(3.238.186.43) 您好!臺灣時間:2021/03/05 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴鈳紘
研究生(外文):Ko-HungTai
論文名稱:席貝克係數於水泥基材料之溫度與力學感測應用
論文名稱(外文):Thermal and Mechanical Sensing Capabilities of Cementitious Material via Seebeck Coefficient
指導教授:侯琮欽
指導教授(外文):Tsung-Chin Hou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:101
中文關鍵詞:席貝克係數水泥基材料溫度感測損傷評估
外文關鍵詞:Seebeck coefficientcement pastethermal sensingmechanical sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
熱電效應(Seebeck effect)為材料產生溫度差之後,材料內部載子濃度改變的熱電特性,本篇研究將觀察熱電效應的重要參數席貝克係數(Seebeck coefficient)變化趨勢,以作為溫度感測與損傷評估之討論依據。目前土木工程之實務,仍使用傳統混凝土建材作為施工之首選,添加纖維之建物所占比例仍為少數,但依過往文獻所示,純水泥之熱電效應過於微小,故大部分學者皆以纖維水泥為主要研究內容,而外國學者已有使用纖維水泥於混凝土梁之溫度感測的應用實例,但對損傷評估領域並無對其進行研究,而吾人發現改變加溫方式,此時純水泥會有顯著的熱電效應,故以此試驗方式討論水泥的溫度感測與損傷評估之應用。由本研究結果所示,水泥因為不均質材料故由試驗結果得知試體之席貝克係數具唯一性,無法用單一席貝克係數作為固定配比之代表用以推算溫度,因此認為以本試驗加溫方式所得之席貝克係數無法應用於溫度感測領域。而由損傷評估試驗得知,齡期、養護環境、損傷類型將對於評估能力有著顯著的影響。水泥無論於何種養護環下,席貝克係數皆會隨齡期增加而上升,故稱此現象為「齡期效應」,此效應將使評估能力有所降低,當損傷過於輕微則係數無法反應損傷,席貝克係數由齡期效應所控制呈增加走向,而係數變化趨勢改變則表示損傷影響大於齡期效應,故可確定產生損傷;而養護環境會影響載子的數量,當水泥於濕潤養護環境,此時試體離子含量較高,造成載子的擴散作用受離子影響,使成功擴散至冷端的數量有所降低,造成濕潤試體載子數量適中,以致齡期效應有所減弱,故有較佳的評估能力,而上述載子稱「有效載子」;而損傷類型將影響損傷評估的靈敏度,席貝克係數因裂縫與載子擴散路徑垂直,故較為靈敏,可反應出較輕微的撓曲損傷,而批裂損傷因路徑平型,故靈敏度較差。
The Seebeck effect is a physical phenomenon about conversion of temperature to electric voltage. When the material applied a temperature gradient, it causes carriers in the material to diffuse from the hot side to the cold side. This study observed Seebeck coefficient’s trend, which is important parameters of Seebeck effect, to sensing temperature and damage of cement paste. Cement paste loaded in different ratio of its respective force including uniaxial compression test and four point bending test to create different level and type of damage for sensing. For now civil engineering construction still use the traditional concrete materials as the preferred, so sensing capabilities of cement paste is worthy of research. As shown in this study the seebeck coefficient of cement paste is unique because it is non-homogeneous material, therefore cement paste can’t sense temperature by itself. According to this research curing period, curing environment, the type of crack have significant influence of mechanical sensing capabilities by cement paste. No matter what curing environment for cement paste, seebeck coefficient will increase with curing period. This phenomenon called time effect. This effect will reduced ability to sense low level damage. Curing environment will affect the number of carriers. When curing environment is moist will reduce the effective carrier which diffuse from the hot side to the cold side. The type of damage will affect the sensitivity of the sensing. The reason is the direction of crack can effectively affect the carrier diffusion. If cracks direction are perpendicular to carrier diffusion path, thus causing seebeck coefficient decreased significantly.
摘要......................................................I
Abstract ................................................II
誌謝.....................................................VI
目錄....................................................VII
表目錄...................................................IX
圖目錄...................................................XI

第一章 緒論
1.1 前言 1
1.2 研究動機與目的 2
1.3 本文內容與組織架構 3

第二章 文獻回顧 5
2.1 混凝土結構損傷檢測 5
2.2 水泥基材壓阻感測:始至二十世紀末 6
2.3 水泥基材壓阻感測:始於本世紀初 10
2.4 水泥基材料之導電方式 12
2.5 席貝克效應 15
2.5.1 碳纖維水泥基的熱電效應 16
2.5.2 鋼纖維水泥基的熱電效應 19
2.6 水泥基材料量測溫度的種類 21
2.6.1 水泥基熱電偶 21
2.6.2 水泥基熱敏電阻 24
2.6.3 水泥基溫度感測器之應用案例 27

第三章 試驗方法與步驟 29
3.1 試驗規劃 29
3.2 試驗材料及試驗設備 30
3.2.1 試驗材料 30
3.2.2 試驗設備 33
3.3 試體製作 40
3.4 試驗流程與方法 42
3.4.1 純水泥溫度感測 42
3.4.2 試體損傷評估 43
第四章 試驗結果與討論 46
4.1 溫度感測 46
4.1.1 個體差異 46
4.1.2 齡期效應 49
4.2 水泥試體損傷評估 52
4.2.1 乾燥試體損傷評估 54
4.2.3 養護環境 80
4.2.4 損傷類型 86

第五章 結論與建議 88
5.1 結論 88
5.2 建議 90

參考文獻 91
[1]Aı̈tcin,P.-C.,Cements of yesterday and today: concrete of tomorrow. Cement and Concrete research, 2000. 30(9):p.1349-1359.
[2]Chong,K.,Health Monitoring of Civil Structures.Journal of Intelligent Material Systems and Structures, 1999.9(11):p. 892-898.
[3]Davies,R.,Remote monitoring of reinforced concrete structures.Concrete,2004.38(5):p.14-15.
[4]Leng,J.,et al.,Structural health monitoring of concrete cylinders using protected fibre optic sensors. Smart materials and structures, 2006. 15(2): p. 302.
[5]De Backer, H.D.C., W; Van Bogaert, P, A case study on strain gauge measurements on large post-tensioned concrete beams of a railway support structure. Insight - Non-Destructive Testing and Condition Monitoring,, 2003. 45: p. 822-826.
[6]Park, S., et al., Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques. Experimental Mechanics, 2006. 46(5): p. 609-618.
[7]LI, W.A., Method for Structural Safety Monitoring of Composite Carbon Fiber Reinforced Concrete. China Safety Science Journal, 2005. 15: p. 109-112.
[8]Y.S. Deng, B.J.S., Researches on intelligent material system and its application to civil engineering. Architecture Technology, 2005. 36–2: p. 92–95.
[9]Wen, S. and D. Chung, Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars. Carbon, 2006. 44(8): p. 1496-1502.
[10]B. Chen, K.R., Wu, and W. Yao, Piezoresistivity in carbon fiber reinforced cement based composites. Journal of Materials Science and Technology, 2004. 20: p. 746-750.

[11]Li, H., H.-g. Xiao, and J.-p. Ou, Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites. Cement and Concrete Composites, 2006. 28(9): p. 824-828.
[12]C.T. Li, J.S.Q.a.Z.Q.T., Study on properties of smart concrete with steel slag. China Concrete and Cement Products, 2005. 2: p. 5-8.
[13]Li, H., H.-g. Xiao, and J.-p. Ou, A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research, 2004. 34(3): p. 435-438.
[14]Shi, Z.-Q. and D. Chung, Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion. Cement and Concrete Research, 1999. 29(3): p. 435-439.
[15]Jian, H.L., Research of the traffic weighting monitoring system based on the pressure-sensitivity of CFRC, 2004, Shantou University.
[16]Wei, W.B., A research of the traffic vehicle-speed measuring system based on the pressure-sensitivity of CFRC, 2003, Shantou University.
[17]Zheng, L., Z. Li, and X. Song, Corrosion monitoring of rebar by compression sensitivity of CFRC. Journal of Experimental Mechanics, 2004. 2: p. 013.
[18]Wen, S. and D. Chung, Carbon fiber-reinforced cement as a strain-sensing coating. Cement and Concrete Research, 2001. 31(4): p. 665-667.
[19]Zheng, L.X., Song, X.H. and Li, Z.Q, Self-monitoring of the Deformation in Smart Concrete Strusrures. J. Huazhong Univ.of Sci. and Tech, 2004. 32(4): p. 30–31.
[20]Han, B. and J. Ou, Embedded piezoresistive cement-based stress/strain sensor. Sensors and Actuators A: Physical, 2007. 138(2): p. 294-298.

[21]H.G, X., Piezoresistivity of cement-based composite filled with nonophase materials and self-sensing smart structural system, 2006, Harbin Institute of Technology.
[22]Chen, P.-W. and D.D. Chung, Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection. Smart Materials and Structures, 1993. 2(1): p. 22.
[23]Chen, P.W. and D. Chung, Carbon‐Fiber‐Reinforced Concrete as an Intrinsically Smart Concrete for Damage Assessment during Dynamic Loading. Journal of the American Ceramic Society, 1995. 78(3): p. 816-818.
[24]Chen, P.-W. and D. Chung, Concrete as a new strain/stress sensor. Composites Part B: Engineering, 1996. 27(1): p. 11-23.
[25]Chen, P.-W. and D. Chung, Carbon fiber reinforced concrete as an intrinsically smart concrete for damage assessment during static and dynamic loading. ACI materials Journal, 1996. 93(4).
[26]Fu, X. and D. Chung, Self-monitoring of fatigue damage in carbon fiber reinforced cement. Cement and Concrete Research, 1996. 26(1): p. 15-20.
[27]Fu, X. and D. Chung, Effect of curing age on the self-monitoring behavior of carbon fiber reinforced mortar. Cement and concrete Research, 1997. 27(9): p. 1313-1318.
[28]毛起炤, et al., Resistance changement of compression sensible cement speciment under different stresses. Jourrnal of Wuhan University of Technology (Materials Science Edition), 1996. 8: p. 41-45.
[29]Fu, X., et al., Self-monitoring in carbon fiber reinforced mortar by reactance measurement. Cement and concrete research, 1997. 27(6): p. 845-852.
[30]Fu, X., W. Lu, and D. Chung, Improving the strain-sensing ability of carbon fiber-reinforced cement by ozone treatment of the fibers. Cement and concrete research, 1998. 28(2): p. 183-187.

[31]Fu, X., W. Lu, and D. Chung, Ozone treatment of carbon fiber for reinforcing cement. Carbon, 1998. 36(9): p. 1337-1345.
[32]Wang, X. and D. Chung, Self-monitoring of fatigue damage and dynamic strain in carbon fiber polymer-matrix composite. Composites Part B: Engineering, 1998. 29(1): p. 63-73.
[33]Wen, S. and D. Chung, Uniaxial tension in carbon fiber reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions. Cement and concrete research, 2000. 30(8): p. 1289-1294.
[34]Wen, S. and D. Chung, Uniaxial compression in carbon fiber-reinforced cement, sensed by electrical resistivity measurement in longitudinal and transverse directions. Cement and concrete research, 2001. 31(2): p. 297-301.
[35]Wen, S. and D. Chung, A comparative study of steel-and carbon-fibre cement as piezoresistive strain sensors. Advances in cement research, 2003. 15(3): p. 119-128.
[36]Schulte, K. and C. Baron, Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Composites Science and Technology, 1989. 36(1): p. 63-76.
[37]Pramanik, P., et al., Pressure-sensitive electrically conductive nitrile rubber composites filled with particulate carbon black and short carbon fibre. Journal of Materials Science, 1990. 25(9): p. 3848-3853.
[38]Schulte, K., Damage monitoring in polymer matrix structures. Le Journal de Physique IV, 1993. 3(C7): p. C7-1629-C7-1636.
[39]Kaddour, A., et al., Electrical resistance measurement technique for detecting failure in CFRP materials at high strain rates. Composites Science and Technology, 1994. 51(3): p. 377-385.
[40]Muto, N., et al., Materials design of CFGFRP-reinforced concretes with diagnosing function for preventing fatal fracture. Advanced Composite Materials, 1995. 4(4): p. 297-308.

[41]Sugita, M., H. Yanagida, and N. Muto, Materials design for self-diagnosis of fracture in CFGFRP composite reinforcement. Smart Materials and Structures, 1995. 4(1A): p. A52.
[42]Ceysson, O., M. Salvia, and L. Vincent, Damage mechanisms characterisation of carbon fibre/epoxy composite laminates by both electrical resistance measurements and acoustic emission analysis. Scripta Materialia, 1996. 34(8): p. 1273-1280.
[43]Wang, X. and D. Chung, Real-time monitoring of fatigue damage and dynamic strain in carbon fiber polymer-matrix composite by electrical resistance measurement. Smart materials and structures, 1997. 6(4): p. 504.
[44]Fu, X. and D. Chung, Submicron carbon filament cement-matrix composites for electromagnetic interference shielding. Cement and Concrete Research, 1996. 26(10): p. 1467-1472.
[45]Irving, P. and C. Thiagarajan, Fatigue damage characterization in carbon fibre composite materials using an electrical potential technique. Smart materials and structures, 1998. 7(4): p. 456.
[46]Abry, J., et al., In situ detection of damage in CFRP laminates by electrical resistance measurements. Composites Science and Technology, 1999. 59(6): p. 925-935.
[47]Kost, J., M. Narkis, and A. Foux, Resistivity behavior of carbon‐black‐filled silicone rubber in cyclic loading experiments. Journal of applied polymer science, 1984. 29(12): p. 3937-3946.
[48]Radhakrishnan, S., S. Chakne, and P. Shelke, High piezoresistivity in conducting polymer composites. Materials letters, 1994. 18(5): p. 358-362.
[49]Taya, M., W. Kim, and K. Ono, Piezoresistivity of a short fiber/elastomer matrix composite. Mechanics of materials, 1998. 28(1): p. 53-59.
[50]Robins, P., et al., Flexural strain and crack width measurement of steel-fibre-reinforced concrete by optical grid and electrical gauge methods. Cement and Concrete Research, 2001. 31(5): p. 719-729.

[51]Wang, C.S., F. Wu, and F.-K. Chang, Structural health monitoring from fiber-reinforced composites to steel-reinforced concrete. Smart materials and Structures, 2001. 10(3): p. 548.
[52]Chen, P.-W. and D.D.L. Chung, Comparative study of concretes reinforced with carbon, polyethylene, and steel fibers and their improvement by latex addition. ACI materials journal, 1996. 93(2).
[53]Abdelrahman, A.A. and S.H. Rizkalla, Serviceability of concrete beams prestressed by carbon-fiber-reinforced-plastic bars. ACI Structural Journal, 1997. 94(4).
[54]MC Nataraja, N.D., AP Gupta, Splitting tensile strength of SFRC. ndian oncr. J, 2001. 75: p. 287-290.
[55]Sun, W., et al., The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete. Cement and Concrete Research, 2001. 31(4): p. 595-601.
[56]Wen, S. and D. Chung, Cement-based controlled electrical resistivity materials. Journal of electronic materials, 2001. 30(11): p. 1448-1451.
[57]Qu, J. and B. Han, Piezoresistive cement-based strain sensors and self-sensing concrete components. Journal of Intelligent Material Systems and Structures, 2008.
[58]Xiao, H., H. Li, and J. Ou, Modeling of piezoresistivity of carbon black filled cement-based composites under multi-axial strain. Sensors and Actuators A: Physical, 2010. 160(1): p. 87-93.
[59]Azhari, F., Cement-based sensors for structural health monitoring. 2008.
[60]Wen, S. and D. Chung, Piezoresistivity-based strain sensing in carbon fiber-reinforced cement. ACI materials journal, 2007. 104(2).

[61]Wen, S. and D. Chung, Model of piezoresistivity in carbon fiber cement. Cement and concrete research, 2006. 36(10): p. 1879-1885.
[62]Chacko, R.M., N. Banthia, and A.A. Mufti, Carbon-fiber-reinforced cement-based sensors. Canadian Journal of Civil Engineering, 2007. 34(3): p. 284-290.
[63]Bontea, D.-M., D. Chung, and G. Lee, Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement. Cement and Concrete Research, 2000. 30(4): p. 651-659.
[64]Zhu, S. and D. Chung, Theory of piezoresistivity for strain sensing in carbon fiber reinforced cement under flexure. Journal of materials science, 2007. 42(15): p. 6222-6233.
[65]Reza, F., et al., Resistance changes during compression of carbon fiber cement composites. Journal of materials in civil engineering, 2003. 15(5): p. 476-483.
[66]McCarter, W., et al., Activation energy and conduction in carbon fibre reinforced cement matrices. Journal of materials science, 2007. 42(6): p. 2200-2203.
[67]Han, B., X. Guan, and J. Ou, Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors. Sensors and Actuators A: Physical, 2007. 135(2): p. 360-369.
[68]Hou, T.-C. and J.P. Lynch. Conductivity-based strain monitoring and damage characterization of fiber reinforced cementitious structural components. in Proceedings SPIE. 2005.
[69]Xie, P., P. Gu, and J.J. Beaudoin, Electrical percolation phenomena in cement composites containing conductive fibres. Journal of Materials Science, 1996. 31(15): p. 4093-4097.
[70]Shifeng, H., et al., Smart properties of carbon fiber reinforced cement-based composites. Journal of composite materials, 2007. 41(1): p. 125-131.

[71]Reza, F., et al., Volume electrical resistivity of carbon fiber cement composites. ACI Materials Journal, 2001. 98(1).
[72]Torrents, J., et al., Analysis of the impedance spectra of short conductive fiber-reinforced composites. Journal of Materials Science, 2001. 36(16): p. 4003-4012.
[73]Li, G.Y., P.M. Wang, and X. Zhao, Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement and Concrete Composites, 2007. 29(5): p. 377-382.
[74]Raki, L., et al., Cement and concrete nanoscience and nanotechnology. Materials, 2010. 3: p. 918-942.
[75]Azhari, F. and N. Banthia, Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cement and Concrete Composites, 2012. 34(7): p. 866-873.
[76]Monfore, G.E., The electrical resistivity of concrete. 1968, Skokie, Ill.: Portland Cement Association, Research and Development Laboratories.
[77]Sun, M., et al., Study on the hole conduction phenomenon in carbon fiber-reinforced concrete. Cement and Concrete Research, 1998. 28(4): p. 549-554.
[78]Sun, M., et al., Thermoelectric percolation phenomena in carbon fiber-reinforced concrete. Cement and concrete research, 1998. 28(12): p. 1707-1712.
[79]Wen, S. and D.D.L. Chung, Seebeck effect in carbon fiber-reinforced cement. Cement and Concrete Research, 1999. 29(12): p. 1989-1993.
[80]Pollock, D.D., Thermoelectricity: theory, thermometry, tool. 1985: ASTM International.

[81]Wen, S. and D.D.L. Chung, Seebeck effect in steel fiber reinforced cement. Cement and concrete research, 2000. 30(4): p. 661-664.
[82]Wen, S. and D.D.L. Chung, Cement-based thermocouples. Cement and concrete research, 2001. 31(3): p. 507-510.
[83]Wang, S. and D.D.L. Chung, Interlaminar interface in carbon fiber polymer-matrix composites, studied by contact electrical resistivity measurement. Composite Interfaces, 1998. 6(6): p. 497-505.
[84]Fu, X. and D.D.L. Chung, Effects of Water-Cement Ratio, Curing Age, Silica Fume, Polymer Admixtures, Steel Surface Treatments and Corrosion on the Bond between Concrete and Steel Reinforcing Bar. ACI Materials Journal, 1998. 95(6).
[85]Wen, S. and D.D.L. Chung, Carbon fiber-reinforced cement as a thermistor. Cement and Concrete Research, 1999. 29(6): p. 961-965.
[86]Fu, X. and D.D.L. Chung, Contact electrical resistivity between cement and carbon fiber: its decrease with increasing bond strength and its increase during fiber pull-out. Cement and concrete research, 1995. 25(7): p. 1391-1396.
[87]Chen, P.-W., X. Fu, and D.D.L. Chung, Microstructural and mechanical effects of latex, methylcellulose, and silica fume on carbon fiber reinforced cement. ACI Materials Journal, 1997. 94(2).
[88]Wang, S. and D. Chung, Interlaminar interface in carbon fiber polymer-matrix composites, studied by contact electrical resistivity measurement. Composite Interfaces, 1998. 6(6): p. 497-505.
[89]Sun, M., et al., A study on thermal self-diagnostic and self-adaptive smart concrete structures. Cement and Concrete Research, 2000. 30(8): p. 1251-1253.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔