[1]M. Pope, P. Magnante, and H. P. Kallmann, Electroluminescence in Organic Crystals, Journal of Chemical Physics, 38, 2042-&, 1963.
[2]C. W. Tang and S. A. Vanslyke, Organic Electroluminescent Diodes, Applied Physics Letters, 51, 913-915, 1987.
[3]段啟聖, 化工資訊雜誌與商情, 26, 40, 民國94年.
[4]郭昭輝, 塑膠資訊雜誌, 民國91年.
[5]呂淮安, 以水/醇可溶性之含氮冠醚基芴衍生物為電子注入層製備高效率高分子發光二極體, 碩士論文, 國立成功大學, 2012.[6]D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of Instrumental Analysis. 6th edition, 2007.
[7]J. R. Lakowicz, Principles of Fluorescence Spectroscopy. 3rd edition, 2006.
[8]S. Pawlizak, Introduction of Fluorescence Microscopy,
[9]V. May and O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems. 2nd revised and enlarged edition, 2004.
[10]Z. H. Kafafi, Organic Electroluminescence, 2005.
[11]L. T. Corporation, Fluorescence Resonance Energy Transfer (FRET)-Note 1.2,
[12]V. Tran and B. J. Schwartz, Role of nonpolar forces in aqueous solvation: Computer simulation study of solvation dynamics in water following changes in solute size, shape, and charge, Journal of Physical Chemistry B, 103, 5570-5580, 1999.
[13]L. Akcelrud, Electroluminescent polymers, Progress in Polymer Science, 28, 875-962, 2003.
[14]J. Guillet, Polymer Photophysics and Photochemistry, 1985.
[15]陳信宏, 陳雲, 中工高雄會刊, 第3期, 72, 2006.
[16]黃孝文, 陳雲, 化工資訊月刊, 第15卷第3期, 8, 2001.
[17]葉昆明, 陳雲, 科學發展, 第385期, 58, 2005.
[18]K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Highly efficient organic devices based on electrically doped transport layers, Chem Rev, 107, 1233-1271, 2007.
[19]M. A. Baldo, M. E. Thompson, and S. R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer, Nature, 403, 750-753, 2000.
[20]楊素華, 光訊雜誌, 第98期, 29, 2002.
[21]陳金鑫, 黃孝文, 有機電激發光材料與元件, 2005.
[22]Y. Shirota and H. Kageyama, Charge carrier transporting molecular materials and their applications in devices, Chem Rev, 107, 953-1010, 2007.
[23]方思文, 含Carbazole芴衍生物的合成、鑑定與電致發光元件電洞傳輸層之應用, 碩士論文, 國立成功大學, 2012.[24]J. L. Segura, The chemistry of electroluminescent organic materials, Acta Polymerica, 49, 319-344, 1998.
[25]Y. Yang and A. J. Heeger, Nature, 374, 539, 1990.
[26]H. A. M. v. Mullekom, J. A. J. M. Vekemans, E. E. Havinga, and E. W. Meijer, Materials Science and Engineering B-Solid State Materials for Advanced Technology, 32, 1, 2001.
[27]G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Flexible Light-Emitting-Diodes Made from Soluble Conducting Polymers, Nature, 357, 477-479, 1992.
[28]A. J. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials, Journal of Physical Chemistry B, 105, 8475-8491, 2001.
[29]R. G. Kepler, Charge Carrier Production and Mobility in Anthracene Crystals, Physical Review, 119, 1226-1229, 1960.
[30]E. H. Martin and J. Hirsch, Determination of Carrier Mobility in Plastics by a Time-of-Flight Method, Solid State Communications, 7, 783-&, 1969.
[31]G. Horowitz, Organic field-effect transistors, Adv Mater, 10, 365-377, 1998.
[32]A. Babel and S. A. Jenekhe, High electron mobility in ladder polymer field-effect transistors, J Am Chem Soc, 125, 13656-13657, 2003.
[33]X. J. Zhang and S. A. Jenekhe, Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions, Macromolecules, 33, 2069-2082, 2000.
[34]S. A. Jenekhe and S. J. Yi, Efficient photovoltaic cells from semiconducting polymer heterojunctions, Applied Physics Letters, 77, 2635-2637, 2000.
[35]G. G. Malliaras and J. C. Scott, The roles of injection and mobility in organic light emitting diodes, Journal of Applied Physics, 83, 5399-5403, 1998.
[36]M. V. M. Rao, T. S. Huang, Y. K. Su, M. L. Tu, C. Y. Huang, and S. S. Wu, Polymer light-emitting devices using poly(ethylene oxide) as an electron injecting layer, Nano-Micro Letters, 2, 49-52, 2010.
[37]M. L. Tu, Y. K. Su, S. S. Wu, T. F. Guo, T. C. Wen, and C. Y. Huang, Violet electroluminescence from poly(N-vinylcarbazole)/ZnO-nanrod composite polymer light-emitting devices, Synthetic Metals, 161, 450-454, 2011.
[38]T. H. Lee, J. C. A. Huang, G. L. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, and Y. J. Hsu, Organic-Oxide Cathode Buffer Layer in Fabricating High-Performance Polymer Light-Emitting Diodes, Advanced Functional Materials, 18, 3036-3042, 2008.
[39]T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu, and C. T. Chung, Organic oxide/Al composite cathode in efficient polymer light-emitting diodes, Applied Physics Letters, 88, 113501, 2006.
[40]C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu, and Y. Yang, Effective connecting architecture for tandem organic light-emitting devices, Applied Physics Letters, 87, 241121, 2005.
[41]C.-I. Wu, C.-T. Lin, Y.-H. Chen, M.-H. Chen, Y.-J. Lu, and C.-C. Wu, Electronic structures and electron-injection mechanisms of cesium-carbonateincorporated
cathode structures for organic light-emitting devices, Applied Physics Letters, 88, 152104, 2006.
[42]M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers (vol 409, pg 494, 2001), Nature, 411, 617-617, 2001.
[43]C. Ganzorig, K. Suga, and M. Fujihira, Alkali metal acetates as effective electron injection layers for organic electroluminescent devices, Materials Science and Engineering B-Solid State Materials for Advanced Technology, 85, 140-143, 2001.
[44]C. Ganzorig and M. Fujihira, Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition, Applied Physics Letters, 85, 4774-4776, 2004.
[45]M. Stossel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, and A. Winnacker, Space-charge-limited electron currents in 8-hydroxyquinoline aluminum, Applied Physics Letters, 76, 115-117, 2000.
[46]M. W. Lin, T. C. Wen, Y. J. Hsu, and T. F. Guo, Journal of Materials Cemistry, 21, 18840, 2011.
[47]W. D. Xu, W. Y. Lai, Q. Hu, X. Y. Teng, X. W. Zhang, and W. Huang, A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics, Polymer Chemistry, 5, 2942-2950, 2014.
[48]Z. Kai, L. ShengJian, G. Xing, D. ChunHui, Z. Jie, Z. ChengMei, W. Lei, H. Fei, and C. Yong, Alkali metal salts doped pluronic block polymers as electron injection/transport layers for high performance polymer light-emitting diodes , SCIENCE CHINA Chemistry, 55, 766-771, 2012.
[49]L. J. Rozanski, E. Castaldelli, F. L. M. Sam, C. A. Mills, G. J. F. Demets, and S. R. P. Silva, Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes, Journal of Materials Chemistry C, 1, 3347-3352, 2013.
[50]T. Earmme and S. A. Jenekhe, High-performance multilayered phosphorescent OLEDs by solution-processed commercial electron-transport materials, Journal of Materials Chemistry, 20, 4660-4668, 2012.