19. 蔡宗沛, 含矽聚醯胺-醯亞胺的合成及性質研究, 化學工程學系碩博士班, 107, (2003).
20. Nguyen Chau, Taeko Muramatsu, and Yoshio Iwakura, Regular copolymers derived from bis(2-oxazolines). II. Synthesis of polyamides and polyamide-imides containing oxyethylene linkages. Journal of Polymer Science: Polymer Chemistry Edition, 20 (1), 137-145, (1982).
21. C.B. M, Aromatic polyimideamides prepared from aromatic tetracarboxylic acid dianhydrides and aminoaromatic hydrazides, (1969).
22. Nathalie Sintès-Zydowicz, Quang Tho Pham, and Philippe Michaud, Low-molecular-weight poly(imide-amide)s obtained by copolycondensation of 4,4′methylenedi(phenyl isocyanate), trimellitic acid anhydride and benzoic acid in N-methyl-2-pyrrolidone, 1. The microstructure studied by 1H and 13C NMR. Die Makromolekulare Chemie, 194 (8), 2295-2307, (1993).
23. W. Wrasidlo and J. M. Augl, Phenylated polyquinoxalines from bis(phenylglyoxaloyl)benzene. Journal of Polymer Science Part A-1: Polymer Chemistry, 7 (12), 3393-3405, (1969).
24. J. M. Adduci, S. K. Sikka, L. E. Miqueles, and R. S. Ramirez, Thermally stable sulfone-containing poly(amide-imides). Journal of Polymer Science: Polymer Chemistry Edition, 11 (6), 1321-1325, (1973).
25. S. J. Havens and P. M. Hergenrother, Polyamideimides containing carbonyl and ether connecting groups. Journal of Polymer Science Part A: Polymer Chemistry, 28 (9), 2427-2436, (1990).
26. Noboru Yamazaki, Fukui Higashi, and Juheiji Kawabata, Studies on reactions of the N-phosphonium salts of pyridines. XI. Preparation of polypeptides and polyamides by means of triaryl phosphites in pyridine. Journal of Polymer Science: Polymer Chemistry Edition, 12 (9), 2149-2154, (1974).
27. Noboru Yamazaki, Makoto Matsumoto, and Fukuji Higashi, Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. Journal of Polymer Science: Polymer Chemistry Edition, 13 (6), 1373-1380, (1975).
28. Fukuji Higashi, Shin-Ichi Ogata, and Yasuhiro Aoki, High-molecular-weight poly(p-phenyleneterephthalamide) by the direct polycondensation reaction with triphenyl phosphite. Journal of Polymer Science: Polymer Chemistry Edition, 20 (8), 2081-2087, (1982).
29. Chin-Ping Yang and Yung-Yu Yen, New poly(amide-imide)s syntheses. I. Soluble high-temperature poly(amide-imide)s derived from 2,5-bis(4-trimellitimidophenyl)-3,4-diphenylthiophene and various aromatic diamines. Journal of Polymer Science Part A: Polymer Chemistry, 30 (9), 1855-1864, (1992).
30. Chin-Ping Yang, Sheng-Huei Hsiao, and Jiun-Hung Lin, New poly(amide-imide) syntheses. V. Preparation and properties of poly(amide-imide)s based on the diimide—diacid condensed from 2,2-bis[4-(4-aminophenoxy)phenyl]propane and trimellitic anhydride. Journal of Polymer Science Part A: Polymer Chemistry, 31 (12), 2995-3002, (1993).
31. Chin-Ping Yang, Sheng-Huei Hsiao, and Hsiu-Chun Hsiao, New poly(amide-imide) syntheses. 24. Synthesis and properties of fluorinated poly(amide-imide)s based on 2,2-bis[4-(trimellitimidophenoxy)phenyl]hexafluoropropane and various aromatic diamines. Journal of Applied Polymer Science, 71 (5), 823-831, (1999).
32. Huei-Hsiung Wang and Wei-Pun Lin, Synthesis and properties of thermostable naphthalate-containing copoly(amide–imide)s. Journal of Applied Polymer Science, 65 (8), 1581-1593, (1997).
33. Huei-Hsiung Wang and Gin-Chi Lin, Synthesis of aromatic poly(amide-imide) copolymers containing para–meta benzoic structure. Journal of Applied Polymer Science, 73 (13), 2671-2679, (1999).
34. 張孟浩, 含氟聚醯胺-亞醯胺與聚醯亞胺之合成與性質之研究Π, 化學工程研究所, 92, (2004).
35. 廖德章, 陳文祥, 李名洋, 林淑玲, 高性能的工程塑膠. 科學發展月刊, (356期), 頁40-45, (2002).
36. 張謹文, 聚亞醯胺/氧化石墨烯與 聚(醯胺-亞醯胺)/氧化石墨烯複合薄膜之阻水及防腐蝕性質研究, 化工與材料工程系, 98, (2013).
37. A. Clearfield and J. A. Stynes, The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. Journal of Inorganic and Nuclear Chemistry, 26 (1), 117-129, (1964).
38. Agustín Díaz, Brian M. Mosby, Vladimir I. Bakhmutov, Angel A. Martí, James D. Batteas, and Abraham Clearfield, Self-Assembled Monolayers Based Upon a Zirconium Phosphate Platform. Chemistry of Materials, 25 (5), 723-728, (2013).
39. Luyi Sun, Woong J. Boo, Hung-Jue Sue, and Abraham Clearfield, Preparation of [small alpha]-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New Journal of Chemistry, 31 (1), 39-43, (2007).
40. Luyi Sun, Jia Liu, Sharath R. Kirumakki, Eric D. Schwerdtfeger, Robert J. Howell, Khalid Al-Bahily, Stephen A. Miller, Abraham Clearfield, and Hung-Jue Sue, Polypropylene Nanocomposites Based on Designed Synthetic Nanoplatelets. Chemistry of Materials, 21 (6), 1154-1161, (2009).
41. Dazhi Sun, Chien-Chia Chu, and Hung-Jue Sue, Simple Approach for Preparation of Epoxy Hybrid Nanocomposites Based on Carbon Nanotubes and a Model Clay. Chemistry of Materials, 22 (12), 3773-3778, (2010).
42. Hongdian Lu, Charles A. Wilkie, Ming Ding, and Lei Song, Thermal properties and flammability performance of poly (vinyl alcohol)/α-zirconium phosphate nanocomposites. Polymer Degradation and Stability, 96 (5), 885-891, (2011).
43. Peng Liu, Kevin L. White, Hiroaki Sugiyama, Jiang Xi, Takeshi Higuchi, Taiki Hoshino, Ryohei Ishige, Hiroshi Jinnai, Atsushi Takahara, and Hung-Jue Sue, Influence of Trace Amount of Well-Dispersed Carbon Nanotubes on Structural Development and Tensile Properties of Polypropylene. Macromolecules, 46 (2), 463-473, (2013).
44. Brian M. Mosby, Agustin Diaz, and Abraham Clearfield, Surface modification of layered zirconium phosphates: a novel pathway to multifunctional materials. Dalton Transactions, 43 (27), 10328-10339, (2014).
45. Brian M. Mosby, Agustín Díaz, Vladimir Bakhmutov, and Abraham Clearfield, Surface Functionalization of Zirconium Phosphate Nanoplatelets for the Design of Polymer Fillers. ACS Applied Materials & Interfaces, 6 (1), 585-592, (2014).
46. Yingjie Zhou, Rongcai Huang, Fuchuan Ding, Alex D. Brittain, Jingjing Liu, Meng Zhang, Min Xiao, Yuezhong Meng, and Luyi Sun, Sulfonic Acid-Functionalized α-Zirconium Phosphate Single-Layer Nanosheets as a Strong Solid Acid for Heterogeneous Catalysis Applications. ACS Applied Materials & Interfaces, 6 (10), 7417-7425, (2014).
47. Minhao Wong, Ryohei Ishige, Kevin L. White, Peng Li, Daehak Kim, Ramanan Krishnamoorti, Robert Gunther, Takeshi Higuchi, Hiroshi Jinnai, Atsushi Takahara, Riichi Nishimura, and Hung-Jue Sue, Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process. Nat Commun, 5 (2014).
48. Minhao Wong, Ryohei Ishige, Taiki Hoshino, Spencer Hawkins, Peng Li, Atsushi Takahara, and Hung-Jue Sue, Solution Processable Iridescent Self-Assembled Nanoplatelets with Finely Tunable Interlayer Distances Using Charge- and Sterically Stabilizing Oligomeric Polyoxyalkyleneamine Surfactants. Chemistry of Materials, 26 (4), 1528-1537, (2014).
49. Peng Li, Kevin L. White, Chien-Hong Lin, Daehak Kim, Anastasia Muliana, Ramanan Krishnamoorti, Riichi Nishimura, and Hung-Jue Sue, Mechanical Reinforcement of Epoxy with Self-Assembled Synthetic Clay in Smectic Order. ACS Applied Materials & Interfaces, 6 (13), 10188-10195, (2014).
50. Peng Li, Xingliang He, Tsao-Cheng Huang, Kevin L. White, Xi Zhang, Hong Liang, Riichi Nishimura, and Hung-Jue Sue, Highly effective anti-corrosion epoxy spray coatings containing self-assembled clay in smectic order. Journal of Materials Chemistry A, 3 (6), 2669-2676, (2015).
51. Qunhui Sun, F. Joseph Schork, and Yulin Deng, Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating. Composites Science and Technology, 67 (9), 1823-1829, (2007).
52. Hsiu-Ying Huang, Tsao-Cheng Huang, Tzu-Chun Yeh, Chung-Yen Tsai, Cheng-Ling Lai, Mei-Hui Tsai, Jui-Ming Yeh, and Yi-Chen Chou, Advanced anticorrosive materials prepared from amine-capped aniline trimer-based electroactive polyimide-clay nanocomposite materials with synergistic effects of redox catalytic capability and gas barrier properties. Polymer, 52 (11), 2391-2400, (2011).
53. Owen C. Compton, Soyoung Kim, Cynthia Pierre, John M. Torkelson, and SonBinh T. Nguyen, Crumpled Graphene Nanosheets as Highly Effective Barrier Property Enhancers. Advanced Materials, 22 (42), 4759-4763, (2010).
54. I. Hsiang Tseng, Yu-Fu Liao, Jen-Chi Chiang, and Mei-Hui Tsai, Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Materials Chemistry and Physics, 136 (1), 247-253, (2012).
55. Mei-Hui Tsai, I. Hsiang Tseng, Yu-Fu Liao, and Jen-Chi Chiang, Transparent polyimide nanocomposites with improved moisture barrier using graphene. Polymer International, 62 (9), 1302-1309, (2013).
56. Mei-Hui Tsai, Chi-Jung Chang, Horng-Hwa Lu, Yu-Fu Liao, and I. Hsiang Tseng, Properties of magnetron-sputtered moisture barrier layer on transparent polyimide/graphene nanocomposite film. Thin Solid Films, 544 (0), 324-330, (2013).
57. Jin Hwan Choi, Young Wook Park, Tae Hyun Park, Eun Ho Song, Hyun Jun Lee, Hakkoo Kim, Se Joong Shin, Vincent Lau Chun Fai, and Byeong-Kwon Ju, Fuzzy Nanoassembly of Polyelectrolyte and Layered Clay Multicomposite toward a Reliable Gas Barrier. Langmuir, 28 (17), 6826-6831, (2012).
58. P. A. Song, Y. M. Yu, T. Zhang, S. Y. Fu, Z. P. Fang, and Q. Wu, Permeability, Viscoelasticity, and Flammability Performances and Their Relationship to Polymer Nanocomposites. Industrial & Engineering Chemistry Research, 51 (21), 7255-7263, (2012).
59. Daniel A. Kunz, Jasmin Schmid, Patrick Feicht, Johann Erath, Andreas Fery, and Josef Breu, Clay-Based Nanocomposite Coating for Flexible Optoelectronics Applying Commercial Polymers. ACS Nano, 7 (5), 4275-4280, (2013).
60. Eun-Ho Song, Byung-Hyun Kang, Tan-Young Kim, Hyun-Jun Lee, Young-Wook Park, Young-Cho Kim, and Byeong-Kwon Ju, Highly Oriented Gold/Nanoclay–Polymer Nanocomposites for Flexible Gas Barrier Films. ACS Applied Materials & Interfaces, 7 (8), 4778-4783, (2015).
61. 張繼豪、葉瑞銘, 高分子奈米複合防蝕塗料. 工業材料雜誌, 331 81-90, (2014).
62. Chi-Hao Chang, Tsao-Cheng Huang, Chih-Wei Peng, Tzu-Chun Yeh, Hsin- I. Lu, Wei- I. Hung, Chang-Jian Weng, Ta- I. Yang, and Jui-Ming Yeh, Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon, 50 (14), 5044-5051, (2012).
63. Yuan-Hsiang Yu, Chien-Chih Jen, Hsiu-Ying Huang, Pei-Chi Wu, Chao-Cheng Huang, and Jui-Ming Yeh, Preparation and properties of heterocyclically conjugated poly(3-hexylthiophene)–clay nanocomposite materials. Journal of Applied Polymer Science, 91 (6), 3438-3446, (2004).
64. Yuan-Hsiang Yu, Jui-Ming Yeh, Shir-Joe Liou, and Yen-Po Chang, Organo-soluble polyimide (TBAPP–OPDA)/clay nanocomposite materials with advanced anticorrosive properties prepared from solution dispersion technique. Acta Materialia, 52 (2), 475-486, (2004).
65. Wei- I. Hung, Chang-Jian Weng, Yen-Hao Lin, Pei-Ju Chung, Sheng-Feng Tsai, Jui-Ming Yeh, and Mei-Hui Tsai, Enhanced anticorrosion coatings prepared from incorporation of well-dispersed silica nanoparticles into fluorinated polyimide matrix. Polymer Composites, 31 (12), 2025-2034, (2010).
66. Tsao-Cheng Huang, Chi-Fa Hsieh, Tzu-Chun Yeh, Cheug-Ling Lai, Mei-Hui Tsai, and Jui-Ming Yeh, Comparative studies on corrosion protection properties of polyimide-silica and polyimide-clay composite materials. Journal of Applied Polymer Science, 119 (1), 548-557, (2011).
67. Tsao-Cheng Huang, Tzu-Chun Yeh, Hsiu-Ying Huang, Wei-Fu Ji, Yi-Chen Chou, Wei- I. Hung, Jui-Ming Yeh, and Mei-Hui Tsai, Electrochemical studies on aniline-pentamer-based electroactive polyimide coating: Corrosion protection and electrochromic properties. Electrochimica Acta, 56 (27), 10151-10158, (2011).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top