Books, H., Metal Surface, American Society for Metals, pp.30-31, (1952).
Barenblatt, G. I., & Cherepanov, G. P., On brittle cracks under longitudinal shear. Journal of Applied Mathematics and Mechanics, 25(6), pp.1654-1666, (1961).
Benveniste, Y., A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. Journal of the Mechanics and Physics of Solids, 54(4), pp.708-734, (2006).
Benveniste, Y., & Milton, G. W., The effective medium and the average field approximations vis-a-vis the Hashin–Shtrikman bounds. I. The self-consistent scheme in matrix-based composites. Journal of the Mechanics and Physics of Solids, 58(7), pp.1026-1038, (2010).
Cammarata, R.C., Surface and interface stress effects in thin films. Progress in surface science, 46, pp.1-38, (1994).
Christensen, R.M., Mechanics of Composite Materials. John Wiley & Sons, USA, pp.74-85, (1979).
Chen, T., Benveniste, Y., & Chuang, P. C., Exact solutions in torsion of composite bars: thickly coated neutral inhomogeneities and composite cylinder assemblages. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 458, No. 2023, pp. 1719-1759, (2002).
Chen, T., Chiu, M.S., Weng, C.N., Derivation of the generalized Young-Laplace equation of curved interface in nanoscaled solids. Journal of Applied Physics, 100, 074308, (2006).
Chen, T., Chiu, M.S., Effects of higher-order interface stresses on the elastic states of two-dimensional composites. Mechanics of Materials, 43, pp.212-221, (2011).
Chen, T., Chiu, M.S., A mathematical framework of high-order surface stresses in three-dimensional configurations. Acta Mechanica, 225, pp.1043-1060, (2014).
Chen, T., Dvorak, G. J., & Yu, C. C., Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mechanica, 188(1-2), pp.39-54, (2007a).
Chen, T., Dvorak, G. J., & Yu, C. C., Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal–mechanical connections. International Journal of Solids and Structures, 44(3),pp.941-955, (2007b).
Chen, T., Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mechanica, 196(3-4), pp.205-217, (2008).
Chen, T., A universal expression for bounds on the torsional rigidity of cylindrical shafts containing fibers with arbitrary transverse cross-sections. Journal of Elasticity, 101(1), 1-27, (2010).
Cuenot, S., Fretigny, C., Demoustier-Champagne, S., Nysten, B., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B, 69, 165410, (2004).
Dong, X. N., Zhang, X., Huang, Y. Y., & Guo, X. E., A generalized self-consistent estimate for the effective elastic moduli of fiber-reinforced composite materials with multiple transversely isotropic inclusions. International Journal of Mechanical Sciences, 47(6), pp.922-940, (2005).
Duan, H. L., Wang, J., Huang, Z. P., & Karihaloo, B. L., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids 53, pp.1574-1596, (2005a).
Duan, H. L., Wang, J., Huang, Z. P., & Karihaloo, B. L., Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society of London A: Mathematical Physical and Engineering Sciences. Vol. 461. No. 2062. The Royal Society, (2005b).
England, A.H., Complex Variable Methods in Elasticity. Wiley-interscience, London, (1971).
Finn, R., Equilibrium capillary surfaces. Springer-Verlag, New York Inc, (1986).
Gibbs, J. W., The collected works of J. Willard Gibbs, Vol. 1, Longmans, New York, pp.315, (1928).
Gurtin, M.E., Murdoch, A.I., A continuum theory of elastic material surfaces. A continuum theory of elastic material surfaces. 57, pp.291-323, (1975).
Gurtin, M.E., Murdoch, A.I., Surface stress in solids. International Journal of Solids and Structures, 14, pp.431-440, (1978).
Gurtin, M.E., Weissmüller, J., Larché, F., A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine A, 78, pp.1093-1109, (1998).
Huang, Y., Hu, K. X., & Chandra, A., A generalized self-consistent mechanics method for microcracked solids. Journal of the Mechanics and Physics of Solids, 42(8), pp.1273-1291, (1994).
Haftbaradaran, H., & Shodja, H. M., Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites. International Journal of Solids and Structures, 46(16), pp.2978-2987, (2009).
Jammes, M., Mogilevskaya, S. G., & Crouch, S. L. Multiple circular nano-inhomogeneities and/or nano-pores in one of two joined isotropic elastic half-planes. Engineering Analysis with Boundary Elements, 33(2), pp.233-248, (2009).
J. Qu and M. Cherkaoui, Fundamentals of Micromechanics of Solids, John Wiley & Sons, (2006).
Jiang, C. P., & Cheung, Y. K., An exact solution for the three-phase piezoelectric cylinder model under antiplane shear and its applications to piezoelectric composites. International Journal of Solids and Structures, 38(28), pp.4777-4796, (2001a).
Jiang, C. P., Tong, Z. H., & Cheung, Y. K., A generalized self-consistent method for piezoelectric fiber reinforced composites under antiplane shear. Mechanics of Materials, 33(5), pp.295-308, (2001b).
Jiang, C. P., Tong, Z. H., & Cheung, Y. K., A generalized self-consistent method accounting for fiber section shape. International Journal of Solids and structures, 40(10), pp.2589-2609, (2003).
Laplace, P. S., Traite de mechanique celeste, vol. 4.Gauthier-Villars, Paris, (1805).
Li, P.J., Wang, Q.Z., & Shi, S.F., Differential scheme for the effective elastic properties of nano-particle composites with interface effect. Computational Materials Science, 50(11), pp.3230-3237, (2011).
Luo, J., & Wang, X., On the anti-plane shear of an elliptic nano inhomogeneity. European Journal of Mechanics-A/Solids, 28(5), pp.926-934, (2009).
Miller, R.E., Shenoy, V.B., Size-dependent elastic properties of nanosized structural elements. Nanotechnology. 11, pp.139-147, (2000).
Mogilevskaya, S. G., Crouch, S. L., Stolarski, H. K., & Benusiglio, Equivalent inhomogeneity method for evaluating the effective elastic properties of unidirectional multi-phase composites with surface/interface effects. International Journal of Solids and Structures, 47(3), pp.407-418, (2010)..
Muskhelishvili, N.I., Some Basic Problems of the Mathematical Theory of Elasticity. P. Noodhoff Ltd, Grogingen, the Netherlands, (1963).
Nix, W.D., Gao, H., An atomistic interpretation of interface stress. Scripta Materialia, 39, pp.1653-1661, (1998).
Ou, Z. Y., Wang, G. F., & Wang, T. J., Elastic fields around a nanosized spheroidal cavity under arbitrary uniform remote loadings. European Journal of Mechanics-A/Solids, 28(1), pp.110-120, (2009).
Pellicer, J., Garcia-Morales, V., & Hernández, M. J., On the demonstration of the Young-Laplace equation in introductory physics courses. Physics Education, 35(2), pp.126-129, (2000).
Pensée, V., & He, Q. C., Generalized self-consistent estimation of the apparent isotropic elastic moduli and minimum representative volume element size of heterogeneous media. International journal of solids and structures, 44(7), pp.2225-2243, (2007).
Povstenko, Y. Z., Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. Journal of the Mechanics and Physics of Solids, 41(9), pp.1499-1514, (1993).
Saada, Adel S., Elasticity theory and Applications, Pergamon Press, New Tork, pp.125-129, (1993).
Shuttleworth, R., The surface tension of solids. Proceedings of the Physical Society. Section A, 63, pp.444-457, (1950).
Sharma, P., Ganti, S., Bhate, N., Effect of`surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters, 82, pp.535-537, (2003).
Sharma, P., and S. Ganti. Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. Journal of Applied Mechanics. 71, 663-671, (2004).
Sharma, P., & Wheeler, L. T., Size-Dependent Elastic State of Ellipsoidal Nano-Inclusions Incorporating Surface/ Interface Tension. Journal of Applied Mechanics, 74(3), pp.447-454, (2007).
Stagni, L., Effective transverse elastic moduli of a composite reinforced with multilayered hollow-cored fibers. Composites science and technology, 61(12), pp.1729-1734, (2001).
Tai, C. T., Generalized Vector and Dyadic Analysis, IEEE Press, New York, (1992).
Ting, T. C. Anisotropic Elasticity: Theory and Applications, Oxford University Press, USA, (1996).
Tian, L., & Rajapakse, R. K. N. D., Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. International Journal of Solids and Structures, 44(24), pp.7988-8005, (2007).
Wang, G. F., & Wang, T. J., Deformation around a nanosized elliptical hole with surface effect. Applied Physics Letters, 89(16), 161901, (2006).
Wang, Y., & Qin, Q. H., A generalized self consistent model for effective elastic moduli of human dentine. Composites science and technology, 67(7), pp.1553-1560, (2007).
Wong, E. W., Sheehan, P. E., & Lieber, C. M., Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science, 277(5334), pp.1971-1975, (1997).
Xiao, J. H., Xu, Y. L., & Zhang, F. C., Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta mechanica, 222(1-2), pp.59-67, (2011).
Xiao, J., Xu, Y., & Zhang, F., A generalized self-consistent method for nano composites accounting for fiber section shape under antiplane shear. Mechanics of Materials, 81, pp.94-100, (2015).
Young, T., An essay on the cohesion of fluid. Philosophical Transactions of the Royal Society of London, 95, pp.65-87, (1805).
Yang, F., Size-dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations. Journal of Applied Physics, 95, pp.3516-3520, (2004).
余健忠,表面力對複合材料等效係數的影響,國立成功大學土木工程研究所碩士論文,(2005)。邱明聖,固體介面效應之探討,國立成功大學土木工程研究所碩士論文,,(2006)。邱明聖,高階表面力於奈米尺度材料或結構的一些力學課題,國立成功大學土木工程研究所博士論文, (2013)。柯嵋鐘,利用保角變換解析含孔洞或內含物的傳導問題,國立成功大學土木工程研究所碩士論文,(2001)。許昆中,三維高階介面應力在結構力學基礎課題之探討,國立成功大學土木工程研究所博士論文,(2012)。鄭之浩,考慮高階表面力於奈米尺度平板之挫曲與共振頻率,國立成功大學土木工程研究所博士論文,(2014)。