中文文獻
潘姝吟(2005),「應用柏拉圖式與使用者偏好的多目標基因演算法來解決產能批量問題-以光學鏡片產業為例」,國立高雄第一科技大學運籌管理研究所碩士論文。簡仲廷(2014),「考慮效用成本比最大化之限制條件下多目標實驗設計」,國立成功大學工業與資訊管理研究所碩士論文。英文文獻
Alaeddini, A., Yang, K., Mao, H., Murat, A. and Ankenman, B. (2013). An adaptive
sequential experimentation methodology for expensive response surface
optimization–case study in traumatic brain injury Modeling.Quality Reliability Engineering International,30(6), pp.767-793.
Alaeddini, A., Yang, K. and Murat, A. (2013). ASRSM: A sequential experimental
design for response surface optimization. Quality Reliability Engineering
International, 29(2), pp. 241-258.
Allen, T. T., and Yu, L. (2002). Low-cost response surface methods from simulation
optimization. Quality Reliability Engineering International, 18(1), pp.5-17.
Arnouts, H., Goos, P., and Jones, B.(2010). Design and analysis of industrial strip-plot experiments. Quality Reliability Engineering International, 26(2),pp. 127-136.
Bera, S.,and Mukherjee,I. (2013). An integrated approach based on principal component and multivariate process capability for simultaneous optimization of location and dispersion for correlated multiple response problems. Quality Engineering, 25(3), 266-281.
Corley, H. (1980). A new scalar equivalence for Pareto optimization. Automatic Control, IEEE Transactions on, 25(4), 829-830.
Caillez, F., Pages, J. P. (1976). Introduction à l'analyse de données. Paris : SMASH .
Chang, S. (1997). An algorithm to generate near D-optimal designs for multiple
responses surface models. IIE transactions, 29(12), pp. 1073-1081.
Derringer, G., and Suich, R. (1980). Simultaneous optimization of several responses
variables. Journal of Quality Technology, 12(4), pp. 214-219.
Ding, R., Dennis K. J. Lin, and Wei, D.(2004).Dual-response surface optimization: a weighted MSE approach. QualityEngineering, Vol. 16, pp. 377-385.
Fedorov, V. V. (1972). Theory of optimal experiments, Academic Press, New York.
de Aguiar, P. F., Bourguignon, B., Khots, M. S., Massart, D. L., and Phan-Than-Luu, R. (1995). D-optimal designs.Chemometrics and Intelligent Laboratory Systems,30(2), pp. 199-210.
Gass, S., and Saaty, T. (1955). The computational algorithm for the parametric objective function. Naval Research Logistics Quarterly, 2(1‐2), 39-45.
Harrington, E. C. (1965). The desirability function.Industrial Quality Control, 21(10), pp.494-498.
Howe, R. L. (1983). Developments in plastic optics for projection telvision systems. Consumer Electronics, IEEE Transactions on, (1), 44-53.
Hajela, P., and Lin, C. Y.(1992). Genetic searchstrategies in multicriterion optimal design. Structural and MultidisciplinaryOptimization, Vol. 4, pp. 99-107.
Izraelevitz, A. M., Anderson-Cook, C. M., & Hamada, M. S. (2011). Illustrating the
use of statistical experimental design and analysis for multiresponse prediction and optimization.Quality Engineering,23(3), 265-277.
Kunjur, A., and Krishnamurty,S. (1997). A robust multi-criteria optimization approach. Mech. Mach. Theory, Vol.32,pp.797-810.
Kasemann, R., Schmidt, H. K., &Wintrich, E. (1994).A new type of Sol-Gel-Derived Inorganic-Organic nanocomposite.In Materials Research Society Symposium Proceedings , Vol. 346, pp. 915-919.
Khuri, A.I., andCornell, L.A. (1987).Response surfaces – designs and analyses.
Marcel Dekker, New York.
Lu, L., and Anderson‐Cook, C. M. (2012). Balancing multiple criteria incorporating cost using pareto front optimization for split‐plot designed experiments. Quality and Reliability Engineering International, 30(1), 37-55.
Lu, L., Anderson-Cook, C. M., and Robinson, T. J.(2012). Optimization of designed
experiments based on multiple criteria utilizing a paretofrontier.Technometrics,
53(4), pp. 353-365.
Mao, M. and Danzart, M. (2008). How to select the best subset of factors maximizing
the quality of multi-responseoptimization.Quality Engineering, 20(1), pp.63-74.
Marler, R. T., and Arora, J. S. (2004).Survey of multi-objective optimization methods
for engineering. Structural and Multidisciplinary Optimization, 26(6), pp. 369-395.
Marglin, S. A. (1967). Public Investment Criteria.MIT Press.
Nakache, J. P., Confais, J. (2005). Approche pragmatique de la classification. Arbres hiérarchiques, partitionnements. Paris : Technip.
Ngatchou, P., Zarei, A., and El-Sharkawi, M. A. (2005).Pareto multi objective optimization.Proceedings of IEEE International Conference on Intelligent Systems Application to Power Systems, Arlington, VA, pp.84-91.
Ombuki, B., Ross, B. J., and Hanshar, F.(2006). Multi-objective genetic algorithms for vehicle routing problem with time windows. Applied Intelligence, Vol. 24, pp. 17–30.
Pal, S. and Gauri, Susanta Kumar. (2010). Multi-response optimization using multiple
regression-based weighted signal-to-noise ratio(MRWSN).Quality Engineering, 22(4), pp. 336-350.
Samson, F. (1996).Ophthalmic lens coatings.Surface and coatings technology, 81(1), pp.79-86.
Schottner, G., Rose, K., and Posset, U. (2003).Scratch and abrasion resistant coatings on plastic lenses-state of the art, current developments and perspectives. Journal of sol-gel science and technology, 27(1), pp.71-79.
Schaffer, J. D.(1985). Multiple objective optimization with vector evaluated genetic algorithms. in Proceeding of the First International Conference on Genetic Algorithm, pp.93-100.
Wendell, R. E., and Lee, D. N. (1977).Efficiency in multiple objective optimization problems. Mathematical Programming, 12(1), 406-414.
Zadeh,L.(1963).Optimality and non-scalar-valued performance criteria .IEEE Transactions on Automatic Control, 8:59-60.