( 您好!臺灣時間:2021/03/04 03:09
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):Dielectrophoresis microchip for applications in medical diagnosis and biofuel production: Screening and SERS detection of pathogens and microalgae
指導教授(外文):Yi-Je Juang
外文關鍵詞:microfluidic chipsdielectrophoresissurface enhanced Raman scattering (SERS)microalgaetransdermal drug deliverymicroneedle
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在最近幾年間快速的生醫檢測分析需求在多個領域例如醫藥研究、病原體偵測、生質能生產、環境監控與本土安全均有顯著的成長。透過使用微機電技術製作出的微流體晶片具有少量樣品需求、更加快速的分析速度、較高的樣品負載量、複合式的檢測功能、相對簡單的樣品前處理程序以及良好的可攜帶性等優點,因此能夠更加貼近不同領域的需求。在本論文中,我們提出並且發展了數種微流體技術以應對上述各種領域的需求。在生質能源生產的部份我們製作出批次與連續流動式介電泳晶片來即時的分辨以及篩選出在培養過程中具有較高含油量的微藻,並且探討不同含油量的微藻細胞在非均勻的交流電場下的介電泳行為機制。在病原偵測的部份我們建立整合微針陣列的微流體系統,在交流電場的作用下菌血症病原之一的金黃色葡萄球菌成功與紅球分離並且聚集於微針尖端,加上尖端結構良好的拉曼散射增強效應,只需要稀少的細菌量即可確認感染菌種的拉曼特徵光譜。表面增強拉曼散射的機制與所謂的”熱點”數量有密切的相關性,我們使用感應耦合離子電漿蝕刻技術製作出不同尺度與密集程度的黑矽基板來進行相關的探討。當單位面積內所包含的黑矽尖錐結構越多則熱點的的數量也隨之增加,搭配適當厚度的金屬蒸鍍層來最佳化拉曼增強效果,我們能夠有效的檢測出10fM Rhodamine 6G分子的拉曼訊號。最後,我們提出一種相對快速、簡單而且可靠的製作技術來蝕刻出以polydimethyl siloxane為材質的微針結構進而應用在製作微針整合的微流體晶片與經皮藥物輸送領域。
In recent years, the need of rapid bio-detection and analysis in many territories such as medical research, pathogen detection, biomass production, environmental monitoring, homeland security have been increasing drastically. The microfluidic devices constructed by exploiting the MEMS (Micro-Electro-Mechanical System) technology can well meet the demands because they possess several advantages such as small amount sample required, faster analysis, high throughput, multiplexing, relatively simple procedure for sample pretreatment and increased portability. In this study, we addressed and developed some of microfluidic techniques for the applications in the abovementioned areas. To effectively select and identify the algal strains with high-lipid content and potentially monitor the cultivation process in biofuel production, we constructed the batch and continuous dielectrophoresis (DEP) microchip to better understand the flow behavior of microalgae with different lipid contents under the non-uniform AC electric field and utilize this information to perform continuous sorting and detection of microalgae. For fast analysis of pathogens, the microfluidic chips with microneedle array were fabricated and performed under the non-uniform AC electric field. By combining both the effects of dielectrophoresis and surface enhanced Raman spectroscopy (SERS), the Staphylococcus aureus (S. aureus) was first effectively separated from the red blood cells (RBCs) and concentrated at the tips of the microneedle array, followed by analysis through SERS. For better heterogeneous SERS detection, one of the important parameters is the amount of the “hot spots” on the SERS substrates. To realize the effect of “hot spots” on SERS detection, several black silicon (BS) surfaces consisting of different tip densities which correspond to different amount of “hot spots” were constructed via inductively coupled plasma etching and gold evaporation. It was concluded that the SERS spectra of rhodamine 6G molecules at solution concentration as low as 10 fM can be obtained by using the optimized BS surface. Finally, a relative rapid, simple and reliable technique to fabricate microneedles by 3D polydimethylsiloxane (PDMS) etching was proposed and developed, which can be used to construct the microfluidic chip with microneedle array and in the applications of transdermal drug delivery.
Table of contents
Chapter 1 Introduction 1
1.1 Overview of microelectro mechanical systems (MEMS) for bio-detection 1
1.2 Motivations and objectives 2
1.4 Topics arrangement 5
Chapter 2 Electrokinetic trapping and SERS detection of biomolecules using optofluidic device integrated with a microneedles array 8
2.1 Introduction 8
2.2 Experimental 11
2.2.1 Device fabrication 11
2.2.2 Sample preparation 13
2.2.3 DEP separation of latex beads with different sizes 13
2.2.4 DEP separation of S. aureus/RBCs 14
2.2.5 Raman detection of R6G and S. aureus using micro needles array 14
2.3 results and discussion 15
2.3.1 SEM images of silicon micro needles array 15
2.3.2 DEP separation of latex beads with different sizes 17
2.3.3 Raman detection of R6G at the tips 18
2.3.4 On-chip separation of S. aureus/RBCs and SERS analysis of S. aureus 19
Chapter 3 Black silicon SERS substrate: Effect of surface morphology on SERS detection and application of single algal cell analysis 23
3.1 Introduction 23
3.2 Experimental 26
3.2.1 Fabrication of black silicon SERS substrates 26
3.2.2 Sample preparation 27
3.2.3 Raman measurement and estimation of “hot spots” on SERS substrate 27
3.3 Results and discussion 28
3.3.1 Fabrication of black silicon with different tip densities 28
3.3.2 SERS effect on the black silicon with different tip density 30
3.3.3 The effect of the thickness of gold layer on SERS 34
3.3.4 SERS measurement of single algal cell 38
Chapter 4 Polydimethyl siloxane wet etching for 3D fabrication of microneedle array and high-aspect-ratio micropillars 41
4.1 Introduction 41
4.2 Experimental 44
4.2.1 Fabrication of PDMS microneedle array 44
4.2.2 Fabrication of PVP microneedle array 45
4.3 Results and discussion 45
Chapter 5 Separation of microalgae with different lipid contents by dielectrophoresis 52
5.1 Introduction 52
5.2 Experimental 54
5.2.1 Sample preparation 54
5.2.2 Fabrication of DEP microfluidic device 55
5.2.3 Separation of microalgae by DEP 57
5.3 Results and discussion 58
5.3.1 Effect of solution conductivity on crossover frequency 58
5.3.2 DEP separation of microalgae with 11wt% and 45wt% lipid contents 61
5.3.3 Characterization of crossover frequencies of microalgae with various lipid contents and perform continuous separation of microalgae 62
Chapter 6 Conclusions and future applications 68
6.1 Summary 68
6.2 Future applications 70
Reference 73

List of the tables and figures
Figure 2-1 Schematic and photograph of DEP microfluidic device 12
Figure 2-2 (a) The effect of patterned area on etching uniformity. Left: large patterned area (2*2 cm2). Right: small patterned area (0.5*0.5 cm2). (b) Time-lapsed images of microneedles fabricated during the etching process. 17
Figure 2-3 Time-lapsed images of DEP separation of latex beads with different sizes. The dashed circles indicate the region surrounding the tips of microneedles. 18
Figure 2-4 Raman detection of R6G molecules on the gold coated substrate and substrate with microneedles array. 19
Figure 2-5 (a)DEP motions of S. aureus and RBCs at 170 kHz and 80 μS/cm (b)Time-lapsed images of DEP separation of S. aureus and RBCs. 21
Figure 2-6 SERS spectra of S. aureus acquired from the gold coated substrate and substrate with microneedles array. 22

Figure 3-1 The black silicon morphology obtained at the etching conditions (a) 100-9-50 (BS1), (b) 100-12-30 (BS2), (c) 100-12-40 (BS2), and (d) 25-35-3 (BS3). xx-xx-xx refers to SF6 flow rate- O2 flow rate-etching time. 30
Figure 3-2 (a) The Raman spectra obtained by using the black silicon substrate with different tip densities. (b) The relationship between the tip density and the peak intensity at different Raman shift. 32
Figure 3-3 The SEM pictures of the black silicon substrates (a) BS1, (b) BS2, (c) high aspect ratio BS2, and (d) BS3 deposited with 100 nm gold layer. Bridging between cone-like structure by the deposited gold layer was indicated by the red circles. 33
Figure 3-4 The SEM pictures of the BS3 substrate deposited with (a) 100 nm, (b) 200 nm, (c) 400 nm, and (d) 600 nm thick gold layer. 35
Figure 3-5 (a) SERS detection of 10-7 M R6G on the BS3 substrate deposited with different thickness of gold layer (b) The Raman spectra for 10-9 M to 10-14 M R6G on the BS3 substrate deposited with 400 nm thick gold layer. 36
Figure 3-6 (a) The Raman intensity mapping (200 μm point space) and (b) the line scanning (50 μm point space) of the BS3 substrate deposited with 400 nm thick gold layer. The concentration of R6G solution is 0.1 nM. 37
Figure 3-7 The Raman intensities at 612 cm-1 measured at five different dates for different sample concentrations. 38
Figure 3-8 SERS detection of a single algal cell by using the BS3 substrate deposited with 400 nm gold layer. The inset are the images of the algal cells dispersed at the substrates taken from the optical microscope. 39
Figure 3-9 The Raman spectra obtained from five randomly selected algal cells. 40

Figure 4-1 (a) The initial micropillar with 400 μm in diameter and 700 μm in height. The optical images of PDMS micropillars at the etching time (b) 15, (c) 27 and (d) 32 minutes in the etching process without agitation. (e) The etched PDMS microneedle array. (f) The cross sectional view of the PDMS negative mold. (g) The PVP microneedle array. The scale bar in the inset of (f) and (g) is 300 μm. 46
Figure 4-2 The relationship of (a) height and (b) aspect ratio between the initial PDMS micropillar and the etched PDMS MNs. 48
Figure 4-3 (a) The initial PDMS micropillars with 300 μm in diameter and 800 μm in height. The optical images of PDMS micropillars at the etching time (b) 9, (c) 22 and (d) 30 minutes in the etching process with agitation (rotation speed of 500 rpm). 49
Figure 4-4 casted PVP micropillars with aspect ratio of 13 50
Figure 4-5 PDMS micropillars after 35-minute etching under agitation 51

Table 5-1 DEP motion collection of microalgae with different lipid content 63

Figure 5-1 The schematic of (a) top and (b) side view of the DEP microfluidic device. (c) Image of the fabricated device. 56
Figure 5-2 (a) The schematic of the experimental setup. (b) The proposed scheme for separation of microalgae with different lipid content. (c) The photo of the continuous flow DEP microfluidic chip. 57
Figure 5-3 The DEP motion of the microalgae with 11 wt% lipid content under different operating frequencies at the solution conductivity (a) 2.45, (b) 2.95 and (c) 1.4 mS/cm. 60
Figure 5-4 The DEP motion of the microalgae with 45 wt% lipid content under different operating frequencies at the solution conductivity (a) 2.95 and (b) 1.4 mS/cm. 61
Figure 5-5 The movement of the microalgae with 11wt% (transparent dots) and 45wt% (bright dots) lipid contents. (a) before and (b) after AC was turned on. 62
Figure 5-6 Calculation of Re(fcm) for microalgae with different lipid content 64
Figure 5-7 The alignment of the microalgae (a) before and (b) after turning on the AC function generator. (c) The sequential images for separation of the microalgae with 24% and 35% lipid contents. The electrodes (dashed lines) and the edge of the microchannel (solid sline) are outlined for clarity. 66
Figure 5-8 The measured fluorescence intensity of the microalgae with different lipid contents at rest and in motion. 67

Figure 6-1 Schematic of ACEO flow type on 3D micorneedle electrode 71
Figure 6-2 0.92 μm particles are driven in tip-centered symmetric circulation by ACEO flow and trapped at tips as they move close to microneedles. 72
[1] R. Antony, M.S.G. Nandagopal, N. Sreekumar, N. Selvaraju, Detection principles and development of microfluidic sensors in the last decade, Microsyst Technol, 20(2014) 1051-61.
[2] I. Doh, Y.H. Cho, A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process, Sensors and Actuators a-Physical, 121(2005) 59-65.
[3] C.S. Kim, J. Park, Influence of oxygen microenvironment on microfluidic glucose sensor performance, 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology (IEEE Cat No 05EX937), (2005) 26-7.
[4] I.F. Cheng, H. Huan-Wen, C. Hsien-Chang, Dielectrophoresis and shear-enhanced sensitivity and selectivity of DNA hybridization for the rapid discrimination of Candida species, Biosensors & Bioelectronics, 33(2012) 36-43.
[5] V.F. Curto, C. Fay, S. Coyle, R. Byrne, C. O'Toole, C. Barry, et al., Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids, Sens Actuator B-Chem, 171(2012) 1327-34.
[6] J. Cleary, C. Slater, C. McGraw, D. Diamond, An autonomous microfluidic sensor for phosphate: On-site analysis of treated wastewater, Ieee Sensors Journal, 8(2008) 508-15.
[7] T. Mueller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle, G. Fuhr, A 3-D microelectrode system for handling and caging single cells and particles, Biosensors and Bioelectronics, 14(1999) 247-56.
[8] J. Shi, H. Huang, Z. Stratton, Y. Huang, T.J. Huang, Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW), Lab on a Chip, 9(2009) 3354-9.
[9] N. Minc, P. Bokov, K.B. Zeldovich, C. Futterer, J.L. Viovy, K.D. Dorfman, Motion of single long DNA molecules through arrays of magnetic columns, Electrophoresis, 26(2005) 362-75.
[10] I.F. Cheng, C.C. Lin, D.Y. Lin, H. Chang, A dielectrophoretic chip with a roughened metal surface for on-chip surface-enhanced Raman scattering analysis of bacteria, Biomicrofluidics, 4(2010).
[11] A. Hyldgard, K. Birkelund, J. Janting, E.V. Thomsen, Direct media exposure of MEMS multi-sensor systems using a potted-tube packaging concept, Sensors and Actuators a-Physical, 142(2008) 398-404.
[12] C. Iliescu, G.L. Xu, V. Samper, F.E.H. Tay, Fabrication of a dielectrophoretic chip with 3D silicon electrodes, J Micromech Microeng, 15(2005) 494-500.
[13] B.Y. Park, M.J. Madou, 3-D electrode designs for flow-through dielectrophoretic systems, ELECTROPHORESIS, 26(2005) 3745-57.
[14] L. Wang, L.A. Flanagan, N.L. Jeon, E. Monuki, A.P. Lee, Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry, Lab on a Chip, 7(2007) 1114-20.
[15] N. Lewpiriyawong, K. Kandaswamy, C. Yang, V. Ivanov, R. Stocker, Microfluidic Characterization and Continuous Separation of Cells and Particles Using Conducting Poly(dimethyl siloxane) Electrode Induced Alternating Current-Dielectrophoresis, Analytical Chemistry, 83(2011) 9579-85.
[16] B.W. Barry, Novel mechanisms and devices to enable successful transdermal drug delivery, European Journal of Pharmaceutical Sciences, 14(2001) 101-14.
[17] A.C. Williams, B.W. Barry, Penetration enhancers, Advanced Drug Delivery Reviews, 56(2004) 603-18.
[18] M.J. Pikal, The role of electroosmotic flow in transdermal iontophoresis, Advanced Drug Delivery Reviews, 46(2001) 281-305.
[19] W. Martanto, J.S. Moore, T. Couse, M.R. Prausnitz, Mechanism of fluid infusion during microneedle insertion and retraction, Journal of Controlled Release, 112(2006) 357-61.
[20] P.J.L. Williams, Biofuel: microalgae cut the social and ecological costs, Nature, 450(2007) 478-.
[21] Y. Chisti, Biodiesel from microalgae, Biotechnol Adv, 25(2007) 294-306.
[22] M.F. Montero, M. Aristizabal, G.G. Reina, Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting, J Appl Phycol, 23(2011) 1053-7.
[23] A.A. Kayani, K. Khoshmanesh, S.A. Ward, A. Mitchell, K. Kalantar-Zadeh, Optofluidics incorporating actively controlled micro- and nano-particles, Biomicrofluidics, 6(2012).
[24] C. Monat, P. Domachuk, C. Grillet, M. Collins, B.J. Eggleton, M. Cronin-Golomb, et al., Optofluidics: a novel generation of reconfigurable and adaptive compact architectures, Microfluidics and Nanofluidics, 4(2008) 81-95.
[25] D. Psaltis, S.R. Quake, C.H. Yang, Developing optofluidic technology through the fusion of microfluidics and optics, Nature, 442(2006) 381-6.
[26] Y. Fainman, Optofluidics fundamentals, devices, and applications, Biophotonics series, McGraw-Hill, New York, 2010, pp. 1 online resource (xvii, 510 p., 16 p. of plates).
[27] H. Morgan, M.P. Hughes, N.G. Green, Separation of submicron bioparticles by dielectrophoresis, Biophys J, 77(1999) 516-25.
[28] N.G. Green, H. Morgan, Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces, J Phys D-Appl Phys, 31(1998) L25-L30.
[29] N.G. Green, H. Morgan, Dielectrophoretic investigations of sub-micrometre latex spheres, J Phys D-Appl Phys, 30(1997) 2626-33.
[30] N.G. Green, H. Morgan, Dielectrophoretic separation of nano-particles, J Phys D-Appl Phys, 30(1997) L41-L4.
[31] X.Y. Hu, P.H. Bessette, J.R. Qian, C.D. Meinhart, P.S. Daugherty, H.T. Soh, Marker-specific sorting of rare cells using dielectrophoresis, Proceedings of the National Academy of Sciences of the United States of America, 102(2005) 15757-61.
[32] J. Kneipp, H. Kneipp, W.L. Rice, K. Kneipp, Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles, Analytical Chemistry, 77(2005) 2381-5.
[33] T. Park, S. Lee, G.H. Seong, J. Choo, E.K. Lee, Y.S. Kim, et al., Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study, Lab on a Chip, 5(2005) 437-42.
[34] J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, K. Kneipp, In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates, Nano Letters, 6(2006) 2225-31.
[35] Fleischm.M, P.J. Hendra, McQuilla.Aj, RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE, Chem Phys Lett, 26(1974) 163-6.
[36] K. Kneipp, H. Kneipp, G. Deinum, I. Itzkan, R.R. Dasari, M.S. Feld, Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering, Applied Spectroscopy, 52(1998) 175-8.
[37] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R. Dasari, et al., Single molecule detection using surface-enhanced Raman scattering (SERS), Physical Review Letters, 78(1997) 1667-70.
[38] H. Kneipp, K. Kneipp, Surface-enhanced hyper Raman scattering in silver colloidal solutions, J Raman Spectrosc, 36(2005) 551-4.
[39] H.S. Cho, B. Lee, G.L. Liu, A. Agarwal, L.P. Lee, Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration, Lab on a Chip, 9(2009) 3360-3.
[40] P. Verma, K. Yamada, H. Watanabe, Y. Inouye, S. Kawata, Near-field Raman scattering investigation of tip effects on C-60 molecules, Physical Review B, 73(2006).
[41] T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging, Physical Review Letters, 92(2004).
[42] N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, S. Kawata, Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy, Chem Phys Lett, 376(2003) 174-80.
[43] S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, Microfabricated microneedles: A novel approach to transdermal drug delivery, J Pharm Sci, 87(1998) 922-5.
[44] H. Jansen, M. de Boer, H. Wensink, B. Kloeck, M. Elwenspoek, The black silicon method. VIII. A study of the performance of etching silicon using SF6/O-2-based chemistry with cryogenical wafer cooling and a high density ICP source, Microelectron J, 32(2001) 769-77.
[45] C. Hedlund, H.O. Blom, S. Berg, MICROLOADING EFFECT IN REACTIVE ION ETCHING, J Vac Sci Technol A-Vac Surf Films, 12(1994) 1962-5.
[46] S. Basuray, H.H. Wei, H.C. Chang, Dynamic double layer effects on ac-induced dipoles of dielectric nanocolloids, Biomicrofluidics, 4(2010).
[47] M. Sureda, A. Miller, F.J. Diez, In situ particle zeta potential evaluation in electroosmotic flows from time-resolved microPIV measurements, Electrophoresis, 33(2012) 2759-68.
[48] Y.S. Huh, A.J. Chung, B. Cordovez, D. Erickson, Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells, Lab on a Chip, 9(2009) 433-9.
[49] K. Kneipp, H. Kneipp, Single molecule Raman scattering, Applied Spectroscopy, 60(2006) 322A-34A.
[50] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering: A new tool for biomedical spectroscopy, Current Science, 77(1999) 915-24.
[51] K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry2007, pp. 267-97.
[52] K. Kneipp, H. Kneipp, J. Kneipp, Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells, Accounts of Chemical Research, 39(2006) 443-50.
[53] K.H. Cho, J. Choo, S.W. Joo, Surface-enhanced Raman scattering and density functional theory calculation of uracil on gold and silver nanoparticle surfaces, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 61(2005) 1141-5.
[54] X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, Z.Q. Tian, Surface-enhanced Raman spectroscopy: substrate-related issues, Analytical and Bioanalytical Chemistry, 394(2009) 1729-45.
[55] Y.S. Huh, A.J. Lowe, A.D. Strickland, C.A. Batt, D. Erickson, Surface-Enhanced Raman Scattering Based Ligase Detection Reaction, Journal of the American Chemical Society, 131(2009) 2208-13.
[56] M. Moskovits, SURFACE-ENHANCED SPECTROSCOPY, Rev Mod Phys, 57(1985) 783-826.
[57] I. Talian, K.B. Mogensen, A. Orinak, D. Kaniansky, J. Hubner, Surface-enhanced Raman spectroscopy on novel black silicon-based nanostructured surfaces, J Raman Spectrosc, 40(2009) 982-6.
[58] C.-M. Hsu, S.T. Connor, M.X. Tang, Y. Cui, Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching, Appl Phys Lett, 93(2008).
[59] U.S. Dinish, F.C. Yaw, A. Agarwal, M. Olivo, Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing, Biosensors & Bioelectronics, 26(2011) 1987-92.
[60] S.K. Srivastava, D. Kumar, Vandana, M. Sharma, R. Kumar, P.K. Singh, Silver catalyzed nano-texturing of silicon surfaces for solar cell applications, Solar Energy Materials and Solar Cells, 100(2012) 33-8.
[61] S.L. Kleinman, B. Sharma, M.G. Blaber, A.I. Henry, N. Valley, R.G. Freeman, et al., Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy, Journal of the American Chemical Society, 135(2013) 301-8.
[62] X. Zhang, C.R. Yonzon, M.A. Young, D.A. Stuart, R.P. Van Duyne, Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography, IEE Proceedings Nanobiotechnology, 152(2005) 195-206.
[63] M.J. de Boer, J.G.E. Gardeniers, H.V. Jansen, E. Smulders, M.J. Gilde, G. Roelofs, et al., Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures, J Microelectromech Syst, 11(2002) 385-401.
[64] Y.F. Li, J.H. Zhang, S.J. Zhu, H.P. Dong, Z.H. Wang, Z.Q. Sun, et al., Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings, J Mater Chem, 19(2009) 1806-10.
[65] V. Jokinen, L. Sainiemi, S. Franssila, Complex droplets on chemically modified silicon nanograss, Adv Mater, 20(2008) 3453-+.
[66] I. Talian, M. Aranyosiova, A. Orinak, D. Velic, D. Hasko, D. Kaniansky, et al., Functionality of novel black silicon based nanostructured surfaces studied by TOF SIMS, Appl Surf Sci, 256(2010) 2147-54.
[67] W. Wu, M. Hu, F.S. Ou, Z.Y. Li, R.S. Williams, Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy, Nanotechnology, 21(2010).
[68] C.Y. Chen, K.L. Yeh, R. Aisyah, D.J. Lee, J.S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review, Bioresour Technol, 102(2011) 71-81.
[69] C.Y. Chen, K.L. Yeh, H.M. Su, Y.C. Lo, W.M. Chen, J.S. Chang, Strategies to Enhance Cell Growth and Achieve High-Level Oil Production of a Chlorella vulgaris Isolate, Biotechnol Prog, 26(2010) 679-86.
[70] M.S. Schmidt, J. Hubner, A. Boisen, Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy, Adv Mater, 24(2012) OP11-OP8.
[71] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Ultrasensitive chemical analysis by Raman spectroscopy, Chemical Reviews, 99(1999) 2957-+.
[72] J.C. Hulteen, D.A. Treichel, M.T. Smith, M.L. Duval, T.R. Jensen, R.P. Van Duyne, Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays, J Phys Chem B, 103(1999) 3854-63.
[73] Y.Y. Huang, C.M. Beal, W.W. Cai, R.S. Ruoff, E.M. Terentjev, Micro-Raman Spectroscopy of Algae: Composition Analysis and Fluorescence Background Behavior, Biotechnol Bioeng, 105(2010) 889-98.
[74] A.R. Denet, R. Vanbever, V. Preat, Skin electroporation for transdermal and topical delivery, Advanced Drug Delivery Reviews, 56(2004) 659-74.
[75] A.A. Hamzah, N. Abd Aziz, B.Y. Majlis, J. Yunas, C.F. Dee, B. Bais, Optimization of HNA etching parameters to produce high aspect ratio solid silicon microneedles, J Micromech Microeng, 22(2012).
[76] N. Wilke, A. Mulcahy, S.R. Ye, A. Morrissey, Process optimization and characterization of silicon microneedles fabricated by wet etch technology, Microelectron J, 36(2005) 650-6.
[77] S.O. Choi, Y.C. Kim, J.H. Park, J. Hutcheson, H.S. Gill, Y.K. Yoon, et al., An electrically active microneedle array for electroporation, Biomedical Microdevices, 12(2010) 263-73.
[78] J.H. Park, Y.K. Yoon, S.O. Choi, M.R. Prausnitz, M.G. Allen, Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery, Ieee Transactions on Biomedical Engineering, 54(2007) 903-13.
[79] V.V. Yuzhakov, Microneedle array, patch, and applicator for transdermal drug delivery, 2010.
[80] F.J. Verbaan, S.M. Bal, D.J. van den Berg, J.A. Dijksman, M. van Hecke, H. Verpoorten, et al., Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method, Journal of Controlled Release, 128(2008) 80-8.
[81] W. Martanto, S.P. Davis, N.R. Holiday, J. Wang, H.S. Gill, M.R. Prausnitz, Transdermal delivery of insulin using microneedles in vivo, Pharmaceutical Research, 21(2004) 947-52.
[82] K. Lee, H.C. Lee, D.-S. Lee, H. Jung, Drawing Lithography: Three-Dimensional Fabrication of an Ultrahigh-Aspect-Ratio Microneedle, Adv Mater, 22(2010) 483-+.
[83] J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H.K. Wu, O.J.A. Schueller, et al., Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, 21(2000) 27-40.
[84] D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Analytical Chemistry, 70(1998) 4974-84.
[85] N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature, 393(1998) 146-9.
[86] B. Balakrisnan, S. Patil, E. Smela, Patterning PDMS using a combination of wet and dry etching, J Micromech Microeng, 19(2009).
[87] S. Takayama, E. Ostuni, X.P. Qian, J.C. McDonald, X.Y. Jiang, P. LeDuc, et al., Topographical micropatterning of poly(dimethylsiloxane) using laminar flows of liquids in capillaries, Adv Mater, 13(2001) 570-+.
[88] Y. Nishinaka, R. Jun, G.S. Prihandana, N. Miki, Fabrication of Polymer Microneedle Electrodes Coated with Nanoporous Parylene, Japanese Journal of Applied Physics, 52(2013).
[89] Y. Ami, H. Tachikawa, N. Takano, N. Miki, Formation of polymer microneedle arrays using soft lithography, Journal of Micro-Nanolithography Mems and Moems, 10(2011).
[90] Z. Xin, Z. Yi, Cellular mechanics study in cardiac myocytes using PDMS pillars array, Sensors and Actuators A (Physical), 125(2006) 398-404.
[91] H. Shinohara, H. Goto, T. Kasahara, J. Mizuno, Fabrication of a Polymer High-Aspect-Ratio Pillar Array Using UV Imprinting, Micromachines, 4(2013) 157-67.
[92] C. Padeste, H. Ozcelik, J. Ziegler, A. Schleunitz, M. Bednarzik, D. Yucel, et al., Replication of high aspect ratio pillar array structures in biocompatible polymers for tissue engineering applications, Microelectronic Engineering, 88(2011) 1836-9.
[93] N.J. Sniadecki, C.S. Chen, Microfabricated Silicone Elastomeric Post Arrays for Measuring Traction Forces of Adherent Cells, in: W. Yu‐Li, E.D. Dennis (Eds.), Methods in Cell Biology, Academic Press2007, pp. 313-28.
[94] A. Singh, S.I. Olsen, A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels, Appl Energy, 88(2011) 3548-55.
[95] K.G. Satyanarayana, A.B. Mariano, J.V.C. Vargas, A review on microalgae, a versatile source for sustainable energy and materials, Int J Energy Res, 35(2011) 291-311.
[96] J.C. Priscu, L.R. Priscu, A.C. Palmisano, C.W. Sullivan, estimation of neutral lipid-levels in antarctic sea ice microalgae by nile red fluorescence, Antarct Sci, 2(1990) 149-55.
[97] E.G. Bligh, Citation Classic - Rapid Method of Total Lipid Extraction and Purification, Current Contents, (1978) 11-.
[98] A. Ramos, H. Morgan, N.G. Green, A. Castellanos, Ac electrokinetics: a review of forces in microelectrode structures, J Phys D-Appl Phys, 31(1998) 2338-53.
[99] H. Morgan, N.G. Green, Dielectrophoretic manipulation of rod-shaped viral particles, J Electrost, 42(1997) 279-93.
[100] H.A. Pohl, K. Pollock, J.S. Crane, dielectrophoretic force a comparison of theory and experiment, Journal of Biological Physics, 6(1978) 133-60.
[101] M.P. Hughes, H. Morgan, Dielectrophoretic trapping of single sub-micrometre scale bioparticles, J Phys D-Appl Phys, 31(1998) 2205-10.
[102] A.C. Sabuncu, J.A. Liu, S.J. Beebe, A. Beskok, Dielectrophoretic separation of mouse melanoma clones, Biomicrofluidics, 4(2010).
[103] V.S. Rao, V. Kripesh, S.W. Yoon, A.A.O. Tay, A thick photoresist process for advanced wafer level packaging applications using JSR THB-151N negative tone UV photoresist, J Micromech Microeng, 16(2006) 1841-6.
[105] S. Ogata, T. Yasukawa, T. Matsue, Dielectrophoretic manipulation of a single chlorella cell with dual-microdisk electrode, Bioelectrochemistry, 54(2001) 33-7.
[106] S.-H. Liao, I.F. Cheng, H.-C. Chang, Precisely sized separation of multiple particles based on the dielectrophoresis gradient in the z-direction, Microfluidics and Nanofluidics, 12(2012) 201-11.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔