跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 08:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐式恆
研究生(外文):Sek-HangChoi
論文名稱:多目標最佳化模式用於專案趕工管理
論文名稱(外文):Multi-objective Optimization Models for Project Compression Management
指導教授:潘南飛潘南飛引用關係
指導教授(外文):Nang-Fei Pan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:92
中文關鍵詞:專案之時間成本品質權衡模式權衡問題之非線性模式模糊數學規劃
外文關鍵詞:time-cost-quality trade-off analysisnonlinear model of trade-off problemfuzzy mathematical programming
相關次數:
  • 被引用被引用:1
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
  工程趕工為在預定進度內無法正常完成或因業主需求縮短工期,比正常工期時程內盡早完工,通過改變作業方法或縮短作業工作時間、增加人員等方式,促使專案能在業主設定之目標完成,甚至使計劃或工作能提早完工或縮短工期為目的。
  本研究主要是使用模糊多目標非線性規劃建立專案項目排程模式,建立專案的最小化總工期、最小化總成本(直接成本)和專案最大化品質分數的三組目標函數與限制式。藉著三項目標的相互衝突,達到追求的模糊多目標的最適合的滿意度水準,指出不同的滿意度要求與決策變數的影響關係。建構模糊專案在正常狀況、趕工狀況與滿足多目標需求下之多組線性規劃模式並進行比較,依決策者(業主)的主觀要求與客觀角度建立模糊特性來衡量多個目標時的決策行為與應用需求。以分析模糊環境下專案趕工問題,其中考慮趕工作業成本為模糊集合的情況。
  過去專案排程趕工文獻中,研究多為對項目的作業時間進行不確定性分析,並未考慮項目的成本與品質也會受到物價變動,檢驗員的主觀等要求因素影響而具有模糊性質。本研究為討論成本的不確定性對專案的不同影響。主要利用模糊理論與Zimmermann模式求解專案排程中的多目標規劃問題,根據專案工期、直接成本與品質評分、建構模糊多目標非線性模式,透過個案分析不同的隸屬函數值與模式的比較,分析對專案排程的結果影響。

Accelerating the project schedule is the common and important issue for the project manager to meet client's demand in time. The project schedule accelerating process can be transferred to the typical time-cost-quality trade-off analysis since minimizing time and cost are both preferred by the project manager. However, the traditional time-cost tradeoff problem assumes the time and cost of the activity are deterministic. The research proposed the project compression fuzzy non-linear multi-objection model. The objectives are” minimize the sum of a project’s time”, “minimize the expected total cost” and “maximize project quality”. The most appropriate to achieve the pursuit of the satisfaction level fuzzy multi-objective between these three objectives. Constructing of multi-objective linear programming model in normal project scheduling and compression project scheduling. Developing a decision model that can determine if accelerating project schedule is needed and then decides best strategies for achieving it under uncertainties. This research presents a model that combines fuzzy set theory to solve the problem of deciding the best strategies in accelerating the project schedule under uncertainty. Furthermore, the α-cut is employed to transfer the fuzzy project duration and direct cost into crisp values according to decision maker's risk attitude.
摘要 I
Extended Abstract II
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍與限制 2
1.4 研究流程 3
1.5 研究架構 4
第二章 文獻回顧 5
2.1 專案排程線性規劃 5
2.2 專案的品質 6
2.3 模糊線性規劃 9
2.4 模糊多目標線性規劃 10
2.4.1. 目標式係數明確,限制式係數與常數模糊 10
2.4.2. 目標式係數模糊,限制式係數與常數明確 11
2.4.3. 目標式係數與限制式係數模糊,限制式常數明確 11
2.4.4. 目標式係數、限制式係數與常數皆模糊 11
第三章 研究方法之背景 13
3.1 專案排程趕工之權衡問題 13
3.2 趕工時間與成本之非線性函數模型 17
3.3 多目標數學規劃 18
第四章 模式建立 21
4.1 規劃階段 21
4.2 執行階段 26
第五章 案例分析與探討 35
5.1 計算流程與案例介紹 35
5.2 線性摸式 39
5.3 非線性模式 56
5.4 不確定性模式 69
第六章 結論與建議 88
6.1 結論 88
6.2 建議 88
6.3 研究貢獻 89
參考文獻 90

1.Assaf, S., Al-Hejji, S., “Causes of delay in large construction projects, International Journal of Project Management 24, 349–357, 2006.
2.Atkinson, R., “Project management: cost, time and quality, two best guesses and a phenomenon, its time to accept other success criteria, International Journal of Project Management 17 (6), 337–342, 1999.
3.Babu, A., Suresh, N., “Project management with time, cost, and quality considerations, Journal of Operational Research 88, 320–327, 1996.
4.Deckro, R.F., Hebert, J.E., Verdini, W.A., “Nonlinear multiple criteria time/cost tradeoffs, Proceedings of the Sixteenth Annual Western DSI Meeting, pp. 134–137, 1987.
5.Deckro, R.F., Hebert, J.E., Verdini, W.A., “Nonlinear time/cost tradeoff models in project management, Computers &Industrial Engineering 28 (2), 219–229, 1995.
6.Demeulemeester, E.L., Herroelen, W.S., Elmaghraby, S.E., “Optimal procedures for the discrete time/cost tradeoff problem in project networks, European Journal of Operational Research 88, 50–68, 1996.
7.Elmaghraby, S.E., Salem, A., “Optimal project compression under quadratic cost functions, Applications of Management Science 2, 1–39, 1982.
8.Fulkerson, D., “A network flow computation for project cost curves, Management Science 7 (2), 167–178, 1961.
9.Ghodsi, R, et al. “A new practical model to trade-off time, cost, and quality of a project , Australian Journal of Basic and Applied Sciences 3.4: 3741-3756, 2009
10.Goyal, S.K., “A note on simple CPM time–cost tradeoff algorithm, Management Science 21 (6), 718–722, 1975.
11.Hillier, F.S., Lieberman, G.J., Introduction to Mathematical Programming. McGraw-Hill Inc, New York. 70–72, 1995.
12.Kelley, J.T., Walker, M.R., Critical Path Planning and Scheduling: an Introduction, Mauchly Associates, Ambler (PA), 1959.
13.Kelly, J.E., Critical-path planning and scheduling: mathematical basis, Operations Research 9 (3), 296–320, 1961.
14.Kessler, E.H., Chakrabarti, A.K., “Speeding up the pace of new product development, Journal of Product Innovation Management 16, 231–247, 1999.
15.Lai, K. K. and L. Li, “A dynamic approach to multi-objective resource allocation problem, European Journal of Operational Research, vol.117, 293-309, 1999.
16.Li, Heng, et al, “A pareto multi-objective optimization approach for solving time-cost-quality tradeoff problems, Technological and Economic Development of Economy 1: 22-41, 2011.
17.Meyer, W.L., Shaffer, L.R., “Extensions of the Critical Path Method Through the Application of Integer Programming, University of Illinois, Department of Civil Engineering, 1963.
18.Padilla, E.M. and R. I. Carr, “Resource strategies for dynamic project management, ASCE Journal of construction engineering management, vol.117, no.2, pp.279-293, 1991.
19.Pan, H. and C. H. Yeh, “Fuzzy project scheduling with multiple objectives, Lecture Notes in Artificial Intelligence, vol.3157, pp.1011-1012, 2004.
20.Patterson, J.H., Huber, D., “A horizon-varying, zero-one approach to project scheduling, Management Science 20 (6), 990–998, 1974.
21.Perera, S., “Linear programming solution to network compression, ASCE Journal of the Construction Division 106, 315–327, 1980.
22.Phillips, S., Dessouky, M.I., “Solving the project time/cost tradeoff problem using the minimal cut concept, Management Science 24 (4), 393–400, 1977.
23.Siemens, N., “A simple CPM time–cost tradeoff algorithm, Management Science 17 (6), B354–B363, 1971.
24.Tareghian, H., Taheri, S., “On the discrete time, cost and quality tradeoff problem, Applied Mathematics and Computation 181, 1305–1312, 2006.
25.Vanhoucke, M., “A scatter search heuristic for maximizing the net present value of a resource-constrained project with fixed activity cash flows, International Journal of Production Research, 48(7), 1983-2001, 2010.
26.Wiest, J. D., Some properties of schedules for large projects with limited resources, Operations Research, vol.12, pp.395418, 1964.
27.Wiest, J.D., Levy, F.K., A Management Guide to PERT/CPM: Englewood Cliffs. Prentice-Hall, Inc, New Jersey, 1997.
28.Zeng, J., An, M., Smith, N., “Application of a fuzzy based decision making methodology to construction project risk assessment, International Journal of Project Management 25, 589–600, 2007.
29.林耀煌,營建工程施工規劃與管理控制,增訂八版,長松出版社,1989。
30.陳雪芬,「利用芭蕉曲線圖探討現行工程進度審查依據之研究」,碩士論文,國立中央大學營建管理研究所,2003。
31.陳雪芬,「利用芭蕉曲線圖探討現行工程進度審查依據之研究」,碩士論文,國立中央大學營建管理研究所,2003。
32.黃正忻,營建工程管理,增訂一版,九樺出版社,1995。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top