(3.238.186.43) 您好!臺灣時間:2021/03/01 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:倪智銳
研究生(外文):Chih-JuiNi
論文名稱:開發功能性無機材料應用於有機發光二極體
論文名稱(外文):Development of functional inorganic semiconductor materials for organic light emitting diode devices
指導教授:洪昭南洪昭南引用關係
指導教授(外文):Chau-Nan Hong
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:175
中文關鍵詞:銀奈米線氧化銻錫氮化鎵電感耦合式電漿有機發光二極體
外文關鍵詞:silver nanowireantimony tin oxidegallium nitrideinductively coupled plasmaorganic light emitting diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了拓展有機發光二極體(OLED)的效能及用途,選擇適當的電極和提升內部結構的載子傳輸特性是非常重要的議題。在眾多材料中,銀奈米線的導電性及透光性俱佳,有取代氧化銦錫(ITO)的潛力。此外,藉由無機材料的高遷移率(mobility)與穩定性,將其添入OLED中可增加載子的傳輸,且讓元件更耐用。本論文中,我們針對銀奈米線和無機氮化鎵(GaN)薄膜進行各式開發,並應用於OLED結構中製作複合元件。
研究內容主要分為兩大部分。首先我們簡化銀奈米線的合成步驟將反應物一次混摻,再加入可重複使用的多孔過濾膜,能輕易排除溶液中90 %的粒子而成功達到純化的目的,奈米線與奈米粒子的數量比從1/1.26降至1/0.15,塗佈後薄膜在相同片電阻下光穿透率提升5 %以上。接著開發銀奈米線轉印技術,僅需施加極小的壓力便可將其均勻覆蓋在GaN奈米柱上且不會造成傾倒。再利用無電鍍法在常溫下讓銀奈米線薄膜的片電阻從數萬降至數十ohm/sq,以此為電極製作元件後最大亮度達2829 cd/m2,遠高於銀金屬膜的172 cd/m2。最後使用無機氧化銻錫(ATO)奈米粒子添加至銀奈米線中,成功在極短時間內讓複合膜的片電阻降到34 ohm/sq,而穿透率提升為91 %,另外也可使表面平坦化,粗糙度從25.30減至7.53 nm。在製成元件後最大亮度達7020 cd/m2,且最高效率為2.7 cd/A,優於ITO的2.0 cd/A。
第二部分中,我們先使用熱蒸鍍沉積元件中的GaN,並探討不同種類的陰極材料對其表面型態的影響,結果發現此方式製成的薄膜容易有不平整的問題,且須選擇氮化鈦當作陰極。之後便以自行開發的電感耦合電漿輔助射頻濺鍍系統沉積GaN,可在500°C的低溫下成功獲得單晶高品質薄膜,其結晶方向為(0002),XRD及搖擺曲線的半高寬值分別是10.3及66.9 arcmin(文獻最佳結果約5~15及20~90 arcmin),且Ga與N比例接近1:1。最後製作複合OLED,最大亮度可達1091 cd/m2,元件發出白光,其CIE色度座標為(0.38, 0.43),但起始電壓偏高(13.0 V),在加入BCP後最大亮度增至3451 cd/m2,高於傳統OLED的2575 cd/m2。
Silver nanowire (Ag NW)/inorganic semiconductor composite films and gallium nitride (GaN) films were fabricated for the application of organic light emitting diode (OLED) devices. The Ag NW ink was prepared using a simplified polyol method. After synthesis, a reusable porous membrane was utilized to purify the Ag NW solution. Nearly 90% of silver nanoparticles (Ag NPs) could be removed. In order to increase the conductivity of Ag NW films, antimony tin oxide (ATO) nanoparticles were added to form composite films. By emitting infrared (IR) light for 30 sec, the sheet resistance of the composite film could be decreased to 34 ohm/sq with a light transmittance of 91%. For the OLED devices using composite films as anodes, the maximum luminance and efficiency could reach 7020 cd/m2 and 2.7 cd/A, respectively, which was better than that of the device with indium tin oxide (ITO) anode. Next, the growth of GaN (0002) films deposited on sapphire substrates by inductively coupled-plasma (ICP)-enhanced reactive magnetron sputtering was investigated. X-ray diffraction (XRD) measurements confirmed that the high quality GaN crystallites could be obtained at a temperature as low as 500°C. The N:Ga ratio of the film grown at 500°C was almost 1:1. Afterwards, the crystalline GaN film was applied to the OLED device as a carrier transporting layer. The hybrid OLED that could be operated at high voltage showed the improved device durability. The maximum luminance of the hybrid OLED was 3451 cd/m2, higher than that of the conventional device.
中文摘要..............................................Ⅰ
英文延伸摘要...........................................Ⅲ
誌謝.................................................XⅢ
目錄.................................................XⅣ
表目錄................................................XXI
圖目錄................................................XXII

第一章 緒論......................................1
1-1 前言......................................1
1-1-1 有機發光二極體(OLED)的發展簡介................1
1-1-2 有機發光二極體的最新近況......................2
1-2 研究動機與目的..............................4
第二章 理論基礎與文獻回顧...........................12
2-1 有機發光二極體元件理論........................12
2-1-1 有機發光元件結構.............................12
2-1-2 有機發光元件常用材料..........................14
2-1-2-1 電洞注入與傳輸材料............................15
2-1-2-2 電子傳輸與電洞阻擋材料.........................16
2-1-3 載子的注入、傳導與複合.........................17
2-1-3-1 載子的注入...................................17
2-1-3-2 載子的傳輸...................................18
2-1-3-3 載子的複合...................................20
2-2 氮化鎵材料的發展與特性.........................29
2-2-1 氮化鎵的歷史簡介..............................29
2-2-2 氮化鎵的性質介紹..............................31
2-2-3 磁控濺鍍製作氮化鎵薄膜.........................32
2-3 有機無機複合發光元件...........................38
2-3-1 氧化物製作複合發光元件.........................38
2-3-2 氮化物製作複合發光元件.........................40
2-4 銀奈米線的特性及製作方式.......................48
2-4-1 電化學及UV光放射法............................48
2-4-2 模板法......................................48
2-4-3 多元醇還原法.................................49
第三章 實驗方法與步驟...............................56
3-1 實驗流程....................................56
3-1-1 銀奈米線複合膜及OLED元件製作...................56
3-1-2 氮化鎵有機-無機異質接面OLED元件製作.............57
3-2 實驗系統設計.................................58
3-2-1 高真空熱蒸鍍系統..............................58
3-2-2 電感耦合電漿輔助射頻濺鍍系統....................59
3-2-3 氧電漿處理系統...............................60
3-2-4 離心、塗佈及量測系統..........................60
3-2-5 掃描式電子顯微鏡及X射線能量散佈儀...............61
3-2-6 X射線繞射分析儀..............................61
3-2-7 原子力顯微鏡.................................62
3-2-8 紫外/可見光分光光譜儀..........................62
3-2-9 光電子譜分析儀................................62
3-2-10 有機發光元件量測系統...........................63
3-3 實驗材料.....................................63
3-3-1 基板材料.....................................63
3-3-2 有機蒸鍍材料..................................64
3-3-3 無機材料.....................................64
3-3-4 金屬材料.....................................65
3-3-5 化學藥品.....................................65
3-3-6 溶劑、實驗氣體及其他相關材料.....................66
3-4 實驗步驟.....................................66
3-4-1 基板濕式清潔處理...............................67
3-4-2 ITO基板之低壓氧電漿處理.........................67
3-4-3 氮化鈦薄膜濺鍍.................................67
3-4-4 氮化鎵薄膜濺鍍.................................68
3-4-5 銀奈米線合成、純化與塗佈.........................68
3-4-6 銀奈米線薄膜轉印................................69
3-4-7 銀奈米線無電鍍增厚..............................69
3-4-8 有機材料塗佈...................................70
3-4-9 銀奈米線/氧化銻錫奈米粒子複合膜製作................70
3-4-10 有機與無機薄膜蒸鍍..............................70
3-5 元件特性分析與光譜量測...........................71
第四章 銀奈米線及其複合膜應用於有機發光元件...............77
4-1 前言.........................................77
4-2 銀奈米線之合成與純化............................79
4-2-1 材料性質分析...................................80
4-2-2 銀奈米線透明導電膜特性分析........................81
4-2-3 銀奈米線透明導電膜轉印技術........................82
4-3 以銀奈米線/有機層之複合膜製作有機發光元件............89
4-3-1 無電鍍選擇性增厚銀奈米線..........................89
4-3-2 銀奈米線/有機電洞傳輸層複合膜及OLED製作.............91
4-4 以銀奈米線/氧化銻錫奈米粒子複合膜製作有機發光元件.....98
4-4-1 銀奈米線/氧化銻錫奈米粒子複合膜特性分析.............98
4-4-2 以複合膜為陽極製作OLED..........................100
第五章 氮化鎵製作有機-無機異質接面之有機發光元件...........110
5-1 前言.........................................110
5-2 熱蒸鍍系統沉積氮化鎵膜製作有機-無機異質接面OLED.....112
5-2-1 使用鋁金屬作為發光元件之陰極.....................112
5-2-2 使用氮化鈦作為發光元件之陰極.....................115
5-3 電感耦合電漿輔助射頻濺鍍系統低溫成長氮化鎵薄膜......122
5-3-1 成長溫度對結晶品質之影響........................123
5-3-2 ICP功率對結晶品質之影響........................126
5-4 射頻濺鍍系統沉積氮化鎵膜製作有機-無機異質接面OLED...136
5-4-1 氮化鈦結晶品質對氮化鎵及複合元件之影響.............137
5-4-2 無機GaN與有機Alq3接面之載子傳輸及複合............139
第六章 總結論.......................................152
第七章 參考文獻.....................................158
自述................................................173
著作列表.............................................173
[1] P. Pope, H. P. Kallmann, and P. J. Magnante, Journal of Chemical Physics, 38, 2042 (1963)
[2] W. Helfrich, and W. G. Schneider, Physical Review Letters, 14, 229 (1965)
[3] D. F. Williams, and M. Schadt, Proceedings IEEE, 58, 476 (1970)
[4] C. W. Tang, and S. A. VanSlyke, Applied Physics Letters, 51, 913 (1987)
[5] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990)
[6] T. Murata, T. Yanase, S. Miwa, M. Ohji, and H. Yamazaki, High Refractive Index Glass for OLED Lighting, Nippon Electric Glass co., Ltd.
[7] http://auo.com/?sn=47&lang=zh-TW, AU Optronics Corp.
[8] http://www.newhavendisplay.com/tft_page.html, Newhaven Display International, Inc.
[9] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lu¨ssem, and K. Leo, Nature, 459, 234 (2009)
[10] http://big5.nikkeibp.com.cn/
[11] R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B. Sinclair, V. S. Valencia, and P. A. Cahill, Applied Physics Letters, 66, 3618 (1995)
[12] P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Physical Review B, 55, R656 (1997)
[13] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, and T. O. Graham, Applied Physics Letters, 80, 2517 (2002)
[14] H. Muratal, G. G. Malliaras, M. Uchida, Y. Shen, and Z. H. Kafafi1, Materials Research Society Symposium Proceedings, 665, 227 (2001)
[15] M. Matsumura, T. Akai, and M. Saito, Japanese Journal of Applied Physics, 35, 3468 (1996)
[16] D. Troadec, G. Veriot, R. Antony, and A. Moliton, Synthetic Metals, 124, 49 (2001)
[17] N. Thejo Kalyania and S.J. Dhobleb, Renewable and Sustainable Energy Reviews, 16, 2696 (2012)
[18] D. Ammermann, A. Böhler, and W. Kowalsky, Annual report, Institut für Hochfrequenztechnik, TU Braunschweig, 48 (1995)
[19] A. L. Burin, and M. A. Ratner, Journal of Physical Chemistry A, 104, 4704 (2000)
[20] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Japanese Journal of Applied Physics Part 2, 27, L269 (1988)
[21] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Japanese Journal of Applied Physics Part 2, 27, L713 (1988)
[22] W. B. Im, H. K. Hwang, J. G. Lee, K. Han, and Y. Kim, Applied Physics Letters, 79, 1387 (2001)
[23] M. Fujihira, L. M. Do, A. Koike, and E. M. Han, Applied Physics Letters, 68, 1787 (1996)
[24] Y. Sato, S. Ichinosawa, and H. Kanai, IEEE Journal of Selected Topics in Quantum Electronics, 4, 40 (1998)
[25] Y. Shirota, M. Kinoshita, and K. Okumoto, Proceedings SPIE, 4464, 203 (2002)
[26] M. Ikaia, S. Tokitob, Y. Sakamoto, T. Suzuki, and Y. Taga, Applied Physics Letters, 79, 156 (2001)
[27] M. Pfeiffer, A. Beyer, T. Fritz, and K. Leo, Applied Physics Letters, 73, 3202 (1998).
[28] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, Applied Physics Letters, 73, 729 (1998).
[29] X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, and K. Leo, Applied Physics Letters, 78, 410 (2001).
[30] A. Nollau, M. Pfeiffer, T. Fritz, and K. Leo, Journal of Applied Physics, 87, 4340 (2000).
[31] A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, and K. Leo, Applied Physics Letters, 82, 4495 (2003).
[32] J. Kido, and T. Matsumoto, Applied Physics Letters, 73, 2866 (1998).
[33] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, Applied Physics Letters, 80, 139 (2002).
[34] X. Zhou, M. Pfeiffer, J. S. Huang, J. B. Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maennig, and K. Leo, Applied Physics Letters, 81, 922 (2002)
[35] 黃春輝, 李富友, 黃岩誼, 光電功能超薄膜, 北京大學出版社, 北京, 中國, 258 (2001)
[36] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, Thin Solid Films, 33, 363 (2000)
[37] C. Adachi, K. Nagai, and N. Tamoto, Applied Physics Letters, 66, 2679 (1995)
[38] Y. Shirata, Y. Kuwabara, D. Okuda, R. Okuda, H. Ogawa, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, Journal of Luminescence,. 72-74, 985 (1997)
[39] Y. Shirota, K. Okumoto, H. Inada, Synthetic Metals, 111-112, 387 (2000)
[40] J. Kido and Y. Iizumi, Chemistry Letters, 26, 963 (1997)
[41] H. Murata, Z. H. Kafafi, and M. Uchida, Applied Physics Letters, 80, 189 (2002)
[42] S. Naka, H. Okada, H. Onnagawa, and T. Tsutsui, Applied Physics Letters, 76, 197 (2000)
[43] T. Yasuda, Y. Yamaguchi, D. C. Zou, and T. Tsutsui, Japanese Journal of Applied Physics, 41, 5626 (2002)
[44] http://www.cam.ac.uk
[45] J. Kalinowski, Journal of Physics D: Applied Physics, 32, R179 (1999)
[46] U. Wolf, V. I. Arkhipov, and H. Bässler, Physical Review B, 59, 7507 (1999)
[47] S. Barth, P. Müller, H. Riel, P.F. Seidler, W. Rieß, H. Vestweber, U. Wolf , and H. Bässler, Synthetic Metals, 111-112, 327 (2000)
[48] M. Pope, and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, New York, 379 (1999)
[49] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, and S. R. Forrest, Journal of Applied Physics, 79, 7991 (1996)
[50] http://hackman.mit.edu
[51] R. Bausiere, F. Labrique, and G. Seguier, Power Electonic Converters, Springer-Verlag (1993)
[52] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Applied Physics Letters, 72, 211 (1998)
[53] W. C. Johnson, J. B. Parsons, and M. C. Crew, Journal of Physical Chemistry, 36, 251 (1932)
[54] H. P. Maruska and J. J. Tietjen, Applied Physics Letters, 15, 367 (1969)
[55] J. I. Pankove, E. A. Miller, D. Richman and J. E. Berkeyheiser, RCA Review, 32, 383 (1971)
[56] S. Yoshida, S. Misawa and S. Gonda, The Journal of Vacuum Science Technology, B1, 250 (1983)
[57] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, Journal of Crystal Growth, 98, 209 (1989)
[58] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Applied Physics Letters, 48, 353 (1986)
[59] S. Nakamura, Japanese Journal of Applied Physics, 30, L1705 (1991)
[60] S. Nakamura, Y. Harada, and M. Seno, Applied Physics Letters, 58, 2021 (1991)
[61] S. Nakamura, M. Senoh, and T. Mukai, Japanese Journal of Applied Physics, 67, 1868 (1995)
[62] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Japanese Journal of Applied Physics, 35, L74 (1996)
[63] S. Nakamure, MRS. Bull, 22 (2), 29 (1997)
[64] T. Detchprohm, K. Hiramatsu, K. Itoh, and I. Akasaki, Japanese Journal of Applied Physics, 25, 1924 (1986)
[65] M. Mizuta, S. Fujieda, Y. Matsumoto, and T. Kawamura, Japanese Journal of Applied Physics, 25, L945 (1986)
[66] M. J. Paisley, Z. Sitar, J. B. Posthill, and R. F. Favis, The Journal of Vacuum Science Technology, A7, 701 (1989)
[67] R. C. Powell, N. E. Lee, Y. W. Kim, and J. E. Greene, Journal of Applied Physics, 73, 189 (1993).
[68] I. Barin, and O. Knacke, Thermochemical Propertis of Inorganic Substances, Springer, Berlin-Heidelberg, New York (1977)
[69] J. Karpinski, J. Jun, and S. Porowski, Journal of Crystal Growth, 66, 1 (1984)
[70] J. Karpinski and S. Porowski, Journal of Crystal Growth (Netherlands), 66, 11 (1984)
[71] E. Lashmi, B. Mathur, A. B. Bhattacharya, and V. P. Bhargava, Thin Solid Films, 74, 77 (1980)
[72] B. C. Chung and M. Hershenzon, Journal of Applied Physics, 72, 651 (1992)
[73] T. Lei and T. D. Moustakas, Journal of Applied Physics, 71, 4933 (1992)
[74] H. J. Hovel and J. J. Cuomo, Applied Physics Letters, 20, 71 (1972)
[75] B. B. Kosicki, R. J. Powell, and J. C. Burgiel, Physical Review Letters, 24, 1421 (1970)
[76] S. Bloom, G. Harbeke, E. Meier, and I. B. Ortenburger, Physica Status Solidi B, 66, 161 (1974)
[77] Y. Daigo and N. Mutsukura, Thin Solid Films 483, 38 (2005)
[78] Hiroyuki Shinoda and Nobuki Mutsukura, Thin Solid Films, 516, 2837 (2008)
[79] M. Junaid, C. L. Hsiao, J. Palisaitis, J. Jensen, P. O. A. Persson, L. Hultman, and J. Birch, Appl. Phys. Lett. 98, 141915 (2011)
[80] K. Morii, M. Ishida, T. Takashima, T. Shimoda, Q. Wang, Md. K. Nazeeruddin, and M. Grätzel, Applied Physics Letters, 89, 183510 (2006)
[81] S. A. Haque, S. Koops, N. Tokmoldin, J. R. Durrant, J. Huang, D. D. C. Bradley, and E. Palomares, Advanced Materials, 19, 683 (2007)
[82] H. J. Bolink, E. Coronado, D. Repetto, M. Sessolo, E. M. Barea, J. Bisquert, G. Garcia-Belmonte, J. Prochazka, and L. Kavan, Advanced Functional Materials, 18, 145 (2008)
[83] J. L. van Heerden and R. Swanepoel, Thin Solid Film, 299, 72 (1997)
[84] R. Konenkamp, R. C. Word, and M. Godinez, Nano Letters, 5, 2005 (2005)
[85] H. J. Bolink, E. Coronado, D. Repetto, and M. Sessolo, Applied Physics Letters, 91, 223501 (2007)
[86] N. Tokmoldin, N. Griffiths, D. D. C. Bradley, and S. A. Haque, Advanced Materials, 21, 3475 (2009)
[87] R. Acharya and X. A. Cao, Applied Physics Letters, 101, 053306 (2012)
[88] M. Kim, B.-H. Jeon, J.-Y. Kim, and J.-H. Choi, Synthetic Metals, 135–136, 743 (2003)
[89] J. H. Na, M. Kitamura, M. Arita, and Y. Arakawa, Applied Physics Letters, 94, 213302 (2009)
[90] M. J. Shin, D. -O. Gwon, G. S. Lee, H. S. Ahn, S. N. Yi, and D. H. Ha, Journal of Luminescence, 147, 1 (2014)
[91] M. Mazur, Electrochemistry Communications, 6, 400 (2004)
[92] Y. Zhou, L. Hao, Y. Hu, Y. Zhu, and Z. Chen, Chemistry Letters, 30, 1192 (2001)
[93] H. H. Song, K. M. Jones, and A. A. Baski, Journal of Vacuum Science & Technology A, 17, 1696 (1999)
[94] Y. -J. Han, J. M. Kim, and G. D. Stucky, Chemistry of Materials, 12, 2068 (2000)
[95] M. J. Edmondson, W. Zhou, S. A. Sieber, I. P. Jones, I. Gameson, P. A. Anderson, and P. P. Edwards, Advanced Materials, 13, 1608 (2001)
[96] L. Liu, W. Lee, Z. Huang, R. Scholz, and U. G¨osele, Nanotechnology, 19, 335604 (2008)
[97] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, Science, 301, 1882 (2003)
[98] F. Ochanda and W. E. Jones, Jr., Langmuir, 23, 795 (2007)
[99] C. J. Murphy, A. M. Gole, S. E. Hunyadi, and C. J. Orendorff, Inorganic Chemistry, 45, 7544 (2006)
[100] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, Chemistry of Materials, 14, 4736 (2002)
[101] L. Hu, H. S. Kim, J. -Y. Lee, P. Peumans, and Y. Cui, ACS Nano, 4, 2955 (2010)
[102] Y. Sun and Y. Xia, Advanced Materials, 14, 833 (2002)
[103] Y. Gao, P. Jiang, L. Song, L. Liu, X. Yan, Z. Zhou, D. Liu, J. Wang, H. Yuan, Z. Zhang, X. Zhao, X. Dou, W. Zhou, G. Wang, and S. Xie, Journal of Physics D: Applied Physics, 38, 1061 (2005)
[104] P. Apel, Radiation Measurements, 34 559 (2001)
[105] J. M. Zhang and D. Y. Shen, Journal of Physical Chemistry B, 108, 12877 (2004)
[106] M. A. M. Khan, S. Kumar, M. Ahamed, S. A Alrokayan, and M. S. AlSalhi, Nanoscale Research Letters, 6 ,438 (2011)
[107] E. Hutter, J. H. Fendler, and D. Roy, Journal of Physical Chemistry B, 105, 11159 (2001)
[108] A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, Nano Research, 3, 564 (2010)
[109] L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, ACS Applied Materials and Interfaces, 3, 4075 (2011)
[110] B. E. Hardina, W. Gaynora, I. -K. Dinga, S. -B. Rimb, P. Peumansb, and M. D. McGehee, Organic Electronics, 12, 875 (2011)
[111] J. -Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Letters, 8, 689 (2008)
[112] E. C. Garnett,W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, Nature Materials, 11 ,241 (2012)
[113] Z. Zhang, B. Zhao, and L. Hu, Journal of Solid State Chemistry, 121, 105 (1996)
[114] G. Carotenuto, G. P. Pepe, and L. Nicolais, The European Physical Journal B, 16, 11 (2000)
[115] I. Pastoriza-Santos and L. M. Liz-Marzan, Langmuir, 18. 2888 (2002)
[116]X. -Y. Zeng, Q. -K. Zhang, R. -M. Yu, and C. -Z. Lu, Advanced Materials, 22 4484 (2010)
[117] Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, and Q. Pei, Advanced Materials, 23, 664 (2011)
[118] D. -S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley, and J. C. de Mello, Advanced Materials, 23, 4371 (2011)
[119] S. Coskun, E. S. Ates, and H. E. Unalan, Nanotechnology, 24, 125202 (2013)
[120] W. Brütting, S. Berleb, and A. G. Mückl, Organic Electronics, 2, 1 (2001)
[121] C. -H. Liu and X. Yu, Nanoscale Research Letters, 6, 75 (2011)
[122] F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, and P. E. Lyons, Applied Physics Letters, 99, 183307 (2011)
[123] C. -H. Chung, T. -B. Song, B. Bob, R. Zhu, H. -S. Duan, and Y. Yang, Advanced Materials, 24, 5499 (2012)
[124] L. Luo, D. Bozyigit, V. Wood, and M. Niederberger, Chemistry of Materials, 25, 4901 (2013)
[125] B. -R. Koo and H. -J. Ahn, Applied Physics Express, 7, 075002 (2014)
[126] http://www.infraphil.info/infrared.html
[127] J. C. M. Brokken-Zijp, O. L. J. van Asselen, W. E. Kleinjan, R. van de Belt and G. de With, Journal of Nanotechnology, 2011, 106254 (2011)
[128] S. De and J. N. Coleman, MRS Bulletin, 36, 774 (2011)
[129] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, Applied Physics Letters, 75, 1679 (1999)
[130] N. Koch, Journal of Physics: Condensed Matter, 20, 184008 (2008)
[131] R. C. Weast, CRC handbook of chemistry and physics (88th), CRC Press, Inc.
[132] H. Morkoc, Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth, John Wiley & Sons (2008)
[133] O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. A. Fischer, A. Miehr, A. Bergmaier, and G. Dollinger, Journal of Vacuum Science & Technology B, 14, 3532 (1996)
[134] B. W. D’Andrade, S. R. Forrest, and A. B. Chwang, Applied Physics Letters, 83, 3858 (2003)
[135] T. Mori and Y. Masumoto, Journal of Photopolymer Science and Technology, 19, 209 (2006)
[136] J. S. Foresi and T. D. Moustakas, Applied Physics Letters, 62, 2859 (1993)
[137] B. Van Daele, G. Van Tendeloo, W. Ruythooren, J. Derluyn, M. R. Leys, and M. Germain, Applied Physics Letters, 87, 061905 (2005)
[138] L. Dobos, B. Pe´cz, L. To´th, Zs.J. Horva´th, Z.E. Horva´th, A. To´th, E. Horva´th, B. Beaumont, and Z. Bougrioua, Applied Surface Science, 253, 655 (2006)
[139] L. Dobos, B. Pe´cz, L. To´th, Zs.J. Horva´th, Z.E. Horva´th, E. Horva´th, A. To´th, B. Beaumont, and Z. Bougrioua, Vacuum, 84, 228 (2010)
[140] H. B. Nie, S. Y. Xu, S. J. Wang, L. P. You, Z. Yang, C. K. Ong, J. Li, and T. Y. F. Liew, Journal of Applied Physics, 73, 229 (2001)
[141] M. -H. Chan and F. -H. Lu, Journal of The Electrochemical Society, 158, 75 (2011)
[142] C. S. Kang, H.-J. Cho, Y. H. Kim, R. Choi, K. Onishi, A. Shahriar, and J. C. Lee, Journal of Vacuum Science & Technology B, 21, 2026 (2003)
[143] L. P. Lima, J. A. Diniz, I. Doi, J. Miyoshi, A. R. Silva, and J. G. Fo, ECS Transactions, 39, 69 (2011)
[144] N. Saoula, K. Henda, and R. Kesri, Materials Science Forum, 609, 117 (2009)
[145] B. P. Luther, S. E. Mohney, and T. N. Jackson, Semicond. Sci. Technol, 13, 1322 (1998)
[146] F. Fillot, T. Morel, S. Minoret, I. Matko, S. Maıˆtrejean, B. Guillaumot, B. Chenevier, and T. Billon, Microelectronic Engineering, 82, 248 (2005)
[147] A. Didden, H. Battjes, R. Machunze, B. Dam, and R. van de Krol, Journal of Applied Physics, 110, 033717 (2011)
[148] P. R. Tavernier, T. Margalith, J. Williams, D. S. Green, S. Keller, S. P. DenBaars, U. K. Mishra, S. Nakamura, and D. R. Clarke, Journal of Crystal Growth, 264, 150 (2004)
[149] J. F. F€alth, S. K. Davidsson, X. Y. Liu, and T. G. Andersson, Thin Solid Films, 515, 603 (2006)
[150] C. W. Chin, F. K. Yam, K. P. Beh, Z. Hassan, M. A. Ahmad, Y. Yusof, and S. K. Mohd Bakhori, Thin Solid Films, 520, 756 (2011)
[151] S. Lee, H. Choe, T. Oh, J. W. Jean, B. Shin, Y. Sohn, and C. Kim, Applied Physics Letters, 90, 151905 (2007)
[152] H. Ashraf, J. L. Weyher, G. W. G. van Dreumel, A. Gzregorczyk, and P. R. Hageman, Journal of Crystal Growth, 310, 3957 (2008)
[153] W. Luo, J. Wu, J. Goldsmith, Y. Du, T. Yu, Z. Yang, and G. Zhang, Journal of Crystal Growth, 340, 18 (2012)
[154] W. J. Meng and T. A. Perry, Applied Physics Letters, 76, 7824 (1994)
[155] T. Miyazaki, T. Fujimaki, S. Adachi, and K. Ohtsuka, Applied Physics Letters, 89, 8316 (2001)
[156] C. W. Zou, M. L. Yin, M. Li, C. S. Liu, L. P. Guo, and D. J. Fu, Thin Solid Films, 517, 670 (2008)
[157] C. G. Zhang, L. F. Bian, W. D. Chen, and C. C. Hsu, Journal of Crystal Growth, 299, 268 (2007)
[158] Q. X. Guo, A. Okada, H. Kidera, T. Tanaka, M. Nishio, and H. Ogawa, Journal of Crystal Growth, 237–239, 1079 (2002)
[159] S. Xu, K. N. Ostrikov, Y. Li, E. L. Tsakadze, and I. R. Jones, Physics of Plasmas, 8, 2549 (2001)
[160] K. Tao, D. Mao, and J. Hopwood, Journal of Crystal Growth, 91, 4040 (2002)
[161] S. Y. Huang, S. Xu, J. W. Chai, Q. J. Cheng, J. D. Long, and K. Ostrikov, Materials Letters, 63, 972 (2009)
[162] S. Q. Xiao, S. Xu, D. Y. Wei, S. Y. Huang, H. P. Zhou, and S. Xu, Journal of Applied Physics, 108, 113520 (2010)
[163] L. L. Alves et al., Plasma Sources Science and Technology, 21, 045008 (2012)
[164] M. Yamashita, Journal of Vacuum Science & Technology A, 7, 151 (1989)
[165] S. bl. Rossnagel and J. Hopwood, Applied Physics Letters, 63, 3285 (1993)
[166] M. Junaid, D. Lundin, J. Palisaitis, C.-L. Hsiao, V. Darakchieva, J. Jensen, P. O. Å. Persson, P. Sandström, W.-J. Lai, L.-C. Chen, K.-H. Chen, U. Helmersson, L. Hultman, and J. Birch, Journal of Applied Physics, 110, 123519 (2011)
[167] K. Wang, J. Singh, and D. Pavlidis, Journal of Applied Physics, 76, 3502 (1994)
[168] S. A. Kukushkin, A. V. Osipov, V. N. Bessolov, B. K. Medvedev, V. K. Nevolin, and K. A. Tcarik, Reviews on Advanced Materials Science, 17, 1 (2008)
[169] A. Y. Timoshkin and H. F. Schaefer III, Journal of the American Chemical Society, 126, 12141 (2004)
[170] Y. Liu, T. Hayashida, T. Matsukawa, K. Endo, M. Masahara, S. O’uchi, K. Sakamoto, K. Ishii, J. Tsukada, Y. Ishikawa, H. Yamauchi, A. Ogura, and E. Suzuki, Japanese Journal of Applied Physics, 47, 2433 (2008)
[171] S. H. Kim, H. Park, K. H. Lee, S. H. Jee, D. -J. Kim, Y. S. Yoon, and H. B. Chae, Journal of Ceramic Processing Research, 10, 49 (2009)
[172] K.‐H. Müller, Journal of Applied Physics, 62, 1796 (1987)
[173] M. Weingarten, M. Slawinski, F. Urbain, D. Fahle, D. Bertram, M. Heuken, H. Kalisch, and A. Vescan, Proceedings of SPIE, 8476, 84761H-1 (2012)
[174] M. A. Reshchikov and H. Morkoç, Journal of Applied Physics, 97, 061301 (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔