跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃彥霖
研究生(外文):Yan-LinHuang
論文名稱:改質轉爐石應用於多孔性瀝青混凝土之實驗室和現地評估
論文名稱(外文):Laboratory and Field Evaluation of Modified Basic Oxygen Furnace Slag Applied to Porous Asphalt Concrete
指導教授:陳建旭陳建旭引用關係
指導教授(外文):Jian-Shiuh Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:143
中文關鍵詞:多孔隙瀝青混凝土轉爐石
外文關鍵詞:porous asphalt concrete (PAC)Basic Oxygen Furnace Slag (BOF)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
台灣在天然粒料逐漸缺乏的情況下,尋找適當的替代粒料及節能減碳是公共工程的重要課題。本研究使用改質後的轉爐石(Basic Oxygen Furnace Slag, BOF)取代粗粒料進行多孔隙瀝青混凝土(Porous Asphalt Concrete, PAC)配比設計,並與傳統轉爐石PAC以及天然粒料PAC比較其耐久性、功能性及安全性。接著於不同溫度下,進行實驗室分析,探討抗車轍、透水和瀝青用量性質,最後分析改質轉爐石PAC以及密級配瀝青混凝土於現地鋪築前後之現地檢測數據。
  試驗結果顯示,改質轉爐石PAC強度高,穩定值、滯留強度以及回彈模數都高於對照組,三種PAC皆有良好的透水效果。鋪面溫度提高至70℃將使車轍深度大幅增加,而改質轉爐石抵抗高溫變形的能力較佳,但於高溫下的動穩定值仍無法通過規範,且直接影響到輪跡處的透水值,90℃滲透係數只有60℃的一半。顯示出養護時間對PAC的重要性。且改質轉爐石混合料的吸油率會受到養治時間的影響,需延長萃取時間以獲得更精確的實驗結果。施工後的改質轉爐石於功能性、安全性及耐久性方面皆能符合規範,且於四個月後之績效良好,屬於短期觀察,仍須持續觀察,了解長期績效。
In the case of Taiwan lacks natural pellets gradually to find suitable alternative pellets and reduce carbon emissions is an important topic of public works. The study used a modified Basic Oxygen Furnace replace coarse aggregate to do asphalt concrete (Porous Asphalt Concrete, PAC) mix design, and compare it with the traditional Basic Oxygen Furnace and natural aggregates PAC with durability, functionality and safety. Then at different temperatures, laboratory analysis, to explore anti-rutting, permeable asphalt content and nature, the final analysis the modified Basic Oxygen Furnace and dense graded asphalt concrete to be detected before and after the data with paving.

The results show that the modified Basic Oxygen Furnace PAC strength, stable value retention strength and resilience modulus are higher than three PAC there are good effects of flooding. Pavement temperature was raised to 70 ℃ will dramatically increase the depth of the rut, and modified converter stone preferred high temperature deformation resistance, but in dynamic stability values at high temperatures still can not regulate and direct impact on the value of the wheel track at permeable, 90 ℃ permeability coefficient is only half of 60 ℃. It shows the importance of curing time on the PAC. Basic Oxygen Furnace mix oil absorption will be affected raised, the need to extend the extraction time to get a more accurate results. Basic Oxygen Furnace modified after construction stone in functionality, safety and durability compliant and good performance after four months, are short-term observation, we shall continue to observe, to understand the long-term performance.
目錄
摘要........Ⅰ
Laboratory and Field Evaluation of Modified Basic Oxygen Furnace Slag
Applied to Porous Asphalt ........Ⅱ
致謝.....Ⅵ
目錄.........Ⅶ
表目錄.......ⅩⅢ
圖目錄........ⅩⅤ
第一章 緒論....1-1
1.1 前言.....1-1
1.2 研究動機...1-2
1.3 研究目的...1-3
1.4 研究範圍...1-3
第二章 文獻回顧....2-1
2.1 多孔隙瀝青混凝土....2-1
2.1.1 功能性與安全性..2-1
2.1.2多孔隙瀝青混凝土的材料...2-2
2.1.3 多孔隙瀝青混凝土路面之孔隙率...2-5
2.1.4多孔隙瀝青混凝土之鋪面特性...2-6
2.1.5 PAC的應用情況.....2-7
2.2 轉爐石....2-8
2.2.1轉爐石的製備....2-9
2.2.2 轉爐石處理及安定化...2-11
2.2.3 國外使用BOF情況...2-15
2.2.4轉爐石應用於瀝青混凝土..2-17
第三章 研究計畫...3-1
3.1 試驗架構與流程...3-1
3.2試驗材料....3-4
3.2.1 瀝青膠泥基本性質....3-4
3.2.2 粒料基本性質....3-7
3.2.3 纖維...3-9
3.2.4 填充料...3-10
3.3 多孔隙瀝青混凝土配合設計...3-11
3.3.1 多孔隙瀝青混凝土配合設計...3-11
3.3.2 穩定值及流度值試驗....3-17
3.3.3 孔隙率試驗....3-18
3.3.4 垂流試驗....3-19
3.3.5 Cantabro磨損試驗....3-20
3.3.6 滯留強度...3-20
3.3.7 透水試驗....3-21
3.3.8 回彈模數....3-22
3.3.9 間接張力試驗...3-22
3.3.10 摩擦試驗.....3-23
3.3.11 車轍輪跡試驗.....3-24
3.5 改質轉爐石PAC鋪設路段..3-27
3.5.1 鋪設前鑽心..3-27
3.5.2 鋪面結構...3-29
3.5.3 鋪築...3-30
3.6 現地檢測方法....3-33
3.6.1 功能性評估—透水量試驗..3-33
3.6.2 功能性評估—噪音量試驗..3-34
3.6.3 耐久性評估—車轍量試驗..3-35
3.6.4 耐久性評估—平坦度試驗..3-35
3.6.5 耐久性評估—Clegg衝擊試驗...3-36
3.6.6 安全性評估—摩擦試驗...3-37
第四章 結果與討論...4-1
4.1 試驗材料基本物性.... 4-1
4.1.1 改質轉爐石基本物性...4-1
4.1.2 改質三型瀝青基本物性...4-2
4.1.3 高黏度改質瀝青基本物性....4-3
4.1.4 密級配瀝青混凝土配合設計...4-4
4.1.4.1 配比設計曲線..4-4
4.1.4.2 最佳含油量試驗結果圖表.4-4
4.1.5 多孔隙瀝青混凝土配合設計...4-5
4.1.5.1 設定孔隙率目標值..4-6
4.1.5.2確定目標孔隙率..4-6
4.1.5.3 決定瀝青用量..4-8
4.1.5.4 PAC試體之工程性質..4-10
4.2 改質轉爐石與天然料添加於PAC之工程性質..4-11
4.2.1 穩定值...4-13
4.2.2 流度值....4-14
4.2.3滯留強度指數(TSR)...4-15
4.2.4 垂流與Cantabro試驗..4-16
4.2.5 間接張力強度..4-18
4.2.6 回彈模數(MR)...4-19
4.2.7 孔隙率和滲透係數試驗..4-20
4.2.8 摩擦試驗....4-22
4.2.9 車轍試驗....4-23
4.3 鋪面溫度與養治時間.....4-25
4.3.1試驗路段溫度模擬...4-25
4.3.2養護時間與車轍深度..4-27
4.3.3車轍試驗後透水值...4-33
4.3.4馬歇爾試體孔隙率與滲透係數..4-35
4.4 吸油率與含油量...4-37
4.4.1 改質轉爐石吸油率..4-37
4.4.2 瀝青含量試驗..4-38
4.4.3提高萃取試驗時間...4-42
4.5 改質轉爐石多孔性瀝青混凝土現地績效...4-44
4.5.1功能性-透水量..4-45
4.5.2 功能性-噪音..4-46
4.5.3 耐久性-平坦度...4-47
4.5.4 耐久性-車轍..4-48
4.5.5 耐久性-CIV值....4-49
4.5.6 安全性-抗滑值...4-50
第五章 結論與建議....5-1
5.1 結論....5-1
5.2 建議....5-2
參考文獻.....參-1
委員問題與建議...附-1

表目錄

表2.1.1多孔隙瀝青混凝土級配規格...2-4
表2.2.1 煉鋼爐石與天然碎石物性比較..2-18
表2.2.2 配比設計試驗結果....2-19
表3.2.1 高黏度改質瀝青規範...3-4
表3.2.2 PAC粗粒料性質規範...3-7
表3.2.3 PAC細粒料性質規範...3-8
表3.2.4 木質纖維試驗規範....3-9
表3.2.5 礦物纖維試驗規範...3-10
表3.2.6 填充料規範....3-10
表3.3.1 多孔隙瀝青混凝土級配規格....3-12
表3.3.2多孔隙瀝青混凝土之品質規定...3-17
表3.5.1 鑽心試體厚度與狀況...3-29
表4.1.1 粗粒料試驗結果與規範....4-2
表4.1.2 天然細粒料試驗結果與規範..4-2
表4.1.3 改質三型瀝青試驗結果與規範...4-3
表4.1.4 高黏度瀝青試驗結果與規範..4-3
表4.1.5 密級配試驗結果與規範..4-4
表4.1.6 PAC拌和曲線....4-7
表4.1.7 改質轉爐石PAC試驗結果與規範..4-10
表4.2.1表4.2.1 三種粒料之比較...4-11
表4.3.1 MultiCool 使用參數...4-25
表4.3.2 車轍處孔隙率與透水係數..4-33
表4.4.1 粒料吸水率...4-37
表4.4.2 廠拌數據....4-38
表4.4.3 改質轉爐石混合料瀝青含量..4-39
表4.4.4 改質轉爐石粗粒料與瀝青拌合後萃取試驗..4-40
表4.4.5 瀝青用量比對....4-42










圖目錄
圖2.2.1 一貫作業煉鋼廠爐石生產流程...2-9
圖2.2.2 各爐石種類....2-10
圖2.2.3 轉爐石改質原理....2-14
圖2.2.4 傳統轉爐石作業流程....2-14
圖2.2.5 改質轉爐石作業流程....2-15
圖2.2.6 歐盟國家2010年鋼渣再利用狀況..2-16
圖3.1.1 實驗室研究流程...3-2
圖3.1.2 現地檢測研究流程.....3-3
圖3.2.1 高黏度瀝青之韌性與張應力曲線...3-7
圖3.3.1 日本排水級配配合設計流程....3-11
圖3.3.2 空隙率與級配2.36mm過篩質量百分率關係圖.3-14
圖3.3.3 瀝青含量與垂流量關係圖....3-15
圖3.3.4 瀝青含量與飛散損失率關係圖....3-16
圖3.5.1 施工前鋪面結構.......3-27
圖3.5.2 各路段鑽心試體照..3-28
圖3.5.3 選定鋪設路段示意圖...3-30
圖3.5.4 (a)改質轉爐石PAC鋪築...3-31
圖3.5.4 (b)改質轉爐石橫向接縫加熱..3-31
圖3.5.4(c)改質轉爐石PAC鋪面完成面......3-32
圖3.5.5 BOF-PAC路段........3-32
圖3.6.1 透水量試驗.........3-33
圖3.6.2 噪音量試驗......3-34
圖3.6.3 車轍量試驗........3-35
圖3.6.4 平坦度試驗........3-36
圖3.6.5 Clegg衝擊試驗....3-37
圖3.6.6 摩擦試驗....3-37
圖4.1.1 密級配配合曲線...4-4
圖4.1.2 密級配含油量與相關試驗結果...4-5
圖4.1.3 嘗試級配與孔隙率關係圖...4-6
圖4.1.4 目標級配曲線....4-7
圖4.1.5 不同瀝青含量與垂流量關係圖...4-9
圖4.1.6 不同瀝青含量與磨損率關係圖...4-9
圖4.2.1 PAC之穩定值比較..4-13
圖4.2.2 PAC之流度值比較..4-14
圖4.2.3 PAC之滯留強度指數比較...4-15
圖4.2.4 PAC之垂流量比較..4-16
圖4.2.5 PAC之抗飛散能力比較..4-17
圖4.2.6 PAC之間接張力比較....4-18
圖4.2.7 PAC之回彈模數比較....4-19
圖4.2.8 PAC之孔隙率比較...4-20
圖4.2.9 PAC之透水試驗結果...4-21
圖4.2.10 PAC之摩擦試驗比較..4-22
圖4.2.11 PAC之車轍輪跡試驗比較..4-23
圖4.2.12 PAC之動穩定值試驗比較..4-24
圖4.3.1 時間與鋪面溫度關係圖...4-26
圖4.3.2 改質轉爐石PAC於不同溫度下載重與車轍深度圖..4-27
圖4.3.3 改質轉爐石PAC鋪面溫度與動穩定值關係圖..4-28
圖4.3.4三種粒料於60℃之車轍曲線..4-29
圖4.3.5三種粒料於70℃之車轍曲線..4-30
圖4.3.6三種粒料於90℃之車轍曲線..4-31
圖4.3.7鋪面溫度與動穩定值關係圖比較..4-32
圖4.3.8 切割後輪跡處試體..4-33
圖4.3.9 孔隙種類....4-34
圖4.3.10 馬歇爾試體與車轍試體孔隙率與透水係數.4-35
圖4.4.1 改質轉爐石試體切面圖..4-37
圖4.4.2 PAC養治前後含油量比較...4-41
圖4.4.3 萃取時間與吸油率之關聯..4-42
圖4.5.1 現地透水值變化....4-45
圖4.5.2 噪音值變化........4-46
圖4.5.3 IRI值變化...4-47
圖4.5.4 車轍量變化...4-48
圖4.5.5 CIV值變化....4-49
圖4.5.6 BPN值變化...4-50
參考文獻
日本道路協會 (1999) 「排水性鋪裝技術指針(案)」,東京。
中華鋪面工程學會 (2010) 「轉爐石應用於瀝青混凝土鋪面使用冊」,第11-14頁。
沈得縣,陳柏諭,沈美毅,李承効 (2011) 「轉爐石裹漿應用於多孔隙瀝青混凝土鋪面之研究」,鋪面工程期刊,第11卷,第55-64頁。
李日閎 (2014) 「二次粒料應用於鋪面工程之實驗室評估」,碩士論文,國立成功大學土木系,台南。
徐登文,林群凱 (2011) 「不同瀝青膠泥應用於多孔隙轉爐石瀝青混凝土行為比較之研究」,轉爐石應用於瀝青混凝土鋪面研討會論文集,第19-28頁,高雄。
黃隆昇,林登峰,王昱凱 (2012) 「轉爐石瀝青混凝土應用於屏東縣縣道之研究」,轉爐石瀝青混凝土研討會論文集,第19-41頁,高雄。
蔡柏棋,徐登科 (2014)「台灣常用爐石與工程應用實務」,技師報,No.938,台灣省土木技師公會,新北市。
歐木己(1991)「中鋼公司爐石資源化簡介」,第一屆工業減廢技術與
策略研討會,第5-9~5-26 頁,台北。
藤井郁男,兒玉威 (2001) 「鉄鋼スラグの排水性舗装用骨材への適用
   について」,土木学会北海道支部,論文報告集,第58号。
Abdullah, W. S., and Obaidat, M. T. (1998). “Influence of Aggregate
Type And Gradation on Voids of Asphalt Concrete
Pavements, Journal of Materials in Civil Engineering, Vol.10,
pp.76-85.
Alvarez, A. E., Epps-Martin, A., Estakitiri, C. K., Button, J. W., Glover, C. J., and Jung, S. H. (2006). Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses, FHWA/TX-06/0-5262-1, Texas Transoprtation Institute, College Station, Texas.
Alvarez, A. E., Martin, A.E., and Estakhri, C. (2011). “A Review of Mix Design and Evaluation Research for Permeable Friction Course Mixtures, Construction and Building Materials, Vol.25, pp.108-113.
Chen, J. S., Hsieh, W., and Liao, M. C. (2013). “Evaluation of  Functional Properties of Porous Asphalt Pavements Subjected Clogging and Densification of air Voids, Transportation Research Record:Journal of the Transportation Research Board, No.2369, pp.68-76.
Chen, Z., Xie, J., Xao, Y., Chen, J., and Wu, S. (2014). “Characterization of Bonding Behavior Between Basic Oxygen Furnace Slag and Asphalt Binder, Construction and Building Materials, Vol.64, pp.60-66.



Chen, J. S., Liao, M. C., Chen, S. F., Chen, W. C., Tao, T. L., Hsu, B. L., and Hsu, T. K. (2013). “Construction of Test Sections to
Evaluate Performance of Basic Oxygen Furnace (BOF) Steel Slag as Aggregate in Stone Mastic Asphalt, Proceedings of 7th European Slag Conference, IJmuiden, Netherlands.
Elisabete, F., Paulo, P., Luís de Picado-Santosb and Adriana, S. (2009). “Traffic Noise Changes due to Water on Porous and Dense Asphalt Surfaces, Road Materials and Pavement Design, Vol.10, pp.587-607.
Elvik, R., and Greibe, P. (2005). Road Safety Effects of Porous Asphalt :A Systematic Review of Evaluation Studies, Accident Analysis and Prevention, Vol.37, pp.515-522.
Frigio, F., Pasquini, E., Ferrotti, G., and Canestrari, F. (2013) “Improved Durability of Recycled Porous Asphalt, Construction and Building Materials, Vol.48, pp.755-763.
Hossam, F. H., Salim, A., and Ramzi, T. (2005). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer, Journal of Materials in Civil Engineering, Vol.17, pp.416-422.
Kühn, M., and Behmenburg, H. (2000). “Decreasing the Scorification of Chrome, Report EUR 19382, Primary Steelmaking, European Commission 39, Luxembourg.
Legret, M., Chaurand, P., Bénard, A., Capowiez, Y., Deneele, D., Reynard, J., Lassabatére, L., Yilmaz, D., Rose, J., Domas, J., Béchet, B., Richard, D., and Bottero, J. Y. (2010). A Multidisciplinary Approach for the Assessment of the Environmental Behavior of Basic Oxygen Furnace Slag Used in Road Construction, Proceedings of 6th European Slag Conference, Madrid, pp.77-88.
Lee, Y. C. (2013). “Study of Volume Stability and Recycling of BOF Slag at China Steel, Proceedings of 7th European Slag Conference, IJmuiden, The Netherlands, pp.17-26.
Liu, Q., García, Á., Schlangen, E., and Martin, van de Ven. (2011). “Induction Healing of Asphalt Mastic and Porous Asphalt Concrete, Construction and Building Materials, Vol.25, pp.3746-3752.
Mohammad, L. N., Negulescu, I. I., Wu, Z., Daranga, C., Daly, W.
H., and Abadie, C. (2003). “Investigation of The Use of
Recycled Polymer Modified Asphalt Binder in Asphalt
Concrete Pavements, Journal of Association of Asphalt
Paving Technologists, Vol.72, pp.551-594.
Moore, L. M., Hicks, R. G., and Rogge, D. F. (2001). “Design,
Construction, and Maintenance Guidelines for Porous
Asphalt Pavements, Transportation Research Record:Journal of the Transportation Research Board, No.1778, pp.91-99
Nakanishi, H., Takei, S., and Goto, K. (1995). “Suggestion to the
Improvement in Durability of the Function of Porous Asphalt
Pavements, Road Construction, Japan.
Panda, M. and Mazumdar, M. (1999). “Engineering Properties of EVA-ModifiedBitumen Binder for Paving Mixes, Journal of Materials in Civil Engineering, Vol.11, pp.131-137.
Perviz, A., and Burak, S. (2009). “Evaluation of Steel Slag Coarse Aggregate in Hot Mix Asphalt Concrete, Journal of Hazardous Materials, Vol.165, pp.300-305.
Shen, D. H., Wu, C. M., and Du, J. C. (2009). “Laboratory Investigation of Basic Oxygen Furnace Slag for Substitution of Aggregate In Porous Asphalt Mixture, Construction and Building Materials, Vol.23, pp.453-461.
Tan, S. A., Fwa, T. F., and Chai, K. C. (2004). “Drainage Considerations for Porous Asphalt Surface Course Design, Transportation Research Record:Journal of the Transportation Research Board, No.1868, pp.142-149.
Watson, D. E., Cooley, L. A., Moore, K. A., and Williams, K. (2004). “Laboratory PerformanceTesting of Open-Graded Friction Course Mixtures, Transportation Research Record: Journal of Transportation Board, No.1891, pp.40-47.
Yoshikuni, O., and Takshi, T. (1995). “Present Status Asphalt on Espressway in Japan, Proceedings of 8th Road Engineering and Association of Asian and Australasia, Vol.1, pp.301-306.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top