跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 13:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韋凱
研究生(外文):Wei-KaiChen
論文名稱:嵌埋式軌道跨橋段有限元素分析
論文名稱(外文):Finite element analysis of embedded rail on bridge deck
指導教授:郭振銘
指導教授(外文):Chen-Ming Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:63
中文關鍵詞:嵌埋式軌道橋軌互制伸縮接頭挫屈有限元素分析
外文關鍵詞:Embedded railTrack-bridge interactionExpansion jointBucklingFinite element analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
目前興建中的高雄輕軌為嵌埋式軌道,其鋼軌由彈性包覆材包覆,並嵌埋於混凝土軌道版中,為連續支承式軌道;高雄輕軌的營運路段中有一段為經過愛河橋之跨橋段,由於高雄輕軌所有軌道皆為連續長焊鋼軌,因此在經過橋梁之軌道會因為橋軌互制使鋼軌軸力複雜化,進而可能發生挫屈或拉斷等風險。
本研究將使用有限元素軟體Abaqus進行分析,對包覆鋼軌之彈性包覆材的材料參數進行實際試驗作為驗證,並建立與實際試驗相同之軌道模型驗證本研究的軌道有限元素模型之可行性;最後建立軌道-橋梁之有限元素模型,改變模型環境溫度,並分析軌道模型在增溫與降溫的軸力變化,本研究使用Abaqus進行挫屈模態分析,找出軌道挫屈之臨界載重,觀察軌道溫度上升所產生之軸力會大於挫屈臨界載重,而軌道溫度下降時產生之拉應力則是小於鋼軌最小抗拉強度,最後根據分析結果判斷軌道在跨橋段需裝設伸縮接頭以避免發生挫屈或拉斷的行為。

The light rail currently constructing in Kaohsiung is embedded rail, its rails made of an elastic coating material coated and embedded in concrete track slab, and it is continuous support track system. There is a passage of Kaohsiung Light Rail’s railroad lines has crossed the bridge of love river, all the tracks of Kaohsiung Light Rail are continuous welded rail, so the track on the bridge will have track-bridge interaction and cause the axial force of the rail become complicated, which may cause buckling or tensile failure and other risks.
The thesis used finite element software Abaqus to analysis the subject. The material parameters of the elastic coating material would have experiment as verification, and establish the track model the same as actual track to validate the feasibility of the finite element model. Finally, the thesis will establish the track-bridge finite element model, changing the temperature of the ambient, and analyzing the axial force of the rail during the warming and cooling. The thesis used Abaqus to run the buckling modal analysis to identify the critical buckling load of the track, and observing the axial force of the track generated from temperature increased will be greater than the critical buckling load. The result of the tensile stress of the rail generated from the temperature decreased is lower than the minimum tensile strength of the rail. Finally, according to the model analysis to determine the track on bridge needs to install the expansion joints to avoid buckling or tensile failure.

摘要 I
EXTENDED ABSTRACT II
誌謝 IX
目錄 X
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究流程 4
1.4 論文架構 6
第二章 背景介紹與模型建立 7
2.1 輕軌結構介紹 7
2.1.1 主要路線斷面 8
2.1.2 橋梁路線斷面 9
2.2 橋軌互制規範介紹 10
2.3 Abaqus軟體簡介 12
2.4 軌道結構模型 13
2.4.1 草圖匯入 14
2.4.2 模型參數 15
2.4.3 模型設定 20
第三章 材料與模型驗證 22
3.1 材料彈性模數驗證 22
3.1.1 量測方法 22
3.1.2 實際量測 23
3.1.3 量測結果 26
3.2 Abaqus 模型驗證 28
3.2.1 驗證方法 28
3.2.2 縱向勁度模擬驗證 29
3.2.3 垂向勁度模擬驗證 30
3.2.4 模型驗證結果 31
第四章 軌道-橋梁模型分析 35
4.1 軌道-橋梁模型建立 35
4.1.1 模型環境參數與載重 35
4.1.2 元素大小與收斂性分析 36
4.1.3 軌道-橋梁模型參數 38
4.1.4 軌道-橋梁模型簡化 39
4.2 三跨連續梁軌道軸力分析 43
4.2.1 環境溫度上升對軌道-三跨連續梁之影響 43
4.2.2 環境溫度下降對軌道-三跨連續梁之影響 47
4.2.3 軌道-橋梁介面設定對軌道軸力之影響 49
4.2.4 軌道邊界條件改變對軌道軸力之影響 50
4.3 六跨連續梁之軌道軸力分析 52
4.3.1 環境溫度上升對軌道-六跨連續梁之影響 53
4.3.2 環境溫度下降對軌道-六跨連續梁之影響 56
4.4 裝設伸縮接頭之結果分析 57
第五章 結論 60
參考文獻 62

1.Esveld, C., Recent developments in slab track application. Publication of the Department of Civil Engineering, Section of Roads and Railways, Deflt University, The Netherlands, Modified February, 1999.
2.Esveld, C., Recent developments in slab track. European Railway Review, 2003. 9(2): p. 81-85.
3.Markine, V., et al. Optimum Design of Embedded Rail Structure for High-Speed Lines. in Proc., Railway Engineering Conference. 2000.
4.Esveld, C., Modern railway track. MRT Productions, 2001.
5.Ludvigh, E., Elastic behaviour of continuously embedded rail systems. Civil Engineering, 2002. 46(1): p. 103-114.
6.Kormos, G., Longitudinal behaviour of rail embedded in elastic material. Civil Engineering, 2002. 46(1): p. 115-124.
7.交通部, 1067 公厘軌距鐵路長焊鋼軌鋪設及養護規範. 交通技術標準規範鐵路類, 2003.
8.Xu, Q.-y., et al., Mechanics model of additional longitudinal force transmission between bridges and continuously welded rails with small resistance fasteners. Journal of Central South University of Technology, 2004. 11(3): p. 336-339.
9.黃民仁, 新世紀鐵路工程學. 文笙書局, 2007.
10.Ruge, P. and C. Birk, Longitudinal forces in continuously welded rails on bridgedecks due to nonlinear track–bridge interaction. Computers & Structures, 2007. 85(7-8): p. 458-475.
11.Ruge, P., et al., Longitudinal track–bridge interaction due to sudden change of coupling interface. Computers & Structures, 2009. 87(1-2): p. 47-58.
12.許維倫, 陳則銘, and 許書銘, 鐵路橋橋軌互制案例分析及規範探討. 中興工程, 2013(118): p. 49-55.
13.高雄市政府捷運工程局, CONSTRUCTION OF KAOHSIUNG LRT PROJECT. 2014.
14.UIC, Code 774-3, Track/Bridge Interaction Recommendations for Calculations. International Union of Railways, 2001.
15.士盟科技股份有限公司, http://www.simutech.com.tw/.
16.München, T.U., Approval tests on embedded rail system according to EN 13481-5 : 2012. 2014.
17.ASTM, Standard Test Method for Young's Modulus, Tangent Modulus, and Chord Modulus. E111-04, 2010.
18.ASTM, Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Sonic Resonance. E1875-13, 2013.
19.高雄市政府捷運工程局, 高雄環狀輕軌捷運建設(第一階段)統包工程. 2013.
20.NBN, EN 14811+A1 Railway applications - Track - Special purpose rail - Grooved and associated construction. 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top