跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭裕霖
研究生(外文):Yu-LinHsiao
論文名稱:利用Langmuir-Blodgett技術製備氧化石墨烯單分子膜及其在葡萄糖生物感測器應用之研究
論文名稱(外文):Fabrication of Graphene Oxide Monolayer by Langmuir-Blogett Technique and Its Application on Glucose Biosensor
指導教授:李玉郎吳昭燕吳昭燕引用關係
指導教授(外文):Yuh-Lang LeeJau-Yann Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:128
中文關鍵詞:石墨烯十八烷胺Langmuir-Blodgett技術葡萄糖氧化酵素單分子薄膜生物感測器
外文關鍵詞:GrapheneoctadecylamineLangmuir-Blodgett techniquesglucose oxidasemonolayer templatebiosensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
本研究以改良的Hummer法來製備氧化石墨烯(Graphene Oxide,GO),並以十八烷胺(octadecylamine, ODA) Langmuir單分子層作為模板,藉由單分子層與GO及葡萄糖氧化酵素(Glucose Oxidase, GOx)的作用力,將水溶液中的GO及GOx吸附至氣/液界面,以製備GO及GOx的單分子膜及Langmuir-Blogett (LB)膜。由單分子層的表面壓-時間吸附曲線(π-t isotherm)及表面壓-分子佔據面積等溫曲線(π-A isotherm)來探討GO/ODA及GOx/ODA混合單分子膜於氣/液界面的行為。並以電子顯微鏡和原子力顯微鏡來觀察LB薄膜的表面構型。接著以紫外光還原含氧官能基形成還原態氧化石墨烯(Reduced Graphene Oxide, rGO)薄膜,之後分別將GO及rGO沉積至白金基板,製備成生物感測器進行電化學分析並探討其對感測效能的影響。由實驗結果發現,藉由ODA吸附溶液中的GO可於氣/液界面上形成GO單分子膜,且其表面覆蓋率及表面型態可藉由表面壓的大小來控制。由電化學實驗發現,經紫外光還原過的rGO,有較佳的電化學活性,且在基板上沉積3層rGO時,對過氧化氫有最佳的感測能力,而其葡萄糖感測器靈敏度可達到5.808 μA/cm2∙mM。
In order to prepare graphene oxide (GO) and glucose oxidase (GOx) monolayer, we functionalize the graphite with oxidize agent by modified Hummer’s method. Moreover octadecylamine (ODA) monolayer was used as a template to adsorb GO and GOx from solution to air/water interface by interactions between the template and GO or GOx. We study the behavior of the GO/ODA and GOx/ODA mixed monolayer at air/water interface by pressure-time (π-t) isotherm and the pressure-area (π-A isotherm) isotherm. The morphology of the GO/ODA LB film was examined using Transmission electron microscope (TEM) and Atomic force microscope (AFM). In order to regain the film conductivity, we expose the GO/ODA LB film under UV light to form Reduced Graphene Oxide (rGO). Then the GO and rGO monolayer were dipped on the platinum for biosensors fabrication to study electrochemical property and to get the sensor sensibility. According to experiment results, GO can be adsorbed by surfactant on air/water interface and form GO monolayer. The surface coverage and morphology of the monolayer on the air/water interface can be controlled by surface pressure. From the electrochemical experiment, rGO which reduced by UV light has better electrochemical activity. It shows the best sensing ability to hydrogen peroxide when dipping 3 layers of rGO on the substrate. Moreover the glucose sensor exhibits the highest sensitivity(5.808 μA/cm2∙mM).
目錄
摘要 I
Abstract II
英文延伸摘要 III
致謝 IX
目錄 XI
表目錄 XIV
圖目錄 XIV
第一章 緒論 1
1-1. 前言 1
1-2. 研究動機及目的 4
第二章.文獻回顧 6
2-1. 糖尿病簡介 6
2-2. 生物感測器簡介 10
2-2-1. 生物感測器的起源與發展 10
2-2-2. 生物感測器原理及結構 11
2-2-3. 生物感測器特性與能力 12
2-3. 葡萄糖生物感測器 15
2-3-1. 蛋白質 15
2-3-2. 酵素21-23 21
2-3-3. 葡萄糖感測器之應答機制 23
2-4. Langmuir-Blodgett簡介 27
2-4-1. Langmuir-Blodgett單分子層 27
2-4-1-1. Langmuir-Blodgett單分子層形成原理 27
2-4-1-2. Langmuir-Blodgett單分子層相變化 29
2-4-1-3. 影響等溫線行為的因素 32
2-4-2. Langmuir-Blodgett薄膜製備 35
2-4-3. Langmuir-Blodgett技術沉積生化感測薄膜 38
2-5. 石墨烯的簡介 39
2-5-1. 石墨烯的結構與電化學性質 40
2-5-2. 石墨烯之製備發展 41
2-5-3. 氧化石墨烯的還原反應 43
2-5-4. 氧化石墨烯在氣液界面上的行為 47
2-5-5. 還原態氧化石墨烯電化學性質分析 51
第三章 實驗 54
3-1. 實驗藥品與材料 54
3-2. 儀器設備 55
3-2-1. Langmuir-Blodgett 沉積裝置 55
3-2-2. 表面壓測量原理 56
3-2-3. 穿透式電子顯微鏡 (Transmission electron microscope) 57
3-2-4. 原子力顯微鏡 (Atomic Force Microscope) 59
3-2-5. 傅立葉轉換紅外光光譜儀 (Fourier Transform InfraRed Spectroscopy) 61
3-2-6. 循環伏安儀 (Cyclic Voltammetry,CV) 63
3-2-7. 計時安培法(Chronoamperometry) 64
3-3. 實驗步驟 66
3-3-1. 製備氧化石墨烯(Graphene Oxide,GO) 66
3-3-2. 氧化石墨烯單分子層等溫線的量測 68
3-3-3. 氧化石墨烯單分子層等溫線的量測 68
3-3-4. 鬆弛曲線 69
3-3-5. 遲滯曲線 69
3-3-6. 酵素溶液配製造 69
3-3-7. 葡萄糖氧化酵素Langmuir-Blodgett膜等溫線測量 70
3-3-8. 氧化石墨烯與葡萄糖氧化酵素LB薄膜製備方法 70
3-3-9. 氧化石墨烯Langmuir-Blodgett薄膜的還原 71
3-3-10. 電極的電化學分析方法 71
第四章 結果與討論 73
4-1. 氧化石墨烯於氣/液界面的吸附行為 73
4-1-1. 氧化石墨烯之濃度對其吸附行為的影響 73
4-1-2. 氧化石墨烯之吸附時間對其吸附狀態的影響 80
4-1-3. 氧化石墨烯單分子層沉積行為的探討 86
4-1-4. 氧化石墨烯單分子層於氣/液界面上行為的探討 89
4-1-4-1. 遲滯現象 89
4-1-4-2. 鬆弛行為 90
4-1-5. UV光照射對氧化石墨烯的還原效應 92
4-2 .LB沉積技術製備電流式葡萄糖感測器 95
4-2-1工作電極電化學分析 96
4-2-2. 石墨烯LB膜沉積不同層數對過氧化氫感測之影響 98
4-2-3. 石墨烯LB膜沉積不同層數之電化學探討 101
4-2-4. 葡萄糖氧化酵素於氣/液界面的吸附行為探討 103
4-2-5. 改變電位對葡萄糖感測能力之影響 106
4-2-6. 不同沉積材料對感測能力之影響 108
4-2-7. 不同沉積時間對感測能力之影響 111
4-2-8. 改變葡萄糖滴入濃度對感測能力之影響 114
第五章.結論與建議 118
5-1. 結論 118
5-2. 建議 120
第六章 參考文獻 121

1. 行政院衛生署 國民健康局, 糖尿病防治手冊. (2012).
2. wiki. (2012).
3. M. Robert , Ianniello, M. Alexander, Yacynych, Immobilized enzyme chemically modified electrode as an amperometric sensor. American Chemincal Society 53, 2090 (1981).
4. A. L. P. Crumbliss, S.C. Stonehuerner, J. Tubergen, K.R. Zhao, J. Henkens, R.W., Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng 40, 483 (Aug 5 1992, 1992).
5. T. Laurell, J. Drott, L. Rosengren, K. Lindstrom, Enhanced enzyme activity in silicon integrated enzyme reactors utilizing porous silicon as the coupling matrix. Sensors and Actuators, B: Chemical b31, 161 (1996).
6. H. Q. Ansari S. A. , Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol Adv 30, 512 (May, 2012).
7. M.I.A. Ahuja T., Kumar D., Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28, 791 (Feb, 2007).
8. S. Arya S.K., P.R.,Singh S.P.,Kaneto K.,Pandey M.K.,Datta M., Malhotra B.D., Poly-(3-hexylthiophene) self-assembled monolayer based cholesterol biosensor using surface plasmon resonance technique. Biosens Bioelectron 22, 2516 (May 15, 2007).
9. Z. P. Guan H., Zhou X.,He Z., Sensitive and selective detection of aspartic acid and glutamic acid based on polythiophene-gold nanoparticles composite. Talanta 77, 319 (Oct 19, 2008).
10. D.J. Kim Yuna, Kim Jeonghun,Yang Sang Yoon,Malliaras George G.,Ober Christopher K., E. Kim, A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer. Japanese Journal of Applied Physics 49, 01AE10 (2010).
11. Y. H. Kim, S. K. Park, D. G. Moon, W. K. Kim, J. I. Han, Organic Thin Film Transistor-Driven Liquid Crystal Displays on Flexible Polymer Substrate. Japanese Journal of Applied Physics 43, 3605 (2004).
12. Sungjin Park1, Rodney S. Ruoff, “Chemical methods for the production of graphenes, Nature Nanotechnology, 4, 217 - 224 (2009).
13. 許清曉, 常用臨床檢驗手冊. (藝軒圖書, 2001).
14. 梅約醫學中心, Mayo Clinic on Managing Diabetes— 糖尿病. (天下生活出版社, 2001).
15. 糖尿病關懷基金會, 糖尿病迷思解惑Q & A. (健康文化發行, 2007).
16. 賴育民, 糖尿病完全百科:全方位治療指南. (晨星出版社, 2007).
17. D. Diamond, Chemical Analysis. ( New York, 1998), vol. 1, pp. 150.
18. 林正立, 溶膠-凝膠修飾電極和電流式乳酸生物感測器. (國立中正大學化學研究所, 2005).
19. A. Chaubey, B. D. Malhotra, Mediated biosensors. Biosensors & Bioelectronics 17, 441 (2002).
20. S.P. Mohanty, E. Kougianos, paper presented at the IEEE Potentials (2006).
21. 劉英俊, 酵素工程. (中央圖書出版社, 1995).
22.洪爭坊、郭肇凱、張正英, in 台中區農情月刊. (2007), vol. 84.
23. 呂鋒洲、林仁混, 基礎酵素學. (聯經出版社, 1991).
24. J. Li, V. Rosilio, M.-M. Boissonnade, A. Baszkin, Adsorption of glucose oxidase into lipid monolayers: effect of a lipid headgroup charge. Colloids and Surfaces B: Biointerfaces 29, 13 (2003).
25. S. J. W. Dong, B. X.; Liu, B. F., Amperometric glucose sensor with ferrocene as an electron transfer mediator. Biosens. Bioelectron 7, 215 (1991).
26. M. E. G. a. C. M. A. Brett, Development of a Carbon Film Electrode Ferrocene-Mediated Glucose Biosensor. Analytical Letters 38, 907 (2005).
27. T. S. T. P. C. Nien, and K. C. Ho, Amperometric Glucose Biosensor based on Entrapment of Glucose Oxidase in a Poly(3,4-ethylenedioxythiophene) Film. Electroanalysis 18, 1408 (2006)
28. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene Based Electrochemical Sensors and Biosensors:A Review, Electroanalysis 22, 1027 (2010).
29. B. D. Malhotra, A. Chaubey, S. P. Singh, Prospects of conducting polymers in biosensors. Anal Chim Acta 578, 59 (Sep 18, 2006).
30. Insoluble Mnonlayers at Liquid-Gas Interface, Insoluble Mnonlayers at Liquid-Gas Interface. (Wiley Press, 1966), pp. Chapter 6.
31. G. L. Gaines, On the history of Langmuir-Blodgett films. Thin Solid Films 99, R9 (1983).
32. D. Myers, Surface, Interfaces, and Colloids: Priciples and Applications. (VCH, 1999).
33. G. Roberts, Langmuir-Blodgett Films. Plenum, (1990).
34. R. D. J. Neuman, Colloid Interface Sci 53, 161 (1975).
35. W. S. Ester Xing, Y.Guo,D.Lu and T.S.Xi, Mechanism of Iron Inhibition by stearic-acid Langmuir-Blodgett Monolayers Wettability,Surface-Morphology,and Stability of Long-Chain. Corrosion 51, 45 (1995).
36. M. Leonard, R. M. Morelis, P. R. Coulet, Linked influence of pH and cations on fatty-acid monolayer integrity related to high-quality Langmuir-Blodgett films. Thin Solid Films 260, 227 (1995).
37. Angelova, A. Penacorada, F. Stiller, B. Zetzsche, T. Ionov, R. Kamusewitz, H. Brehmer, L., Surface Morphology, and Stability of Long-Chain Ester Multilayers Obtained by Different Langmuir-Blodgett Deposition Types. The Journal of Physical Chemistry 98, 6790 (1994/07/01, 1994).
38. K.-H. Wang, M.-J. Syu, C.-H. Chang, Y.-L. Lee, Immobilization of glucose oxidase by Langmuir–Blodgett technique for fabrication of glucose biosensors: Headgroup effects of template monolayers. Sensors and Actuators B: Chemical 164, 29 (2012).
39. G. L. Gaines, On the history of Langmuir-Blodgett films. Thin Solid Films 99, R9 (1983).
40. Richard L. McCreery, “Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev., 108, 2646–2687 (2008).
41. Dale A. C. Brownson, Dimitrios K. Kampouris and Craig E. Banks, “Graphene electrochemistry: fundamental concepts through to prominent applications, Chem. Soc. Rev., 41, 6944–6976 (2012).
42. Sungjin Park1, Rodney S. Ruoff, “Chemical methods for the production of graphenes, Nature Nanotechnology, 4, 217 - 224 (2009).
43. Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Ce´cile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, “Electronic confinement and coherence in patterned epitaxial grapheme, Science, 312, 1191 (2006).
44. Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on Copper foils, Science, 324, 1312 (2009).
45. Hummers, W. S., Offeman, R. E., “Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80, 1339 (1958).
46. Hontoria-Lucas, C., Lopez-Peinado, A. J., Lopez-Gonzalez, J. de D., Rojas-Cervantes, M. L. and Martin-Aranda, R. M., “Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization Carbon, 33,1585-1592 (1995).
47. Yanyu Liang, Dongqing Wu, Xinliang Feng and Klaus Müllen, “Dispersion of graphene sheets in organic solvent supported by ionic interaction, Adv. Mater., 21, 1679-1683 (2009).
48. Chao Zhang, Weng Weei Tjiu, Wei Fan, Shu Huang and Tianxi Liu, “A novel approach for transferring water-dispersible grapheme nanosheets into organic media, J. Am. Chem. Soc., 22, 11748-11754 (2012).
49. Qingbin Zheng, Wai Hing Ip, Xiuyi Lin, Nariman Yousefi, Kan Kan Yeung, Zhigang Li, and Jang-Kyo Kim, “Transparent conductive films consisting of ultralarge grapheme sheets produced by Langmuir-Blodgett assembly, J. Am. Chem. Soc., 5, 6039-6051 (2011).
50. Youwei Zhang, Hui-Ling Ma, Qilu Zhang, Jing Peng, Jiuqiang Li, Maolin Zhai and Zhong-Zhen Yu, “Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide, J. Mater. Chem., 22, 13064-13069 (2012).
51. Kai Wang, Tao Feng, Min Qian, Hui Ding, Yiwei Chen, Zhuo Sun, “The field emission of vacuum filtered graphene films reduced by microwave, Applied Surface Science, 257, 5808–5812 (2011).
52. Yasumichi Matsumoto, Michio Koinuma, Su Yeon Kim, Yusuke Watanabe, Takaaki Taniguchi, Kazuto Hatakeyama, Hikaru Tateishi and Shintaro Ida, “Simple Photoreduction of Graphene Oxide Nanosheet under Mild Conditions, ACS Applied Materials & Interfaces, 2(12), 3461–3466 (2010).
53. Sergey Dubin, Scott Gilje, Kan Wang, Vincent C. Tung, Kitty Cha, Anthony S. Hall, Jabari Farrar, Rupal Varshneya, Yang Yang and Richard B. Kaner, “A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents, ACS Nano, 4(7), 3845–3852 (2010).
54. Sasha Stankovich, Dmitriy A. Dikin, Richard D. Piner, Kevin A. Kohlhaas, Alfred Kleinhammes, Yuanyuan Jia, Yue Wu, SonBinh T. Nguyen and Rodney S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558–1565 (2007).
55. 陳俊維,李紹先, “石墨烯氧化物的可調變螢光光譜之研究 自然科學簡訊第二十四卷第四期 (2012).
56. Laura J. Cote, Franklin Kim and Jiaxing Huang, “Langmuir-Blodgett Assembly of Graphite Oxide Single Layers, J. Am. Chem. Soc., 131, 1043–1049 (2009).
57. Laura J. Cote, Jaemyung Kim, Vincent C. Tung, Jiayan Luo, Franklin Kim and Jiaxing Huang, “Graphene oxide as surfactant sheets, Pure Appl. Chem., 83(1), pp. 95–110 (2011).
58. Sergey Dubin, Scott Gilje, Kan Wang, Vincent C. Tung, Kitty Cha, Anthony S. Hall, Jabari Farrar, Rupal Varshneya, Yang Yang and Richard B. Kaner, “Highly-efficient fabrication of nanoscolls from functionalized graphene oxide by Langmuir-Blodgett method, Carbon, 48, 4475-4482 (2010).
59. Re´gis Y. N. Gengler, Alina Veligura, Veligura, Apostolos Enotiadis, Evmorfia K. Diamanti, Dimitrios Gournis, Csaba Jo´zsa, Bart J. van Wees, and Petra Rudolf, “Large-Yield Preparation of High-Electronic-Quality Graphene by a Langmuir–Schaefer Approach, small, 1, 35-39 (2010)
60. E. Casero, A.M. Parra-Alfambra, M.D. Petit-Domínguez, F. Pariente, E. Lorenzo, C. Alonso, “Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS), Electrochemistry Communications, 20, 63–66 (2012).
61. Yasumichi Matsumoto, Michio Koinuma, Su Yeon Kim, Yusuke Watanabe, Takaaki Taniguchi, Kazuto Hatakeyama, Hikaru Tateishi and Shintaro Ida, “Simple Photoreduction of Graphene Oxide Nanosheet under Mild Conditions, ACS Applied Materials & Interfaces, 2(12), 3461–3466 (2010).
62. 王可瑄, 葡萄糖氧化酵素在氣/液界面的吸附行為及其對葡萄糖生物感測器特性影響的研究 , 國立成功大學 (2012).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top