(18.210.12.229) 您好!臺灣時間:2021/02/26 10:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:甘芳亘
研究生(外文):Fang-SyuanGan
論文名稱:波浪與相嵌複合式透水彈性潛堤互制分析
論文名稱(外文):Analysis of Wave Interaction with a Embedded Composite Poro-Elastic Submerged Breakwater
指導教授:許泰文許泰文引用關係
指導教授(外文):Tai-Wen Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:107
中文關鍵詞:內外相嵌複合式潛堤彈性材質透水結構物潛堤
外文關鍵詞:Composite embedded breakwatersElastic materialsPoro-elastic structuresInstrinsic permeabilityShear modulus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究以理論解析探討波浪與內外相嵌複合式透水彈性潛堤互相作用之機制,本文延伸Lan and Lee(2010)提出之單一透水彈性潛堤進行理論解析。文中將問題的領域區分為七個部分,藉由交界面邊界條件的連續性,再配合正交特性將波浪與複合式透水彈性潛堤互制問題聯立求解,據以求得波浪與複合式透水彈性潛堤之解。
在模式驗證上,本文將理論解析退化為單一材質之潛堤與前人之透水彈性潛堤的理論解析結果比較,得到良好的一致性。本文先藉由定性分析,探討由柔性與剛硬性內外組成之複合式透水彈性結構物受波浪作用後的運動特性。文中再選取兩種幾何形狀的複合式透水彈性潛堤,分別探討影響參數如內外潛堤厚薄改變、滲透係數變化及剪力模數變化對潛堤與波浪互制的影響。
分析結果顯示,在潛堤相對提寬為b/d=2.0的情況下,當材質較硬的部分其剪力模數的範圍G〉500000N/M2,G值變化對波浪反射率、透過率與能量損失的影響不大;且在總堤寬不變條件下,當外層柔性材質厚度減少到一定程度時,潛堤彈性效應對波場的影響明顯降低,波浪反射率及透過率之曲線變化呈現則與波浪通過剛性潛堤相似,不會出現大幅度的振盪。
Wave propagation over a embedded combined submerged poro-elastic structure formed with different materials is investigated theoretically. Lan and Lee’s (2010) theory was extended to derive a new analytical solution for describing the interaction between waves and combined poro-elastic submerged structures. Lineary wave theory is used to analyze wave motion based an Biot’s theory including the turbulent frictional effect. In the present approach, the problem is divided into seven domains in which matching boundary conditions as well as dynamic and kinematic conditions are employed in each connection region. Mass conservation of the poro-elastic structure and the equation of motion for pore fluid are also used to arrive at the theory for describing wave fields and displacement of the poro-elastic structure.
The present analytical solutions are identical to previous analytical results for the cases of a single breakwater with impermeable rigid, porous, and poro-elastic structures. Kinematic characteristics for the combined elastic and rigid porous structures on waves are studied. The effects of influence parameters for different geometries of poro-elastic structures with various width, intrinsic permeability and shear modulus.
摘要 I
致謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
符號說明 XII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 2
1-3 本文組織 6
第二章 問題描述與邊界值問題建立 7
2-1問題描述 7
2-2 邊界值問題建立 10
2-3 潛堤區非齊性邊界條件問題轉換 17
第三章 理論解析 25
3-1 勢能函數I、VII區求解 25
3-2 II-a、II-b區求解 26
3-3 III-a、III-b區求解 28
3-4 IV-a、IV-b區求解 30
3-5 V-a、V-b區求解 32
3-6 VI-a、VI-b區求解 34
第四章 結果與討論 36
4-1 項數N的收斂情形 36
4-2 模式驗證 39
4-2-1 與其它理論解析解及數值模式比較 39
4-2-2 與藍 (2000) 試驗結果比較 41
4-2-3 與Lan and Lee (2010) 理論解析解比較 44
4-3 內外相嵌複合式透水彈性潛堤對波浪的影響 46
4-3-1 剛硬性材料內與柔性材料在外潛堤厚薄度組合改變對波浪的影響(相對總堤寬 ) 47
4-3-2剛硬性材料內與柔性材料在外滲透係數改變對波浪的影響(相對總堤寬 ) 51
4-3-3 綜合討論 58
第五章 結論與建議 59
5-1 結論 59
5-2 建議 60
參考文獻 61
附錄A透水彈性體理論控制方程式之推導過程 65
附錄B 複合式透水彈性潛堤II-a區通解之推導 68
附錄C 複合式透水彈性潛堤II-b區通解之推導 73
附錄D 複合式透水彈性潛堤III-a區通解之推導 78
附錄E 複合式透水彈性潛堤III-b區通解之推導 83
附錄F 複合式透水彈性潛堤IV-a區通解之推導 88
附錄G 複合式透水彈性潛堤IV-b區通解之推導 93
附錄H 複合式透水彈性潛堤V-a區通解之推導 98
附錄I 複合式透水彈性潛堤V-b區通解之推導 103
1.Augustin, L. N., Irish, J. L., and Lynett, P., “Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation, Coastal Engineering, Vol. 56, pp. 332-340 (2009)
2.Biot, M.A., General theory of three-dimensional consolidation. Journal of Applied Physics, Vol. 12, pp. 155-164 (1941)
3.Dalrymple, R.A., Losada, M.A. and Martin, P.A.,Reflection and transmission from porous structures under oblique wave attack, Journal of Fluid Mechanics, Vol. 224, pp. 625-644 (1991)
4.Darcy, H., Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris (1856)
5.Gere, J. M., “Mechanics of Materials, 6th Edition (2006)
6.Ghisalberti, M., Nepf, H.M., “Mixing layers and coherent structures in vegetated aquatic flows, J.Geophys. Res.,Vol. 107(C2), No. 3, pp. 1-11 (2002)
7.Ghisalberti, M., Nepf, H.M., “Shallow flows over a permeable medium: The hydrodynamics of submerged aquatic canopies, Transport in Porous Media, Vol. 78, No. 3, pp. 385-402 (2009)
8.Ijima, T., Uwatoko, T. and Ushifusa, Y., “Experiments on the improvement of wave interception effect of sea-balloon breakwater, Memoirs of the Faculty of Eng., Vol. 46, No. 2, Kyushu Univ, pp. 193–206 (1986)
9.Kreyszing, E., Advanced Enginerring Mathematics. John Wiley, New York (1983)
10.Lai, J. W., Lan, Y. J., Hsu, T. W. Ting C. H. and Chang, C. C., “Application of digital image process on observing the motions of wave and a series of poro-elastic submerged breakwaters, Proceedings of Coastal Dynamics, pp. 1-13 (2009)
11.Lan, Y.J., Hsu, T.W., J. W., Chang, C. C. and Ting C. H., “Bragg scattering of waves propagating over a series of poro-elastic submerged breakwaters, Jorunal of Wave Motion, Vol. 48, pp. 1-12 (2011)
12.Lan, Y.J., Hsu, T.W. and Chen, C.Y., “On Wave Propagating over Closely Adjacent Poro-Elastic Submerged Breakwaters, Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Environment, (in press) (2012)
13.Lan, Y.J., and Lee, J.F., “On waves Propagating over a submerged poro-elastic structure, Jorunal of Ocean Engineering, Vol. 37, pp. 705-717 (2010)
14.Lee, C.P., Wave interaction with permeable structures, Ph.D. Thesis, Oregon State University, Oregon, USA (1987)
15.Lee, J.F. and Lan, Y.J., “A second-order solution of waves passing porous structure, Ocean Engineering, Vol. 23, No. 2, pp. 143-156 (1996)
16.Li C.W., Yan, K., “Numerical investigation of wave-current-vegetation interaction, Journal of Hydraulic Engineering, Vol. 133, No. 7, pp. 794-803 (2007)
17.Losada, I.J., Silva, R. And Losada, M.A., “3-D non-breaking regular wave interaction with submerged breakwaters, Coastal Engineering, Vol. 28, pp. 229-248 (1996a)
18.Losada, I.J., Silva, R. And Losada, M.A., “Interaction of non-breaking directional random waves with submerged breakwaters, Coastal Engineering, Vol. 28, pp.249-266 (1996b)
19.Løvås, S.M., Tørum, A., “Effect of the kelp laminaria hyperborea upon sand dune erosion and water particle velocities, Coastal Engineering, Vol. 44, pp. 37-63 (2001)
20.Madsen, O.S., “Wave transmission through porous structures. Joural of Waterways, Harbours and Coastal Engineering Division, ASCE, Vol. 100 (WW3), pp. 169-188 (1974)
21.Madsen, O.S. and White, S.M., “Wave transmission through trapezoidal breakwaters, Proc. 15th Coastal Engineering Conference, pp. 2662-2676 (1976)
22.Mei, C.C. and Black, J.L., “Scatting of surface waves by rectangular obstacles in waters of finite depth, Journal of Fluid Mechanics, Vol.38, pp. 499-511 (1969)
23.Muskat, M., Physical priniciples of oil production, McGraw-Hill Book Co., Inc., New York, N. Y., pp. 128 (1949)
24.Ohyama, T., Tanaka, M., Kiyokawa, T., Uda, T., Murai, Y., , “Transmission and reflection characteristics of waves over a submerged flexible mound, Coastal Engineering in Japan , Vol. 32, No. 1, pp. 53–68 (1989)
25.Putnam, J.A., “Loss of wave energy due to percolation in a permeable sea bottom, Transaction of American Geophysical Union, Vol. 30, pp. 349-356 (1949)
26.Scarlatos, P.D. and Singh, V.P., “Long-wave transmission through porous breakwaters. Coastal Engineering, Vol. 11, pp. 141-157 (1987)
27.Sollitt, C.K. and Cross, R.H., “Wave transmission through permeable breakwaters, Proceeding 13th Costal Engineering Conference, ASCE, Vancouver, pp. 1827-1846 (1972)
28.Stratigaki, V., Manca, E., Prinos, P., Losada, I. J., Lara, J. L., Sclavo, M., Amos, C.L., Cáceres, I. and Sánchez-Arcilla, A., “Large-scale experiments on wave propagation over Posidonia oceanica, Journal of Hydraulic Research, Vol. 49, pp. 31-43 (2011)
29.Sulisz, W., “Wave reflection and transmission at permeable breakwaters of arbitrary cross-section, Coastal Engineering, Vol. 9, pp.371-386 (1985)
30.Sulisz, W., McDougal, W.G. and Sollott, C.K., “Wave interaction with rubble toe protection, Ocean Engineering, Vol. 16, No. 5/6, pp. 463-473 (1989)
31.Verruijt, A., “Elastic storage of aquifers, Flow through Porous Media, edited by De Wiest, R.J.M., Academic, New York, pp. 331-376 (1969)
32.Yamamoto, T., Koning, H.L., Sellmeiger, H. and Van Hijum, E.V., “On the Response of a Poro-elastic Bed to Water Waves, Journal of Fluid Mechanics, Vol. 87, pp. 193-206 (1978)
33.Yuan-Jyh Lan, Tai-Wen Hsu, Yan-Rong Liu Analysis of Wave Interaction with an Adjoining-Type of Composite Poro-Elastic Submerged Breakwater, International Offshore and Polar Engineering,Anchorage, Alaska, USA, pp. 1153-1159 (2013)
34.Y.J. Lan, T.W. Hsu, Y.R. Liu Mathematical study on wave interaction with a composite poroelastic submerged breakwater, Wave Motion, Vol. 51, pp. 1055-1070, (2014)
35.李兆芳,藍元志 (1991),具撓屈性直立圓柱對入射波影響之理論分析,第十五屆全國力學會議,265頁-272頁。
36.李兆芳,劉正琪,波浪通過透水潛堤之新理論解析,第十七屆海洋工程研討會論文集,593頁-605頁,(1995)。
37.周宗仁,方惠民,水面彈性膜消波特性之研究,第十七屆海洋工程研討會論文集,443頁-458頁,(1995)。
38.葉旭璽,連續彈性透水潛堤與波浪之互制分析,國立成功大學水利及海洋工程研究所碩士論文,(2008)。
39.鄭詠翰,應用PIV量測系統於單一彈性透水潛堤之流場特性研究,國立成功大學水利及海洋工程研究所碩士論文,(2011)。
40.劉燕蓉,波浪與複合式透水潛堤互制分析 國立成功大學水利及海洋工程研究所碩士論文,(2012)。
41.藍元志,李兆芳,波浪通過透水彈性底床之互制作用,第二十屆海洋工程研討會論文集,203頁-210頁,(1998)。
42.藍元志,李兆芳,波浪與彈性透水潛堤之互制作用,第二十一屆海洋工程研討會論文集,205頁-212頁,(1999)。
43.藍元志,波浪與可透水彈性體互相作用之分析,國立成功大學水利及海洋工程研究所博士論文,(2000)。
44.藍元志,劉燕蓉,波浪與複合式透水潛堤互制分析 第三十四屆海洋工程研討會論文集,309頁-314頁, (2012)。
45.藍元志,波浪與上下相連複合式透水潛堤互制分析 第三十五屆海洋工程研討會論文集,93頁-110頁,(2013)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔