跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/24 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張哲肇
研究生(外文):Che-ChaoChang
論文名稱:模擬僵直性脊椎炎之頸椎有限元素分析
論文名稱(外文):Finite Elements Analysis of Cervical Spine Simulating Ankylosing Spondylitis
指導教授:張志涵張志涵引用關係
指導教授(外文):Chih-Han Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:30
中文關鍵詞:僵直性脊椎炎竹節狀脊椎椎間盤頸椎骨折有限元素分析
外文關鍵詞:ankylosing spondylitisbamboo spineintervertebral disccervical spine fracturefinite elements analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
僵直性脊椎炎是一系統性自體免疫疾病,主要發生於脊椎及腸骨薦椎關節之發炎反應。於長年罹患僵直性脊椎炎之病患上,其脊椎影像檢查可見其椎間盤部位周圍之骨化反應,且可能進展至竹節狀脊椎 (bamboo spine) 之脊椎外觀變化。此一變化將使病患之脊椎活動角度受限,另外也造成輕微外力撞擊即可能遭受重大脊椎骨折與創傷之情形。
文獻報導指出僵直性脊椎炎之頸椎骨折易發生於椎間盤周圍部位,且常與過度伸展性損傷 (hyperextension injury) 相關。但目前並無相關文獻探討僵直性脊椎炎之病程進展與其生物力學反應之變化,本研究採用電腦模型與有限元素分析方式,比較正常脊椎與僵直性脊椎炎模型於不同的僵直性脊椎炎病程中對於外力造成脊椎伸展性動作時其最大主應變 (maximum principal strain) 與最大主應力 (maximum principal stress) 之變化。
研究結果顯示當椎間盤骨化漸趨嚴重時,於相同之外力作用下脊椎對於外力作用產生之最大主應變將逐漸由集中於椎間盤部位轉變為擴散至周遭椎體內。另外最大主應力雖於椎體內並無明顯之變化趨勢,但於椎間盤內尤其是接近與椎體相接連部位,於椎間盤骨化越嚴重時,最大主應力也明顯上升。最大差異之部位主要發生於於第五/六頸椎與第六/七頸椎之椎間盤,如第六/七頸椎椎間盤於疾病進程後期其最大主應力之上升比例可較正常時增加約124.4% – 207.6%。
此研究結果亦與臨床觀察之結果相符,表示僵直性脊椎炎於病變過程中,其椎間盤周圍部位之骨化確為其易於發生頸椎骨折之主要因素。
Ankylosing spondylitis (AS) is a systemic autoimmune disease mainly affects spine and sacroiliac joints. In patients with AS, there is new bone formation in entheses of the intervertebral discs (syndesmophyte) and the spine will finally become fused and deformed “bamboo spine”, a characteristic image finding in AS. The formation of bamboo spine will limit the range of motion, and substantially fragile to minor injury, which may cause major fracture and neurological deficit. Some studies have reported the cervical spine fractures in AS mostly happened at the level of intervertebral disc in hyperextension injury. But currently there is no literature mentioned about the relationship of disease progression and the response of spine to external force. This study compare maximum principal strain and stress in the normal spine and AS spine model in different stages of AS by finite elements analysis.
The results in this study revealed that with the same external force applied on the models, the maximum principal strain will extended from intervertebral discs to vertebral bodies with the progressing stages of syndesmophyte. There is no obvious change of maximum principal stress in vertebral bodies compared different stages of syndesmophyte, but in the intervertebral discs, the maximum principal stress greatly increased especially near the entheses. The greatest change happened mainly in C56 and C67 disc, and the maximum principal stress increases up to 124.4% – 207.6% in C6-7 disc from normal disc to late stages of syndesmophyte formation.
The results are compatible to the clinical observation, which means the progression of new bone formation of entheses is a key factor in cervical spine fracture in AS.
Abstract I
中文摘要 III
致謝 V
Contents VI
List of Tables VII
List of Figures VII
Chapter 1. Introduction 1
1.1 Ankylosing spondylitis and cervical spine fracture 1
1.2 Literature review 3
1.3 Motivation and objectives 4
Chapter 2. Material and Methods 6
2.1 Model creation 6
2.2 Finite elements analysis 9
2.2.1 Mechanical properties 9
2.2.2 Mesh creation 10
2.2.3 Boundary conditions of static structural analysis 10
2.2.4 Parameters used in results analysis 11
Chapter 3. Results 13
3.1 Maximum principal elastic strain 13
3.2 Maximum principal stress 16
3.3 Effect of changing lordotic curve 22
Chapter 4. Discussion 24
Chapter 5. Conclusion 28
References 29
1.A. S. Kanter, M. Y. Wang, P. V. Mummaneni, A treatment algorithm for the management of cervical spine fractures and deformity in patients with ankylosing spondylitis. Neurosurgical focus 24, E11 (2008)10.3171/FOC/2008/24/1/E11).
2.D. Wendling, P. Claudepierre, New bone formation in axial spondyloarthritis. Joint, bone, spine 80, 454-458 (2013)10.1016/j.jbspin.2013.02.004).
3.M. W. Fox, B. M. Onofrio, J. E. Kilgore, Neurological complications of ankylosing spondylitis. Journal of neurosurgery 78, 871-878 (1993)10.3171/jns.1993.78.6.0871).
4.S. Fordham, G. Lloyd, Clinical management of injured patients with ankylosing spondylitis. BMJ 339, b2568 (2009).
5.D. Vosse, R. Landewé, D. van der Heijde, S. van der Linden, T.-P. van Staa, P. Geusens, Ankylosing spondylitis and the risk of fracture: results from a large primary care-based nested case-control study. 68, 1839-1842 (2009)10.1136/ard.2008.100503).
6.X. Baraliakos, J. Listing, M. Rudwaleit, H. Haibel, J. Brandt, J. Sieper, J. Braun, Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Annals of the rheumatic diseases 66, 910-915 (2007)10.1136/ard.2006.066415).
7.A. Boonen, B. vander Cruyssen, K. de Vlam, S. Steinfeld, C. Ribbens, J. Lenaerts, F. Van den Bosch, H. Mielants, L. Dewulf, N. Vastesaeger, Spinal radiographic changes in ankylosing spondylitis: association with clinical characteristics and functional outcome. The Journal of rheumatology 36, 1249-1255 (2009)10.3899/jrheum.080831).
8.D. U. Erbulut, I. Zafarparandeh, I. Lazoglu, A. F. Ozer, Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability. Medical engineering & physics 36, 915-921 (2014)10.1016/j.medengphy.2014.02.020).
9.N. Kallemeyn, A. Gandhi, S. Kode, K. Shivanna, J. Smucker, N. Grosland, Validation of a C2-C7 cervical spine finite element model using specimen-specific flexibility data. Medical engineering & physics 32, 482-489 (2010)10.1016/j.medengphy.2010.03.001).
10.R. W. Nightingale, B. A. Winkelstein, K. E. Knaub, W. J. Richardson, J. F. Luck, B. S. Myers, Comparative strengths and structural properties of the upper and lower cervical spine in flexion and extension. Journal of Biomechanics 35, 725-732 (2002).
11.M. B. Panzer, J. B. Fice, D. S. Cronin, Cervical spine response in frontal crash. Medical engineering & physics 33, 1147-1159 (2011)10.1016/j.medengphy.2011.05.004).
12.Q. H. Zhang, E. C. Teo, H. W. Ng, V. S. Lee, Finite element analysis of moment-rotation relationships for human cervical spine. Journal of Biomechanics 39, 189-193 (2006)10.1016/j.jbiomech.2004.10.029).
13.M. A. Adams, in Mechanical Properties of Aging Soft Tissues. (Springer International Publishing, 2015), chap. 2, pp. 7-35.
14.R. B. Martin, D. B. Burr, N. A. Sharkey, in Skeletal Tissue Mechanics. (Springer New York, 1998), chap. 4, pp. 127-180.
15.A. Tchako, A. Sadegh, A cervical spine model to predict injury scenarios and clinical instability. Sports biomechanics / International Society of Biomechanics in Sports 8, 78-95 (2009)10.1080/14763140802630006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊