(3.235.11.178) 您好!臺灣時間:2021/03/05 16:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐達偉
研究生(外文):Ta-WeiHsu
論文名稱:臺灣西南海域永安海脊甲烷冷泉址沉積物之礦物自生作用
論文名稱(外文):Mineral authigenesis in sediments from a cold-seep site at Yung-An ridge, offshore southwestern Taiwan
指導教授:江威德江威德引用關係
指導教授(外文):Wei-Teh Jiang
學位類別:博士
校院名稱:國立成功大學
系所名稱:地球科學系
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:248
中文關鍵詞:冷泉沉積物礦物自生作用永安海脊
外文關鍵詞:cold-seep sedimentmineral authigenesisYung-An Ridge
相關次數:
  • 被引用被引用:1
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣西南海域永安海脊長約24公尺之MD052911岩心沉積物,受到冷泉活動影響,形成異於一般海洋沉積物之自生礦物組合及特殊產狀,主要包括黃鐵礦、硫複鐵礦、四方硫鐵礦、藍鐵礦、鐵膨潤石和碳酸鹽礦物。
MD052911岩心根據地球化學特徵和自生礦物分布分為三段,分別以海床以下深度十公尺和二十公尺為界:鐵膨潤石丸粒和高含量黃鐵礦出現於上段及下段;上段硫酸鹽-甲烷過渡帶附近有少許碳酸鹽膠結物生成。岩心中段具有低含量黃鐵礦,但有酸可萃取硫化物(acid volatile sulfide;AVS)團塊分布於十一至十九公尺之深度,同時,藍鐵礦結核粒生成於十三至十七公尺深度,局部包裹AVS,亦可見其為AVS所圍繞。此外,岩心下段亦可見數毫米至一公分粒徑之霰石和白雲石結核粒。
遭受間歇性冷泉活動與強烈甲烷厭氧氧化作用影響,岩心上段及下段沉積物具有高含量黃鐵礦,局部伴隨生成碳酸鹽結核粒;電子顯微分析顯示黃鐵礦呈現莓狀體、不規則狀細粒集合體、團帶狀散布之他形至自形晶粒及片狀矽酸鹽礦物解理裂隙內他形晶粒等組織,其中莓狀體具有高比例之顯著蔓生現象;此外,鐵膨潤石丸粒中亦形成黃鐵礦散布晶粒;這些多樣性黃鐵礦生長形態可出現於同一標本,且與標本深度無系統性關係,顯示微觀地球化學條件之差異性,符合甲烷緩滲流或擴散之特徵。岩心中段沉積物之黃鐵礦含量甚低,偶見黃鐵礦莓狀體與他形晶粒,缺乏甲烷厭氧氧化作用,與岩心上段及下段沉積物之黃鐵礦產狀形成強烈對比。
岩心中段因強烈甲烷厭氧氧化和硫酸鹽還原作用所顯現之硫化反應前緣,含有以硫複鐵礦為主之黑色AVS團塊,硫化反應前緣深度以下可見夾有細粒AVS之藍鐵礦結核粒。X光繞射分析顯示黑色硫化物團塊的主要硫化礦物為硫複鐵礦,另含有少量四方硫鐵礦。電子顯微分析顯示此硫複鐵礦生成次微米粒徑晶粒,具有短柱狀和長方柱狀兩種形貌,沿一晶軸方向有程度不等之延伸生長,但兩者同樣均呈現立方八面體晶形,聚集成集合體,常見夾於片狀矽酸鹽礦物解理裂隙之間,局部沿〈100〉平行生長,連接成鋸齒狀長鏈集合體,推測此形成於硫化前緣之硫複鐵礦可能是四方硫鐵礦不完全硫化之產物,透過溶解和再沉澱之機制生成。此外,藍鐵礦結核粒內之四方硫鐵礦應是在形成後受到藍鐵礦封閉,且受到藍鐵礦晶體的高鐵成分影響,使其維持在相對穩定的環境,因而沒有發生硫化作用轉變為硫複鐵礦。
海床以下十三至十七公尺深度可見自生性藍鐵礦(或鎂藍鐵礦)。藍鐵礦顯著出現在大約海床以下十六公尺之硫化前緣帶下方(富含四方硫鐵礦和硫複鐵礦),並且伴隨高濃度溶解鐵,以及具有溶解硫化氫耗盡之現象,其鐵/鎂莫耳比值約為0.6至0.4,且隨深度有增加之趨勢。在藍鐵礦形成帶至硫化作用帶之過渡區,可見AVS和藍鐵礦交替生長,且個別藍鐵礦結核粒外緣具有富鎂環帶。孔隙水中向下擴散溶解硫化氫在硫化前緣帶耗盡之現象,有利於在硫化前緣下方,結晶生成藍鐵礦。單硫化鐵和藍鐵礦形成帶之重疊,以及兩者有交替生長現象,可視為是硫化前緣和甲烷通量波動所造成。永安海脊沉積物藍鐵礦的發現,暗示在高含量活性鐵和高沉積速率的冷泉沉積環境中,自生性藍鐵礦可扮演著磷成分埋藏之重要儲存庫。
棕黃色至綠色之二八面體鐵膨潤石常見於岩心上段和下段,鐵膨潤石生長於富含黏土的丸粒內或充填於有孔蟲殼體中,這些丸粒或殼體的大小約在數十微米至數毫米之間。有孔蟲殼體內的鐵膨潤石常見絮凝或結球組織,此為膨潤石自溶液沉澱之典型特徵。鐵膨潤石丸粒顯微分析顯示石英和長石溶解凹坑和裂隙被鐵膨潤石所充填,黏土粒徑之綠泥石與伊萊石和鐵膨潤石晶粒之間形成緊密界面。基質中或充填有孔蟲殼體之鐵膨潤石丸粒可有顯著成分變化,成分分布介於鐵蒙脫石至富鐵貝得石之間。鐵膨潤石晶粒間可見棉絮狀黃鐵礦生長,顯示黃鐵礦是在鐵膨潤石形成之後,沉積埋藏於硫化帶才產生。整體結果顯示鐵膨潤石是在不平衡的狀態下,生成於沉積物-海水介面附近,此不平衡現象包括:碎屑性石英、鉀長石和片狀矽酸鹽礦物的溶解,以及甲烷活動所造成之富含亞鐵離子擴散。鐵膨潤石在硫化帶具有反應性,可提供黃鐵礦生長所需之成分。鐵膨潤石的產出可作為深海沉積物甲烷通量消長之指標,且可能為現今沉積岩中所見海綠石丸粒之前驅物。
礦物自生作用紀錄了永安海脊沉積物之非穩定態早成岩作用。岩心上、下兩段之多樣性黃鐵礦產狀和鐵膨潤石丸粒產出,可視為受間歇性冷泉活動影響,而岩心中段則因沉積時缺乏甲烷厭氧氧化作用,而未具此等礦物自生作用之特徵;藍鐵礦和AVS之交替生長,為後續冷泉活動時期的甲烷通量消長所造成。甚少文獻對冷泉系統中的自生礦物形貌、分布、和特徵鑑定進行系統性之探討,本研究增進吾人對海洋沉積物中礦物自生作用受甲烷通量消長影響之瞭解。
Authigenic phases including pyrite, greigite, mackinawite, vivianite, ferric smectite, and carbonate minerals in a sediment core of 2389 cm in length collected at site MD052911 in Yung-An Ridge off southwestern Taiwan were found to have specific distributions and versatile microtextures at different depths as characterized by polarized light microscopy, X-ray diffraction, scanning and transmission electron microscopy, and Raman and Fourier transform infrared spectroscopy. Such dramatic down-core variations in mineral authigensis were inferred to be a temporal and spatial record of non-steady state diagenesis due to time-varying methane flux characteristic of cold-seep sediments. A record of temporal cold-seep activities associated with enhanced anaerobic oxidation of methane was marked by the occurrence of high pyrite concentrations, highly versatile pyrite textures, and abundant ferric smectite pellets in sediments from the upper and lower sections of the core. By contrast, the sediments in the middle section do not contain the aforementioned mineral authigenesis and microtextures due to a lack of intense anaerobic oxidation of methane. The sequence and conditions favorable for the formation of various authigenic minerals were outlined in detail in this study. The result adds to the limited body of direct observation and characterization of authigenic minerals from cold-seep sediments.
目錄
摘要 I
Abstract III
誌謝 VI
目錄 VII
圖目錄 XII
表目錄 XV
第一章 緒論 1
1.1. 黃鐵礦 3
1.2. 四方硫鐵礦和硫複鐵礦 10
1.2.1. 四方硫鐵礦 10
1.2.2. 硫複鐵礦 12
1.2.3. 尚待解決的問題 15
1.3. 藍鐵礦 20
1.4. 鐵膨潤石 24
1.5. 研究目的 37
第二章 材料及方法 39
2.1. 地質背景 39
2.2. 岩心基本資料 42
2.2.1. 孔隙水和沉積物化學特徵 42
2.2.2. 自生礦物分布概述 43
2.2.3. 磁學特徵 43
2.2.4. 主要礦物組成和沉積物來源 43
2.2.5. 岩心特殊性 44
2.3. 研究方法概述 47
第三章 反差性黃鐵礦組織 50
3.1. 前言 50
3.2. 分析方法 55
3.2.1. 採樣 55
3.2.2. 樣品製作 55
3.2.3. 光學顯微觀察 55
3.2.4. 電子顯微分析 55
3.2.5. X光粉末繞射 56
3.3. 結果 56
3.3.1. 黃鐵礦原生組織 56
3.3.2. 黃鐵礦蔓生組織 57
3.3.3. 黃鐵礦莓狀體直徑分布 58
3.3.4. 黃鐵礦與碳酸鹽及硫酸鹽礦物之生長關係 58
3.4. 討論 73
3.4.1. 冷泉活動對黃鐵礦原生組織之影響 73
3.4.2. 甲烷冷泉作用與黃鐵礦蔓生現象 75
3.4.3. 黃鐵礦與石膏伴生之隱示 76
3.5. 結論 79
第四章 自生性硫複鐵礦與四方硫鐵礦 81
4.1. 前言 81
4.2. 分析方法 86
4.2.1. 標本採集 86
4.2.2. X光繞射分析 86
4.2.3. 掃瞄式電子顯微鏡分析 86
4.2.4. 電子背向散射繞射 87
4.2.5. 穿透式電子顯微鏡分析 87
4.2.6. 黃鐵礦和AVS之萃取 87
4.2.6.1. 鉻溶液還原法測定總還原性硫 88
4.2.6.2. AVS的萃取 89
4.2.6.3. 回收率及分析誤差 90
4.2.7. X光吸收近邊緣結構 90
4.3. 結果 91
4.3.1. AVS團塊 91
4.3.1.1. 礦物組成 91
4.3.1.2. 形貌特徵 91
4.3.1.3. 穿透式電子顯微影像與電子繞射 92
4.3.1.4. 萃取分析 93
4.3.1.5. X光吸收近邊緣結構 93
4.3.2. 藍鐵礦結核粒內部之AVS 93
4.4. 討論 104
4.4.1. 硫複鐵礦晶體形貌及其隱示 104
4.4.2. 硫複鐵礦之形成機制 106
4.4.3. 四方硫鐵礦產狀之隱示 108
4.5. 結論 108
第五章 甲烷誘發之硫化作用影響下的藍鐵礦自生作用 110
5.1. 前言 110
5.2. 材料與方法 114
5.2.1. 採樣 114
5.2.2. 微組構和微成分分析 114
5.2.3. X光粉末繞射和拉曼及紅外光譜分析 114
5.3. 結果 115
5.3.1. 岩心之礦物學變化 115
5.3.2. 藍鐵礦結核粒之微組構 116
5.3.3. 藍鐵礦之礦物化學成分 116
5.3.4. 拉曼和傅立葉轉換紅外線光譜分析 117
5.3.5. 菱鍶礦、菱鐵礦、毒重石、重晶石產狀 117
5.4. 討論 129
5.4.1. 藍鐵礦自生作用之證據 129
5.4.2. 海洋沉積物之藍鐵礦形成條件 129
5.4.2.1. 活性鐵和沉積速率的作用 129
5.4.2.2. 甲烷誘發之硫化作用的影響 131
5.4.3. 海洋沉積物磷酸鹽埋藏的隱示 132
5.4.4. 藍鐵礦的形成與菱鐵礦、菱鍶礦、重晶石、毒重石成因之關聯 133
5.5. 結論 134
第六章 鐵膨潤石的生成反應與自生作用 135
6.1. 前言 135
6.2. 鐵膨潤石丸粒之分布 135
6.3. 材料與方法 139
6.3.1. 黏土礦物X光粉末繞射 139
6.3.2. 光學顯微鏡和掃瞄式電子顯微鏡分析 141
6.3.3. 穿透式電子顯微鏡分析 142
6.4. 結果 143
6.4.1. 黏土礦物組成 143
6.4.2. 鐵膨潤石顯微組構 147
6.4.3. 鐵膨潤石之礦物化學 154
6.5. 討論 159
6.5.1. 自生性鐵膨潤石的來源 159
6.5.1.1. 低溫熱液沉澱 159
6.5.1.2. 熱液和沉積物反應 159
6.5.1.3. 火山碎屑和玻璃蝕變 160
6.5.1.4. 鐵/錳氧化物和二氧化矽的結合 160
6.5.1.5. 黃鐵礦蝕變 160
6.5.1.6. 初期的海綠石化作用 161
6.5.1.7. MD052911沉積物岩心之鐵膨潤石形成機制 161
6.5.2. 鐵膨潤石丸粒對海綠石化作用的隱示 163
6.5.3. 鐵膨潤石的成分變化 164
6.6. 結論 168
第七章 礦物自生作用之演變及隱示 169
7.1. 礦物自生作用特徵歸納 169
7.2. 礦物自生作用與古時水化學條件之演變 170
7.3. 礦物自生作用之資源探勘意義 175
7.4. MD052911與其它地區海洋之冷泉沉積物的差異 175
參考文獻 180
附錄一 鐵膨潤石之能量分散光譜半定量分析結果 220
附錄二 已發表之Journal of Asian Earth Sciences (89, 88-97)論文全文 239


圖目錄
圖1-1 海洋沉積環境海床以下隨深度變化之地球化學分帶示意圖 2
圖1-2 黃鐵礦結構 3
圖1-3 沉積環境下黃鐵礦的形成過程 6
圖1-4 四方硫鐵礦結構 11
圖1-5 硫複鐵礦結構 13
圖1-6 含磷物種在海水與沉積物中的循環 22
圖1-7 藍鐵礦結構 23
圖1-8 膨潤石結構 24
圖1-9 二八面體膨潤石之八面體鋁-鐵-鎂成分圖 26
圖1-10 不同機制形成之二八面體膨潤石之成分投圖 33
圖2-1 臺灣西南海域天然氣水合物賦存區MD052911站位之海底地形圖 41
圖2-2 岩心之間隙水和沉積物化學特徵 45
圖2-3 岩心之間隙水鈣、鎂、鍶、鋇濃度、磁感率和自生礦物特徵變化 46
圖2-4 岩心沉積物樣本分析流程 49
圖3-1 海洋沉積物之地球化學分帶示意圖 53
圖3-2 MD052911岩心自生礦物、黃鐵礦原生組織和黃鐵礦莓狀體蔓生百分比之深度分布圖 54
圖3-3 黃鐵礦電子顯微影像 60
圖3-4 半自形至自形較大黃鐵礦晶粒之電子顯微影像 61
圖3-5 粗粒他形黃鐵礦之電子顯微影像 62
圖3-6 鐵膨潤石丸粒內含黃鐵礦之電子顯微影像 63
圖3-7 不同蔓生程度黃鐵礦集合體之電子顯微影像 64
圖3-8 標本深度0633–0637公分之電子顯微影像 65
圖3-9 黃鐵礦莓狀體直徑平均值及分布隨深度之變化 66
圖3-10 以霰石為主要礦物之碳酸鹽結核粒X光繞射光譜 67
圖3-11 以白雲石為主要礦物之碳酸鹽結核粒X光繞射光譜 68
圖3-12 方解石和白雲石之d(104)投圖 69
圖3-13 碳酸鹽結核粒內之黃鐵礦電子顯微影像 70
圖3-14 石膏與氧化黃鐵礦之電子顯微影像及X光能量分散光譜 71
圖3-15 石膏與未氧化黃鐵礦之電子顯微影像及元素X光強度分布圖像 72
圖4-1 一般海洋沉積環境海床以下隨深度變化之地球化學分帶示意圖 84
圖4-2 MD052911岩心之自生礦物分布示意圖、冷凍乾燥沉積物標本照片、和藍鐵礦結核粒電子顯微影像 85
圖4-3 黑色AVS團塊之X光繞射圖 95
圖4-4 黑色AVS團塊之二次電子影像及X光能量分散光譜 96
圖4-5 黑色AVS團塊掃描式電子顯微鏡低電壓反向電場模式之背向散射電子影像和X光能量分散光譜 97
圖4-6 根據圖4-5之四方硫鐵礦結構及電子背向散射繞射圖之模擬和鑑定 98
圖4-7 立方體和八面體晶形皆分別占50 %之立方八面體晶體形貌 99
圖4-8 等粒狀硫複鐵礦晶粒之穿透式電子顯微鏡影像、〔001〕晶帶軸電子繞射圖、和X光能量分散光譜 99
圖4-9 長方柱狀硫複鐵礦晶粒之穿透式電子顯微鏡影像、〔001〕晶帶軸電子繞射圖、和X光能量分散光譜 100
圖4-10 AVS團塊之X光吸收近邊緣結構光譜 101
圖4-11 藍鐵礦結核粒內硫化鐵晶體掃描式電子顯微影像和X光能量分散光譜 102
圖4-12 根據圖4-11a之四方硫鐵礦結構及電子背向散射繞射圖之模擬和鑑定 103
圖5-1 臺灣西南海域自生性藍鐵礦產出之站位 112
圖5-2 岩心之地球化學和礦物學特徵變化 113
圖5-3 AVS團塊之X光粉末繞射光譜 119
圖5-4 不同深度藍鐵礦結核粒之光學顯微鏡和掃描式電子顯微鏡影像 120
圖5-5 富含AVS之藍鐵礦結核粒的電子顯微影像和元素分布圖像 121
圖5-6 岩心MD52911之鐵-鎂-錳含量之三成分圖 123
圖5-7 藍鐵礦、鎂藍鐵礦、白磷鎂石之三成分圖 124
圖5-8 不同鐵/鎂莫耳數比之藍鐵礦和傅立葉轉換紅外線光譜 125
圖5-9 藍鐵礦表面之菱鍶礦和毒重石之背向散射電子影像與能量散射光譜 126
圖5-10 重晶石晶簇之背向散射電子影像和能量散射光譜 127
圖5-11 菱鐵礦之背向散射電子影像和能量散射光譜 128
圖6-1 臺灣西南海域自生性鐵膨潤石丸粒產出之站位 137
圖6-2 岩心特徵及自生礦物分布 144
圖6-3 沉積物岩心標本〈 2 μm分離粉末,經由鎂離子飽和後之順向試片X光繞射光譜 145
圖6-4 沉積物岩心標本〈 2 μm分離粉末之黏土礦物相對含量隨深度之變化 146
圖6-5 沉積物標本之光學顯微影像 149
圖6-6 沉積物樣品之背向散射電子影像 150
圖6-7 鐵膨潤石之穿透式電子顯微影像 151
圖6-8 鐵膨潤石和酸鹽碎屑間的接觸關係之穿透式電子顯微影像 152
圖6-9 鐵膨潤石和黃鐵礦接觸關係之穿透式電子顯微影像 153
圖6-10 鐵膨潤石之八面體Al-Mg-Fe三成分投圖 157
圖6-11 鐵膨潤石丸粒之背向散射電子影像及配合之鐵元素半定量分析圖形 158
圖6-12 MD052911冷泉沉積物之鐵膨潤石丸粒形成模式 166
圖6-13 海洋沉積物鐵膨潤石之八面體Al-Mg-Fe三成分投圖 167
圖7-1 岩心中、下兩段沉積時的礦物自生作用演變和孔隙水成分變化 177
圖7-2 岩心上段沉積時的礦物自生作用演變和孔隙水成分變化 178
圖7-3 MD052911和MD052914岩心之自生礦物組合和孔隙水成分變化 179


表目錄
表1-1 甲烷冷泉沉積物黃鐵礦含量和微組構 9
表1-2 沉積岩和礦床環境之四方硫鐵礦和硫複鐵礦之產狀和微組構總覽 16
表1-3 沉積物之自生性四方硫鐵礦和硫複鐵礦之產狀和微組構總覽 17
表1-4 四方硫鐵礦之合成及產狀總覽 18
表1-5 硫複鐵礦之合成及產狀總覽 19
表1-6 海洋沉積物自生膨潤石形成機制與產狀 34
表1-7 海洋環境火成岩熱水蝕變膨潤石之產狀 36
表2-1 沉積物黏土粒徑半定量和薄片分析之樣品深度 48
表2-2 沉積物藍鐵礦、AVS和碳酸鹽結核粒分析之樣品深度 48
表3-1 硫酸根和鈣離子濃度與石膏飽和程度 77
表3-2 海洋沉積物中自生性石膏產狀與沉澱之硫酸根和鈣離子來源 80
表4-1 AVS和黃鐵礦之萃取與計算結果 93
表5-1 藍鐵礦成分之電子微探分析 122
表6-1 臺灣西南海域含有自生性鐵膨潤石之沉積物岩心編號及底水甲烷濃度 138
表6-2 黏土礦物含量計算方式 141
表6-3 膨潤石AEM分析之標準礦物 142
表6-4 MD052911岩心沉積物之膨潤石AEM半定量分析 155
Algeo, T.J., Hinnov, L., Moser, J., Maynard, J.B., Elswick, E., Kuwahara, K., Sano, H., 2010. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology 38, 187–190.
Aller, R.C., Mackin, J.E., Cox, R.T.J., 1986. Diagenesis of Fe and S in Amazon inner shelf mud: apparent dominance of Fe reduction and implications for the genesis of ironstones. Cont. Shelf Res. 6, 263-289.
Aloisi, G., Pierre, C., Rouchy, J.-M., Foucher, J.-P., Woodside, J., 2000. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet. Sci. Lett. 184, 321–338.
Aloisi, G., Wallmann, K., Bollwerk, S.M., Derkachev, A., Bohrmann, G., Suess, E., 2004. The effect of dissolved barium on biogeochemical processes at cold seeps. Geochim. Cosmochim. Acta 68, 1735-1748.
Alt, J.C., 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Mar. Geol. 81, 227–239.
Alt, J.C., Honnorez, J., 1984. Alteration of the upper oceanic crust, DSDP site 417: mineralogy and chemistry. Contrib. Mineral. Petrol. 87, 149–169.
Alt, J.C., Lonsdale, P., Haymon, R., Muehlenbachs, K., 1987. Hydrothermal sulfide and oxide deposits on seamounts near 21 N, East Pacific Rise. Geol. Soc. Amer. bull. 98, 157–168.
Alt, J.C., Mata, P., 2000. On the role of microbes in the alteration of submarine basaltic glass: a TEM study. Earth Planet. Sci. Lett. 181, 301-313.
Amorosi, A., Sammartino, I., Tateo, F., 2007. Evolution patterns of glaucony maturity: A mineralogical and geochemical approach. Deep Sea Res. Pt. II 54, 1364-1374.
Anderson, L.D., Delaney, M.L., 2000. Sequential extraction and analysis of phosphorus in marine sediments: streamlining of the SEDEX procedure. Limnol. Oceanogr. 45, 509-515.
Anderson, N.J., 1988. Diagenesis of magnetic minerals in the recent sediments of a eutrophic lake. Limnol. Oceanogr. 33, 1476-1492.
Anderson, T.F., Raiswell, R., 2004. Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. Am. J. Sci. 304, 203-233.
Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C., 2000. Handbook of Mineralogy, Volume IV, Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, AZ.
Anthony, R.S., 1977. Iron-rich rhythmically laminated sediments in Lake of the Clouds, northeastern Minnesota. Limnol. Oceanogr. 22, 45-54.
Arai, S., Takada, S., Michibayashi, K., Kida, M., 2004. Petrology of peridotite xenoliths from Iraya volcano, Philippines, and its implication for dynamic mantle-wedge processes. J. Petrol. 45, 369-389.
Arvidson, R.S., Morse, J.W., Joye, S.B., 2004. The sulfur biogeochemistry of chemosynthetic cold seep communities, Gulf of Mexico, USA. Mar. Chem. 87, 97-119.
Averyt, K.B., Paytan, A., Li, G., 2003. A precise, high?throughput method for determining Sr/Ca, Sr/Ba, and Ca/Ba ratios in marine barite. Geochem. Geophy. Geosy. 4, doi:10.1029/2002GC000467.
Bottcher, M.E., Lepland, A., 2000. Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: Evidence from stable isotopes and pyrite textures. J. Mar. Syst. 25, 299-312.
Bahr, A., Pape, T., Abegg, F., Bohrmann, G., van Weering, T., Ivanov, M.K., 2010. Authigenic carbonates from the eastern Black Sea as an archive for shallow gas hydrate dynamics–Results from the combination of CT imaging with mineralogical and stable isotope analyses. Mar. Pet. Geol. 27, 1819-1829.
Bailey, S.W., 1980. Summary of recommendations of AIPEA nomenclature committee. Clay Miner. 15, 85-93.
Baldermann, A., Warr, L.N., Grathoff, G.H., Dietzel, M., 2013. The rate and mechanism of deep-sea glauconite formation at the Ivory Coast–Ghana Marginal Ridge. Clays & Clay Miner. 61, 258-276.
Bazylinski, D.A., Frankel, R.B., Heywood, B.R., Mann, S., King, J.W., Donaghay, P.L., Hanson, A.K., 1995. Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl. Environ. Microbiol. 61, 3232-3239.
Beal, E.J., House, C.H., Orphan, V.J., 2009. Manganese- and iron-dependent marine methane oxidation. Science 325, 184-187.
Beaufort, D., Baronnet, A., Lanson, B., Meunier, A., 1997. Corrensite: A single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). Am. Mineral. 82, 109-124.
Benitez-Nelson, C.R., 2000. The biogeochemical cycling of phosphorus in marine systems. Earth-Sci. Rev. 51, 109-135.
Benning, L.G., Wilkin, R.T., Barnes, H.L., 2000. Reaction pathways in the Fe–S system below 100 °C. Chem. Geol. 167, 25-51.
Berner, R.A., 1962. Tetragonal iron sulfide. Science 137, 669-669.
Berner, R.A., 1964. Stability fields of iron minerals in anerobic marine sediments. J. Geol. 72, 826-834.
Berner, R.A., 1967. Thermodynamic stability of sedimentary iron sulfides. Am. J. Sci. 265, 773-785.
Berner, R.A., 1970. Sedimentary pyrite formation. Am. J. Sci. 268, 1-23.
Berner, R.A., 1981. A new geochemical classification of sedimentary environments. J. Sediment. Res. 51, 359-365.
Berner, R.A., 1984. Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta 48, 605-615.
Biscaye, P.E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. bull. 76, 803–831.
Bischoff, J.L., 1972. A ferroan nontronite from the Red Sea geothermal system. Clays & Clay Miner. 20, 217-223.
Boesen, C., Postma, D., 1988. Pyrite formation in anoxic environments of the Baltic. Am. J. Sci. 288, 575-603.
Bond, D.P.G., Wignall, P.B., 2010. Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geol. Soc. Amer. bull. 122, 1265-1279.
Bonev, I.K., Khrischev, K.G., Neikov, H.N., Georgiev, V.M., 1989. Mackinawite and greigite in iron sulphide concretions from Black Sea sediments. Comptes rendus de l'Academie bulgare des Sciences 42, 97-100.
Bornhold, B.D., Giresse, P., 1985. Glauconitic sediments on the continental shelf off Vancover Island, British Columbia, Canada. J. Sediment. Petrol. 55, 653-664.
Borowski, W.S., Paull, C.K., Ussler Iii, W., 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Mar. Geol. 159, 131-154.
Borowski, W.S., Paull, C.K., Ussler, W., 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology 24, 655-658.
Borowski, W.S., Rodriguez, N.M., Paull, C.K., Ussler III, W., 2013. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? Mar. Pet. Geol. 43, 381-395.
Bowin, C., Lu, R.S., Lee, C.-S., Schouten, H., 1978. Plate convergence and accretion in Taiwan-Luzon region. AAPG Bull. 62, 1645-1672.
Brendel, P.J., Luther, G.W., 1995. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and freshwater sediments. Environ. Sci. Technol. 29, 751-761.
Brigatti, M.F., 1983. Relationships between composition and structure in Fe-rich smectites. Clay Miner. 18, 177-186.
Briskin, M., Schreiber, B.C., 1978. Authigenic gypsum in marine sediments. Mar. Geol. 28, 37-49.
Bryant, W.R., Bennet, R.H., 1988. Origin, physical, and mineralogical nature of red clays: The Pacific Ocean Basin as a model. Geo-Mar. Lett. 8, 189-249.
Buatier, M., Honnorez, J., Ehret, G., 1989. Fe-smectite-glauconite transition in hydrothermal green clays from the Galapagos spreading center. Clays & Clay Miner. 37, 532-541.
Buatier, M.D., Fruh-Green, G.L., Karpoff, A.M., 1995. Mechanisms of Mg-phyllosilicate formation in a hydrothermal system at a sedimented ridge (Middle Valley, Juan de Fuca). Contrib. Mineral. Petrol. 122, 134-151.
Buatier, M.D., Karpoff, A.M., Charpentier, D., 2002. Clays and zeolite authigenesis in sediments from the flank of the Juan de Fuca Ridge. Clay Miner. 37, 143-155.
Buatier, M.D., Monnin, C., Fruh-Green, G.L., Karpoff, A.M., 2001. Fluid-sediment interactions related to hydrothermal circulation in the Eastern Flank of the Juan de Fuca Ridge. Chem. Geol. 175, 343-360.
Buatier, M.D., Ouyang, K., Sanchez, J.P., 1993. Iron in hydrothermal clays from the Galapagos spreading center mounds - consequences for the clay transition mechanism. Clay Miner. 28, 641-655.
Burns, S.J., 1997. Early diagenesis in Amazon Fan sediments, In: Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. (Eds.), Proc. ODP, Sci. Results, vol. 155. ODP, College Station, TX, pp. 497–504.
Burton, E.A., 1993. Controls on marine carbonate cement mineralogy: review and reassessment. Chem. Geol. 105, 163-179.
Burton, E.D., Bush, R.T., Johnston, S.G., Sullivan, L.A., Keene, A.F., 2011. Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland. Geochim. Cosmochim. Acta 75, 3434-3451.
Burton, E.D., Bush, R.T., Sullivan, L.A., 2006. Sedimentary iron geochemistry in acidic waterways associated with coastal lowland acid sulfate soils. Geochim. Cosmochim. Acta 70, 5455-5468.
Burton, E.D., Bush, R.T., Sullivan, L.A., Hocking, R.K., Mitchell, D.R.G., Johnston, S.G., Fitzpatrick, R.W., Raven, M., McClure, S., Jang, L.Y., 2009. Iron-monosulfide oxidation in natural sediments: resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions. Environ. Sci. Technol. 43, 3128-3134.
Burton, E.D., Bush, R.T., Sullivan, L.A., Mitchell, D.R.G., 2007. Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands. Geochim. Cosmochim. Acta 71, 4456-4473.
Bush, R.T., Sullivan, L.A., 1997. Morphology and behaviour of greigite from a Holocene sediment in Eastern Australia. Aust. J. Soil Res. 35, 853-861.
Butler, I.B., Bottcher, M.E., Rickard, D., Oldroyd, A., 2004. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records. Earth Planet. Sci. Lett. 228, 495-509.
Butler, I.B., Rickard, D., 2000. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochim. Cosmochim. Acta 64, 2665-2672.
Canfield, D.E., Raiswell, R., Bottrell, S., 1992. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292, 659-659.
Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., Berner, R.A., 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149-155.
Capitelli, F., Chita, G., Ghiara, M.R., Rossi, M., 2012. Crystal-chemical investigation of Fe3(PO4) 2?8H2O vivianite minerals. Z. Kristallogr. 227, 92-101.
Carman, R., Rahm, L., 1997. Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper. J. Sea. Res. 37, 25-47.
Chamley, H., 1989. Clay sedimentology. Springer, Berlin Heidelberg.
Chang, L., Rainford, B.D., Stewart, J.R., Ritter, C., Roberts, A.P., Tang, Y., Chen, Q., 2009. Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction. J. Geophys. Res. 114, doi:10.1029/2008JB006260.
Chang, L., Roberts, A.P., Tang, Y., Rainford, B.D., Muxworthy, A.R., Chen, Q., 2008. Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). J. Geophys. Res. 113, doi:10.1029/2007JB005502.
Charpentier, D., Buatier, M.D., Jacquot, E., Gaudin, A., Wheat, C.G., 2011. Conditions and mechanism for the formation of iron-rich Montmorillonite in deep sea sediments (Costa Rica margin): Coupling high resolution mineralogical characterization and geochemical modeling. Geochim. Cosmochim. Acta 75, 1397-1410.
Chen, D.F., Feng, D., Su, Z., Song, Z.G., Chen, G.Q., Cathles III, L.M., 2006. Pyrite crystallization in seep carbonates at gas vent and hydrate site. Mater. Sci. Eng. C 26, 602-605.
Chen, D.F., Huang, Y.Y., Yuan, X.L., Cathles III, L.M., 2005. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea. Mar. Pet. Geol. 22, 613-621.
Chen, J.-C., Lo, C.Y., Lee, Y.T., Huang, S.W., Chou, P.C., Yu, H.S., Yang, T.F., Wang, Y.S., Chung, S.H., 2007a. Mineralogy and chemistry of cored sediments from active margin off southwestern Taiwan. Geochem. J. 41, 303-321.
Chen, P.Y., 1973. Clay minerals distribution in the sea-bottom sediments neighboring Taiwan Island and northern South China Sea. Acta Oceanographica Taiwanica, Science Reports of the National Taiwan University 3, 25-64.
Chen, S.-C., Hsu, S.-K., Tsai, C.-H., Ku, C.-Y., Yeh, Y.-C., Wang, Y., 2010. Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan. Mar. Geophys. Res. 31, 133-147.
Chen, S.-C., Hsu, S.-K., Wang, Y., Chung, S.-H., Chen, P.-C., Tsai, C.-H., Liu, C.-S., Lin, H.-S., Lee, Y.-W., 2014. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. J. Asian Earth Sci. 92, 201-214.
Chen, Y., Matsumoto, R., Paull, C.K., Ussler, W. III, Lorenson, T., Hart, P., Winters, W., 2007b. Methane-derived authigenic carbonates from the northern Gulf of Mexico—MD02 Cruise. J. Geochem. Explor. 95, 1-15.
Chen, Z., Yan, W., Chen, M., Lu, J., Gu, S., 2007c. Formation of authigenic gypsum and pyrite assemblage and its significance to gas ventings in Nansha Trough, South China Sea. Marine Geology & Quaternary Geology 27, 91-100.
Chi, W.-C., Reed, D.L., Liu, C.-S., Lundberg, N., 1998. Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone. Terr. Atmos. Ocean. Sci. 9, 779-794.
Chi, W.-C., Reed, D.L., Moore, G., Nguyen, T., Liu, C.-S., Lundberg, N., 2003. Tectonic wedging along the rear of the offshore Taiwan accretionary prism. Tectonophysics 374, 199-217.
Chien, C.-W., Huang, C.-Y., Chen, Z., Lee, H.-C., Harris, R., 2012. Miocene shallow-marine cold seep carbonate in fold-and-thrust Western Foothills, SW Taiwan. J. Asian Earth Sci. 56, 200-211.
Chiu, J.-K., Tseng, W.-H., Liu, C.-S., 2006. Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan. Terr. Atmos. Ocean. Sci. 17, 703–722.
Chow, J.-D., Lai, T.-D., Liu, C.-S., Yu, H.-S., 1996. Flower Sructures and strike-slip deformation off southwestern Taiwan. Terr. Atmos. Ocean. Sci. 7, 523-533.
Chow, J., Lee, J.S., Sun, R., Liu, C.S., Lundberg, N., 2000. Characteristics of the bottom simulating reflectors near mud diapirs: offshore southwestern Taiwan. Geo-Mar. Lett. 20, 3-9.
Christensen, J.P., 1989. Sulfate reduction and carbon oxidation rates in continental shelf sediments, an examination of offshelf carbon transport. Cont. Shelf Res. 9, 223-246.
Chuang, P.-C., Dale, A.W., Wallmann, K., Haeckel, M., Yang, T.F., Chen, N.-C., Chen, H.-C., Chen, H.-W., Lin, S., Sun, C.-H., You, C.-F., Horng, C.-S., Wang, Y., Chung, S.-H., 2013. Relating sulfate and methane dynamics to geology: The accretionary prism offshore SW Taiwan. Geochem. Geophys. Geosyst. 14, 2523-2545.
Chuang, P.-C., Yang, T.F., Hong, W.-L., Lin, S., Sun, C.-H., Lin, A.T.-S., Chen, J.-C., Wang, Y., Chung, S.-H., 2010. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids 10, 497-510.
Chuang, P.-C., Yang, T.F., Lin, S., Lee, H.-F., Lan, T.F., Hong, W.-L., Liu, C.-S., Chen, J.-C., Wang, Y., 2006. Extremely high methane concentration in bottom water and cored sediments from offshore southwestern Taiwan. Terr. Atmos. Ocean. Sci. 17, 903-920.
Claypool, G.E., Kaplan, I.R., 1974. The origin and distribution of methane in marine sediments, Natural gases in marine sediments. Springer, pp. 99-139.
Cole, T.G., 1983. Oxygen isotope geothermometry and origin of smectites in the Atlantis II Deep, Red Sea. Earth Planet. Sci. Lett. 66, 166-176.
Cole, T.G., 1985. Composition, oxygen isotope geochemistry and origin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific. Geochim. Cosmochim. Acta 49, 221-235.
Cole, T.G., 1988. The nature and origin of smectite in the Atlantis II Deep, Red Sea. Can. Mineral. 26, 755-763.
Cole, T.G., Shaw, H.F., 1983. The nature and origin of authigenic smectites in some recent marine sediments. Clay Miner. 18, 239-252.
Cook, R.B., 1994. Connoisseur's Choice: Vivianite: Morococala Area, Oruro, Bolivia. Rocks & Minerals 69, 112-114.
Corliss, J.B., Lyle, M., Dymond, J., Crane, K., 1978. Chemistry of hydrothermal mounds near Galapagos Rift. Earth Planet. Sci. Lett. 40, 12-24.
Cornwell, J.C., Morse, J.W., 1987. The characterization of iron sulfide minerals in anoxic marine sediments. Mar. Chem. 22, 193-206.
Cremiere, A., Pierre, C., Blanc-Valleron, M.-M., Zitter, T., Ca?atay, M.N., Henry, P., 2012. Methane-derived authigenic carbonates along the North Anatolian fault system in the Sea of Marmara (Turkey). Deep Sea Res. Pt. I 66, 114-130.
Criddle, A.J., 1974. A preliminary description of microcrystalline pyrite from the nannoplankton ooze at Site 251, Southwest Indian Ocean, In: Davies, T.A., Luyendyk, B.P., Rodolfo, K.S., Kempe, D.R.C., McKelvey, B.C., Leidy, R.D., Horvath, G.J., Hyndman, R.D., Thierstein, H.R., Herb, R.C., Boltovskoy, E., Doyle, P. (Eds.), Initial Reports of the Deep Sea Drilling Project 26. US Government Printing Office, pp. 603-611.
Cuadros, J., Dekov, V.M., Arroyo, X., Nieto, F., 2011. Smectite formation in submarine hydrothermal sediments: samples from the HMS Challenger expedition (1872–1876). Clays & Clay Miner. 59, 147–164.
D'Hondt, S., Jogensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K.U., Holm, N.G., Mitterer, R., Spivack, A., Wang, G.Z., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S.D., Sass, H., Skilbeck, C.G., Aiello, I.W., Guerin, G., House, C.H., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R.J., Schippers, A., Smith, D.C., Teske, A., Wiegel, J., Padilla, C.N., Acosta, J.L.S., 2004. Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216-2221.
De Carlo, E.H., McMurtry, G.M., Yeh, H.W., 1983. Geochemistry of hydrothermal deposits from Loihi submarine volcano, Hawaii. Earth Planet. Sci. Lett. 66, 438-449.
Decarreau, A., Bonnin, D., 1986. Synthesis and crystallogenesis at low temperature of Fe (III)-smectites by evolution of coprecipitated gels; experiments in partially reducing conditions. Clay Miner. 21, 861–877.
Deike, R.G., Granina, L., Callender, E., McGee, J.J., 1997. Formation of ferric iron crusts in quaternary sediments of Lake Baikal, Russia, and implications for paleoclimate. Mar. Geol. 139, 21-46.
Dekkers, M.J., Passier, H.F., Schoonen, M.A.A., 2000. Magnetic properties of hydrothermally synthesized greigite (Fe3S4)—II. High-and low-temperature characteristics. Geophys. J. Int. 141, 809-819.
Dekkers, M.J., Schoonen, M.A.A., 1994. An electrokinetic study of synthetic greigite and pyrrhotite. Geochim. Cosmochim. Acta 58, 4147-4153.
Dekkers, M.J., Schoonen, M.A.A., 1996. Magnetic properties of hydrothermally synthesized greigite (Fe3S4)—I. Rock magnetic parameters at room temperature. Geophys. J. Int. 126, 360-368.
Dekov, V.M., Kamenov, G.D., Stummeyer, J., Thiry, M., Savelli, C., Shanks, W.C., Fortin, D., Kuzmann, E., Vertes, A., 2007. Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea). Chem. Geol. 245, 103-119.
Dekov, V.M., Savelli, C., 2004. Hydrothermal activity in the SE Tyrrhenian Sea: an overview of 30 years of research. Mar. Geol. 204, 161-185.
Delaney, M.L., 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochem. Cycles 12, 563-572.
Dellwig, O., Leipe, T., Marz, C., Glockzin, M., Pollehne, F., Schnetger, B., Yakushev, E.V., Bottcher, M.E., Brumsack, H.-J., 2010. A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochim. Cosmochim. Acta 74, 7100-7115.
Dewangan, P., Basavaiah, N., Badesab, F.K., Usapkar, A., Mazumdar, A., Joshi, R., Ramprasad, T., 2013. Diagenesis of magnetic minerals in a gas hydrate/cold seep environment off the Krishna-Godavari basin, Bay of Bengal. Mar. Geol. 340, 57-70.
Dickens, G.R., 2001. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir. Geochim. Cosmochim. Acta 65, 529-543.
Dill, H.G., Siegfanz, G., Marchig, V., 1994. Mineralogy and chemistry of metalliferous muds forming the topstratum of a massive sulfide?metalliferous sediment sequence from East Pacific rise 18°S: Its origin and implications concerning the formation of ochrous sediments in cyprus?type deposits Mar. Georesour. Geotec. 12, 159-180.
Dymond, J., Eklund, W., 1978. A microprobe study of metalliferous sediment components. Earth Planet. Sci. Lett. 40, 243-251.
Ellwood, B.B., Chrzanowski, T.H., Hrouda, F., Long, G.J., Buhl, M.L., 1988. Siderite formation in anoxic deep-sea sediments: A synergetic bacteria controlled process with improtant implications in paleomagnetism. Geology 16, 980-982.
England, B.M., Ostwald, J., 1993. Framboid-derived structures in some Tasman fold belt base-metal sulphide deposits, New South Wales, Australia. Ore Geol. Rev. 7, 381-412.
Evans Jr, H.T., Milton, C., Chao, E., Adler, I., Mead, C., Ingram, B., Berner, R.A., 1964. Valleriite and the new iron sulfide, mackinawite. U.S. Geological Survey Professional Paper 475-D, 64-69.
Futterer, D.K., 2006. The solid phase of marine sediments, In: Schulz, H.D., Zabel, M. (Eds.), Marine Geochemistry, 2nd ed. Springer, Berlin Heideberg, pp. 1-25.
Fagel, N., Alleman, L.Y., Granina, L., Hatert, F., Thamo-Bozso, E., Cloots, R., Andre, L., 2005. Vivianite formation and distribution in Lake Baikal sediments. Glob. Planet. Change 46, 315-336.
Faul, K.L., Paytan, A., Delaney, M.L., 2005. Phosphorus distribution in sinking oceanic particulate matter. Mar. Chem. 97, 307-333.
Feng, D., Chen, D., Peckmann, J., Bohrmann, G., 2010. Authigenic carbonates from methane seeps of the northern Congo fan: microbial formation mechanism. Mar. Pet. Geol. 27, 748-756.
Figueiredo, M.O., Silva, T.P., Veiga, J.P., 2010. The blue of iron in mineral pigments: a Fe K-edge XANES study of vivianite. Appl. Phys. A 99, 357-361.
Filippelli, G.M., Delaney, M.L., 1996. Phosphorus geochemistry of equatorial Pacific sediments. Geochim. Cosmochim. Acta 60, 1479-1495.
Flood, R.D., Piper, D.J.W., Klaus, A., Shipboard Scientific Party, 1995. Amazon Fan, Proc. ODP, Init. Rep., vol. 155 ODP, College Station, TX.
Florindo, F., Karner, D.B., Marra, F., Renne, P.R., Roberts, A.P., Weaver, R., 2007. Radioisotopic age constraints for Glacial Terminations IX and VII from aggradational sections of the Tiber River delta in Rome, Italy. Earth Planet. Sci. Lett. 256, 61-80.
Florindo, F., Sagnotti, L., 1995. Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section. Geophys. J. Int. 123, 340-354.
Froelich, P.N., 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buifer mechanism. Limnol. Oceanogr. 33, 649-668.
Froelich, P.N., Bender, M.L., Luedtke, N.A., Heath, G.R., DeVries, T., 1982. The marine phosphorus cycle. Am. J. Sci. 282, 474-511.
Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075-1090.
Frost, R.L., Martens, W., Williams, P.A., Kloprogge, J.T., 2002. Raman and infrared spectroscopic study of the vivianite-group phosphates vivianite, baricite and bobierrite. Mineral. Mag. 66, 1063-1073.
Frost, R.L., Weier, M., 2004. Raman spectroscopic study of vivianites of different origins. Neues Jb. Miner. Mh. 2004, 445-463.
Fu, Y., Von Dobeneck, T., Franke, C., Heslop, D., Kasten, S., 2008. Rock magnetic identification and geochemical process models of greigite formation in Quaternary marine sediments from the Gulf of Mexico (IODP Hole U1319A). Earth Planet. Sci. Lett. 275, 233-245.
Furukawa, Y., Barnes, H.L., 1994. Replacement mechanisms among iron sulphide minerals. Mineral. Mag. 58, 299-300.
Furukawa, Y., Barnes, H.L., 1995. Reactions forming pyrite from precipitated amorphous ferrous sulfide, In: Vairavamurthy, M.A., Schoonen, M.A.A. (Eds.), Geochemical Transformations of Sedimentary Sulfur. ACS Publications, Washington, D.C., pp. 194-205.
Gachter, R., Mueller, B., 2003. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnol. Oceanogr. 48, 929-933.
Guven, N., 1988. Smectites, In: Bailey, S. (Ed.), Hydrous Phyllosilicates (Exclusive of Micas). Mineralogical Society of America, Washington, D.C., pp. 497-559.
Gaudin, A., Buatier, M.D., Beaufort, D., Petit, S., Grauby, O., Decarreau, A., 2005. Characterization and origin of Fe3+-montmorillonite in deep-water calcareous sediments (Pacific Ocean, Costa Rica margin). Clays & Clay Miner. 53, 452-465.
Gaudin, A., Grauby, O., Noack, Y., Decarreau, A., Petit, S., 2004a. Accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). I. XRD and multi-scale chemical approaches. Clay Miner. 39, 301-315.
Gaudin, A., Petit, S., Rose, J., Martin, F., Decarreau, A., Noack, Y., Borschneck, D., 2004b. The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches. Clay Miner. 39, 453-467.
Giorgetti, G., Monecke, T., Kleeberg, R., Hannington, M.D., 2006. Low-temperature hydrothermal alteration of silicic glass at the Pacmanus hydrothermal vent field, Manus basin: An XRD, SEM and AEM-TEM study. Clays & Clay Miner. 54, 240-251.
Giorgetti, G., Monecke, T., Kleeberg, R., Hannington, M.D., 2009. Low-temperature hydrothermal alteration of trachybasalt at Conical Seamount, Papua New Guinea: Formation of smectite and metastable precursor phases. Clays & Clay Miner. 57, 725-741.
Giresse, P., Gadel, F., Serve, L., Barusseau, J.P., 1998. Indicators of climate and sediment-source variations at Site 959: Implications for the reconstruction of paleoenvironments in the Gulf of Guinea through Pleistocene times. Proc. ODP Sci. Results 159, 585-603.
Giresse, P., Wiewiora, A., 1999. Origin and diagenesisof blue-green clays and volcanic glass in the Pleistocene of the Cote d’Ivoire-Ghana Marginal Ridge (ODP Leg 159, Site 959). Sed. Geol. 127, 247-269.
Giresse, P., Wiewiora, A., 2001. Stratigraphic condensed deposition and diagenetic evolution of green clay minerals in deep water sediments on the Ivory Coast-Ghana Ridge. Mar. Geol. 179, 51-71.
Giresse, P., Wiewiora, A., Grabska, D., 2004. Glauconitization processes in the northwestern Mediterranean (Gulf of Lions). Clay Miner. 39, 57-73.
Glasauer, S., Weidler, P.G., Langley, S., Beveridge, T.J., 2003. Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim. Cosmochim. Acta 67, 1277-1288.
Goldsmith, J.R., Graf, D.L., 1958. Relation between lattice constants and composition of the Ca-Mg carbonates. Am. Mineral. 43, 84-101.
Goldsmith, J.R., Graf, D.L., Heard, H.C., 1961. Lattice constants of the calcium-magnesium carbonates. Am. Mineral. 46, 453-457.
Gontharet, S., Pierre, C., Blanc-Valleron, M.-M., Rouchy, J.-M., Fouquet, Y., Bayon, G., Foucher, J.-P., Woodside, J., Mascle, J., 2007. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea). Deep Sea Res. Pt. II 54, 1292-1311.
Granina, L., Muller, B., Wehrli, B., 2004. Origin and dynamics of Fe and Mn sedimentary layers in Lake Baikal. Chem. Geol. 205, 55-72.
Grill, E.V., Chase, R.L., MacDonald, R.D., Murray, J.W., 1981. A hydrothermal deposit from Explorer Ridge in the northeast Pacific Ocean. Earth Planet. Sci. Lett. 52, 142-150.
Guastoni, A., Nestola, F., Mazzoleni, G., Vignola, P., 2007. Mn-rich graftonite, ferrisicklerite, stanekite and Mn-rich vivianite in a granitic pegmatite at Soe Valley, central Alps, Italy. Mineral. Mag. 71, 579-585.
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galan, E., Kogure, T., Stanjek, H., 2006. Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l'Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays & Clay Miner. 54, 761-772.
Haas, A., Peckmann, J., Elvert, M., Sahling, H., Bohrmann, G., 2010. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan. Mar. Geol. 268, 129-136.
Haese, R.R., Petermann, H., Dittert, L., Schulz, H.D., 1998. The early diagenesis of iron in pelagic sediments: A multidisciplinary approach. Earth Planet. Sci. Lett. 157, 233-248.
Haese, R.R., Wallmann, K., Dahmke, A., Kretzmann, U., Muller, P.J., Schulz, H.D., 1997. Iron species determination to investigate early diagenetic reactivity in marine sediments. Geochim. Cosmochim. Acta 61, 63-72.
Han, X., Suess, E., Huang, Y., Wu, N., Bohrmann, G., Su, X., Eisenhauer, A., Rehder, G., Fang, Y., 2008. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea. Mar. Geol. 249, 243-256.
Harder, H., 1976. Nontronite synthesis at low temperatures. Chem. Geol. 18, 169-180.
Harder, H., 1978. Synthesis of iron layer silicate minerals under natural conditions. Clays & Clay Miner. 26, 65-72.
Harder, H., 1980. Synthesis of glauconite at surface temperatures. Clays & Clay Miner. 28, 217-222.
Hearn, P.P., Parkhurst, D.L., Callender, E., 1983. Authigenic vivianite in Potomac River sediments: control by ferric oxy-hydroxides. J. Sediment. Petrol. 53, 165-177.
Heath, G.R., Dymond, J., 1977. Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep, and Central Basin, northwest Nazca plate. Geol. Soc. Amer. bull. 88, 723–733.
Hein, J.R., Griggs, G.B., 1972. Distribution and scanning electron microscope (SEM) observations of authigenic pyrite from a Pacific deep-sea core. Deep-Sea Res. 19, 133-138.
Hein, J.R., Scholl, D.W., 1978. Diagenesis and distribution of late Cenozoic volcanic sediment in the southern Bering Sea. Geol. Soc. Amer. bull. 89, 197-210.
Hein, J.R., Yeh, H.-W., Alexander, E., 1979. Origin of iron-rich montmorillonite from the manganese nodule belt of the North Equatorial Pacific. Clays & Clay Miner. 27, 185-194.
Hellige, K., Pollok, K., Larese-Casanova, P., Behrends, T., Peiffer, S., 2012. Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces. Geochim. Cosmochim. Acta 81, 69-81.
Ho, C.S., 1986. A synthesis of the geological evolution of Taiwan. Tectonophysics 125, 1-16.
Holmkvist, L., Kamyshny Jr, A., Vogt, C., Vamvakopoulos, K., Ferdelman, T.G., Jorgensen, B.B., 2011. Sulfate reduction below the sulfate–methane transition in Black Sea sediments. Deep Sea Res. Pt. I 58, 493-504.
Horiuchi, S., Wada, H., Moori, T., 1974. Morphology and imperfection of hydrothermally synthesized greigite (Fe3S4). J. Cryst. Growth 24, 624-626.
Horng, C.-S., Laj, C., Lee, T.-Q., Chen, J.-C., 1992. Magnetic characteristics of sedimentary rocks from the Tsengwen-chi and Erhjen-chi sections in southwestern Taiwan. Terr. Atmos. Ocean. Sci. 3, 519-532.
Horng, C.-S., Torii, M., Shea, K.-S., Kao, S.-J., 1998. Inconsistent magnetic polarities between greigite-and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan. Earth Planet. Sci. Lett. 164, 467-481.
House, W.A., Jickells, T.D., Edwards, A.C., Praska, K.E., Denison, F.H., 1998. Reactions of phosphorus with sediments in fresh and marine waters. Soil Use Manage. 14, 139-146.
Hover, V.C., Walter, L.M., Peacor, D.R., Martini, A.M., 1999. Mg-smectite authigenesis in a marine evaporative environment, Salina Ometepec, Baja California. Clays & Clay Miner. 47, 252-268.
Hsu, T.-W., Jiang, W.-T., 2008. Contrasting mineral authigenesis and methane activities in deep-sea sediments offshore SW Taiwan. Geochim. Cosmochim. Acta 72, A396.
Hsu, T.-W., Jiang, W.-T., Wang, Y., 2014. Authigenesis of vivianite as influenced by methane-induced sulfidization in cold-seep sediments off southwestern Taiwan. J. Asian Earth Sci. 89, 88-97.
Huang, C.-Y., Chien, C.-W., Zhao, M., Li, H.-C., Iizuka, Y., 2006. Geological study of active cold seeps in the syn-collision accretionary prism Kaoping slope off SW Taiwan. Terr. Atmos. Ocean. Sci. 17, 679-702.
Huang, C.-Y., Wu, W.-Y., Chang, C.-P., Tsao, S., Yuan, P.B., Lin, C.-W., Xia, K.-Y., 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics 281, 31-51.
Huang, C.-Y., Yuan, P.B., Lin, C.-W., Wang, T.K., Chang, C.-P., 2000. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics 325, 1-21.
Hudson, J.D., 1982. Pyrite in ammonite?bearing shales from the Jurassic of England and Germany. Sedimentology 29, 639-667.
Hunger, S., Benning, L.G., 2007. Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem. Trans. 8, doi:10.1186/1467-4866-1188-1181.
Hurtgen, M.T., Lyons, T.W., Ingall, E.D., Cruse, A.M., 1999. Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transformations: examples from Effingham Inlet, Orca Basin, and the Black Sea. Am. J. Sci. 299, 556-588.
Iacoviello, F., Giorgetti, G., Nieto, F., Memmi, I.T., 2012. Evolution with depth from detrital to authigenic smectites in sediments from AND-2A drill core (McMurdo Sound, Antarctica). Clay Miner. 47, 481-498.
Iversen, N., Jorgensen, B.B., 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30, 944-955.
Jorgensen, B.B., Bottcher, M.E., Luschen, H., Neretin, L.N., Volkov, I.I., 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim. Cosmochim. Acta 68, 2095-2118.
Jorgensen, B.B., Kasten, S., 2006. Sulfur cycling and methane oxidation, In: Schulz, H.D., Zabel, M. (Eds.), Marine Geochemistry, 2 nd ed. Springer, Germany, pp. 271-309.
Jeong, H.Y., Lee, J.H., Hayes, K.F., 2008. Characterization of synthetic nanocrystalline mackinawite: Crystal structure, particle size, and specific surface area. Geochim. Cosmochim. Acta 72, 493-505.
Jiang, W.-T., Horng, C.-S., Roberts, A.P., Peacor, D.R., 2001. Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth Planet. Sci. Lett. 193, 1-12.
Jiang, W.-T., Hsu, T.-W., 2008. Authigenesis of ferric smectite pellets and methane seepage in deep-sea sediments offshore SW Taiwan. Geochim. Cosmochim. Acta 72, A430.
Jiang, W.T., Chen, J.C., Huang, B.J., Chen, C.J., Lee, Y.T., Huang, P.R., Lung, C.C., Huang, S.W., 2006. Mineralogy and physical properties of cored sediments from the gas hydrate potential area of offshore southwestern Taiwan. Terr. Atmos. Ocean. Sci. 17, 981-1007.
Jilbert, T., Slomp, C.P., 2013. Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea. Geochim. Cosmochim. Acta 107, 155-169.
Johns, W.D., Grim, R.E., Bradley, W.F., 1954. Quantitative estimations of clay minerals by diffraction methods. J. Sediment. Res. 24, 242-251.
Johnston, S.G., Burton, E.D., Keene, A.F., Planer-Friedrich, B., Voegelin, A., Blackford, M.G., Lumpkin, G.R., 2012. Arsenic mobilization and iron transformations during sulfidization of As (V)-bearing jarosite. Chem. Geol. 334, 9-24.
Joseph, C., Campbell, K.A., Torres, M.E., Martin, R.A., Pohlman, J.W., Riedel, M., Rose, K., 2013. Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: Mechanisms of formation and diagenetic signals. Paleogeogr. Paleoclimatol. Paleoecol. 390, 52-67.
Kohler, B., Singer, A., Stoffers, P., 1994. Biogenic nontronite from marine white smoker chimneys. Clays & Clay Miner. 42, 689-701.
Kuster-Heins, K., Steinmetz, E., De Lange, G.J., Zabel, M., 2010. Phosphorus cycling in marine sediments from the continental margin off Namibia. Mar. Geol. 274, 95-106.
Koster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E., Onnich, K., 1999. Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Miner. 34, 579-599.
Kasten, S., Nothen, K., Hensen, C., Spies, V., Blumenberg, M., Schneider, R.R., 2012. Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan. Geo-Mar. Lett. 32, 515-524.
Keene, A.F., Johnston, S.G., Bush, R.T., Sullivan, L.A., Burton, E.D., McElnea, A.E., Ahern, C.R., Powell, B., 2011. Effects of hyper-enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland. Biogeochemistry 103, 263-279.
Kloprogge, J.T., Visser, D., Martens, W.N., Duong, L.V., Frost, R.L., 2003. Identification by Raman Microscopy of magnesian vivianite formed from Fe2+, Mg, Mn2+ and PO43- in a Roman camp near fort Vechten, Utrecht, The Netherlands. Netherlands J. Geosci.-Geo. En Mijnbouw 82, 209-214.
Kocherla, M., 2013. Authigenic Gypsum in Gas?Hydrate Associated Sediments from the East Coast of India (Bay of Bengal). Acta Geologica Sinica?English Edition 87, 749-760.
Kohn, M.J., Riciputi, L.R., Stakes, D., Orange, D.L., 1998. Sulfur isotope variability in biogenic pyrite: Reflections of heterogeneous bacterial colonization? Am. Mineral. 83, 1454-1468.
Kopittke, P.M., Menzies, N.W., Fulton, I.M., 2004. Gypsum solubility in seawater, and its application to bauxite residue amelioration. Soil Res. 42, 953-960.
Kouvo, O., Vuorelainen, Y., Long, J.V.P., 1963. A tetragonal iron sulfide. Am. Mineral. 48, 511-524.
Kraal, P., Slomp, C.P., Forster, A., Kuypers, M.M.M., 2010. Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2. Paleogeogr. Paleoclimatol. Paleoecol. 295, 42-54.
Krupp, R.E., 1994. Phase relations and phase transformations between the low-temperature iron sulfides mackinawite, greigite, and smythite. Eur. J. Mineral. 6, 265-278.
Ku, Y.P., Chen, C.H., Newhall, C.G., Song, S.R., Yang, T.F., Iizuka, Y., McGeehin, J., 2008. Determining an age for the Inararo Tuff eruption of Mt. Pinatubo, based on correlation with a distal ash layer in core MD97-2142, South China Sea. Quantern. Int. 178, 138-145.
Ku, Y.P., Chen, C.H., Song, S.R., Iizuka, Y., Jiun-San Shen, J., 2009. A 2 Ma record of explosive volcanism in southwestern Luzon: Implications for the timing of subducted slab steepening. Geochem. Geophys. Geosyst. 10, Q06017.
Kunze, G.W., Dixon, J.B., 1986. Pretreatment for mineralogical analysis, In: Klute, A. (Ed.), Methods of soil analysis, Part 1. Physical and mineralogical methods, 2nd ed. American Society of Agronomy, Inc., Madison, pp. 91-100.
Lancelot, Y., Ewing, J.I., 1972. Correlation of natural gas zonation and carbonate diagenesis in Tertiary sediments from the north-west Atlantic, Init. Rep. DSDP, pp. 791-799.
Larrasoana, J.C., Roberts, A.P., Musgrave, R.J., Gracia, E., Pinero, E., Vega, M., Martinez-Ruiz, F., 2007a. Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet. Sci. Lett. 261, 350-366.
Larrasoana, J.C., Roberts, A.P., Musgrave, R.J., Gr?cia, E., Pinero, E., Vega, M., Martinez-Ruiz, F., 2007b. Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet. Sci. Lett. 261, 350-366.
Lash, G.G., 2015. Authigenic barite nodules and carbonate concretions in the Upper Devonian shale succession of western New York–A record of variable methane flux during burial. Mar. Pet. Geol. 59, 305-319.
Lee, C.H., Choi, S.W., Suh, M., 2002. High iron glaucony from the continental shelf of the Yellow Sea off the southwestern Korean Peninsula. J. Asian Earth Sci. 20, 507-515.
Lee, C.H., Jin, J.-H., 1995. Authigenic greigite in mud from the continental shelf of the Yellow Sea, off the southwest Korean Peninsula. Mar. Geol. 128, 11-15.
Lein, A.Y., Sidorenko, G.A., Volkov, I.I., Shevchenko, A.Y., 1978. Diagenetic mackinawite, melnikovite (greigite) and pyrite in sediments of the Trans-Pacific profile and the Gulf of California. Doklady of the Academy of Sciences of the USSR. Earth Science Sections 238, 167-169.
Lemos, V.P., da Costa, M.L., Lemos, R.L., de Faria, M.S.G., 2007. Vivianite and siderite in lateritic iron crust: An example of bioreduction. Quim. Nova 30, 36-40.
Lennie, A.R., England, K.E.R., Vaughan, D.J., 1995a. Transformation of synthetic mackinawite to hexagonal pyrrhotite: A kinetic study. Am. Mineral. 80, 960-967.
Lennie, A.R., Redfern, S.A.T., Champness, P.E., Stoddart, C.P., Schofield, P.F., Vaughan, D.J., 1997. Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study. Am. Mineral. 82, 302-309.
Lennie, A.R., Redfern, S.A.T., Schofield, P.F., Vaughan, D.J., 1995b. Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS. Mineral. Mag. 59, 677-683.
Liferovich, R.P., Pakhomovsky, Y.A., Bogdanova, A.N., Balaganskaya, E.G., Laajoki, K.V.O., Gehor, S., Chukanov, N.V., 2001. Collinsite in hydrothermal assemblages related to carbonatites in the Kovdor Complex, northwestern Russia. Can. Mineral. 39, 1081-1094.
Lim, Y.C., Lin, S., Yang, T.F., Chen, Y.-G., Liu, C.-S., 2011. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan. Mar. Pet. Geol. 28, 1829-1837.
Lin, A.T., Liu, C.-S., Lin, C.-C., Schnurle, P., Chen, G.-Y., Liao, W.-Z., Teng, L.S., Chuang, H.-J., Wu, M.-S., 2008. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Mar. Geol. 255, 186-203.
Lin, A.T., Yao, B., Hsu, S.-K., Liu, C.-S., Huang, C.-Y., 2009a. Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics 479, 28-42.
Lin, C.-C., Lin, A.T.-S., Liu, C.-S., Chen, G.-Y., Liao, W.-Z., Schnurle, P., 2009b. Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan. Mar. Pet. Geol. 26, 1118-1131.
Lin, C.-C., Lin, A.T.-S., Liu, C.-S., Horng, C.-S., Chen, G.-Y., Wang, Y., 2014. Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan. Mar. Geophys. Res. 35, 21-35.
Lin, S., Hsieh, W.-C., Lim, Y.-C., Yang, T.F., Liu, C.-S., Wang, Y., 2006. Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments. Terr. Atmos. Ocean. Sci. 17, 883-902.
Lin, S., Lim, Y., Yang, T.F., Chung, S.-H., Wang, Y., 2009c. Proxy of past and present methane migration in the active accreted continental margin sediments offshore Southwestern Taiwan. Geochim. Cosmochim. Acta 73, A767.
Lin, S., Morse, J.W., 1991. Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments. Am. J. Sci. 291, 55-89.
Liu, C.-S., Huang, I.L., Teng, L.S., 1997. Structural features off southwestern Taiwan. Mar. Geol. 137, 305-319.
Liu, C.-S., Schnurle, P., Wang, Y., Chung, S.-H., Chen, S.-C., Hsiuan, T.-H., 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terr. Atmos. Ocean. Sci. 17, 615-644.
Liu, J., Valsaraj, K.T., Devai, I., DeLaune, R., 2008. Immobilization of aqueous Hg (II) by mackinawite (FeS). J. Hazard. Mater. 157, 432-440.
Liu, Q., Roberts, A.P., Larrasoana, J.C., Banerjee, S.K., Guyodo, Y., Tauxe, L., Oldfield, F., 2012. Environmental magnetism: principles and applications. Rev. Geophys. 50, RG4002, doi:4010.1029/2012RG000393.
Love, L.G., 1957. Mircro-organisms and the presence of syngenetic pyrite. Quarterly Journal of the Geological Society 113, 429-440.
Love, L.G., Amstutz, G.C., 1966. Review of microscopic pyrite from the Chattanooga Shale and Rammelsberg Banderz. Fortschr. Mineral. 43, 273-309.
Lowers, H.A., Breit, G.N., Foster, A.L., Whitney, J., Yount, J., Uddin, M.N., Muneem, A.A., 2007. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochim. Cosmochim. Acta 71, 2699-2717.
Luther, G.W., 1991. Pyrite synthesis via polysulfide compounds. Geochim. Cosmochim. Acta 55, 2839-2849.
Marz, C., Hoffmann, J., Bleil, U., De Lange, G.J., Kasten, S., 2008. Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean). Mar. Geol. 255, 118-130.
Magalhaes, V.H., Pinheiro, L.M., Ivanov, M.K., Kozlova, E., Blinova, V., Kolganova, J., Vasconcelos, C., McKenzie, J.A., Bernasconi, S.M., Kopf, A.J., 2012. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz. Sed. Geol. 243, 155-168.
Malone, M.J., Claypool, G., Martin, J.B., Dickens, G.R., 2002. Variable methane fluxes in shallow marine systems over geologic time: The composition and origin of pore waters and authigenic carbonates on the New Jersey shelf. Mar. Geol. 189, 175-196.
Manning, P.G., Murphy, T.P., Prepas, E.E., 1991. Intensive formation of vivianite in the bottom sediments of mesotrophic Narrow Lake, Alberta. Can. Mineral. 29, 77-85.
Marincea, S., Constantinescu, E., Ladriere, J., 1997. Relatively unoxidized vivianite in limnic coal from Capeni, Baraolt Basin, Romania. Can. Mineral. 35, 713-722.
Martens, C.S., Berner, R.A., 1977. Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases. Limnol. Oceanogr. 22, 10-25.
Martens, C.S., Berner, R.A., Rosenfeld, J.K., 1978. Interstitial water chemistry of anoxic Long Island Sound sediments. 2. Nutrient regeneration and phosphate removal. Limnol. Oceanogr. 23, 605-617.
Mascle, J., Lohmann, Q.P., Clift, P.D., Akamaluk, T., Allerton, S., Ask, M.V.S., Barrera, E.C., Barton, E., Basile, C., Bellier, J.-P., Benkhelil, J., Brantuoh, E.K., Edwards, R.A., Ewert, E.L., Qoncalves, C., Hisada, K.-I., Holmes, M.A., Janik, A.Q., Lohmann, K.C., Morita, S., Mortera-Qutierrez, C.A., Norris, R.D., Oboh, F.E., Pickett, E.A., Pletsch, T., Ravizza, G., Shafik, S., Shin, I.C., Strand, K.O., Wagner, T., Watkin, D.K., 1996. Site 959. Proc. ODP, Init. Rep. 159, 65-150.
Massaad, M., 1974. Framboidal pyrite in concretions. Miner. Deposita, 9, 87-89.
Masuda, H., 1995. Iron-rich smectite formation in the hydrothermal sediment of Iheya Basin, Okinawa Trough, In: Sakai, H., Nozaki, Y. (Eds.), Biogeochemical Processes and Ocean Flux in the Western Pacific. Terra Scientific Publishing Company, Tokyo, pp. 509-521.
Masuda, H., O'Neil, J.R., Jiang, W.T., Peacor, D.R., 1996. Relation between interlayer composition of authigenic smectite, mineral assemblages, I/S reaction rate and fluid composition in silicic ash of the Nankai Trough. Clays & Clay Miner. 44, 443-459.
Masuda, H., Tanaka, H., Gamo, T., Soh, W., Taira, A., 1993. Major element chemistry and alteration mineralogy of volcanic ash, Site 808 in the Nankai Trough. Proc. ODP Sci. Results 131B, 175-183.
Matsumoto, R., 1983. Mineralogy and geochemistry of carbonate diagenesis of the Pliocene and Pleistocene hemipelagic mud on the Blake Outer Ridge, Site 533, Leg 76, Init. Rep. DSDP, pp. 411-427.
Mazumdar, A., Dewangan, P., Joao, H.M., Peketi, A., Khosla, V.R., Kocherla, M., Badesab, F.K., Joshi, R.K., Roxanne, P., Ramamurty, P.B., 2009. Evidence of paleo–cold seep activity from the Bay of Bengal, offshore India. Geochem. Geophys. Geosyst. 10, doi:10.1029/2008GC002337.
Mazumdar, A., Joshi, R.K., Peketi, A., Kocherla, M., 2011. Occurrence of faecal pellet-filled simple and composite burrows in cold seep carbonates: A glimpse of a complex benthic ecosystem. Mar. Geol. 289, 117-121.
McMurtry, G.M., Sedwick, P.N., Fryer, P., Vonderhaar, D.L., Yeh, H.-W., 1993. Unusual geochemistry of hydrothermal vents on submarine arc volcanoes: Kasuga Seamounts, Northern Mariana Arc. Earth Planet. Sci. Lett. 114, 517-528.
McMurtry, G.M., Wang, C.-H., Yeh, H.-W., 1983. Chemical and isotopic investigations into the origin of clay minerals from the Galapagos hydrothermal mounds field. Geochim. Cosmochim. Acta 47, 475-489.
McMurtry, G.M., Yeh, H.W., 1981. Hydrothermal clay mineral formation of East Pacific Rise and Bauer Basin sediments. Chem. Geol. 32, 189-205.
Melson, W.G., Thompson, G., 1973. Glassy abyssal basalts, Atlantic sea floor near St. Paul's Rocks: petrography and composition of secondary clay minerals. Geol. Soc. Amer. bull. 84, 703-716.
Merinero, R., Lunar, R., Martinez-Frias, J., Somoza, L., Diaz-del-Rio, V., 2008. Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula). Mar. Pet. Geol. 25, 706-713.
Merinero, R., Lunar, R., Somoza, L., Diaz-del-Rio, V., Martinez-Frias, J., 2009. Nucleation, growth and oxidation of framboidal pyrite associated with hydrocarbon-derived submarine chimneys: lessons learned from the Gulf of Cadiz. Eur. J. Mineral. 21, 947-961.
Millero, F.J., 2013. Chemical Oceanography, 4th ed. CRC Press, Florida.
Moore, D.M., Reynolds, R.C., Jr, 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York.
Morse, J.W., Arakaki, T., 1993. Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochim. Cosmochim. Acta 57, 3635-3640.
Morse, J.W., Cornwell, J.C., 1987. Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Mar. Chem. 22, 55-69.
Morse, J.W., Gledhill, D.K., Sell, K.S., Arvidson, R.S., 2002. Pyritization of iron in sediments from the continental slope of the northern Gulf of Mexico. Aquatic Geochemistry 8, 3-13.
Morse, J.W., Millero, F.J., Cornwell, J.C., Rickard, D., 1987. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Sci. Rev. 24, 1-42.
Morse, J.W., Rickard, D., 2004. Chemical dynamics of sedimentary acid volatile sulfide. Environ. Sci. Technol. 38, 131A-136A.
Mort, H.P., Slomp, C.P., Gustafsson, B.G., Andersen, T.J., 2010. Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions. Geochim. Cosmochim. Acta 74, 1350-1362.
Mortimer, C.H., 1971. Chemical exchanges between sediments and water in the Great Lakes-speculations on probable regulatory mechanisms. Limnol. Oceanogr. 16, 387-404.
Mozley, P.S., 1989. Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology 17, 704-706.
Mullet, M., Boursiquot, S., Abdelmoula, M., Genin, J.-M., Ehrhardt, J.-J., 2002. Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron. Geochim. Cosmochim. Acta 66, 829-836.
Murnane, R., Clague, D.A., 1983. Nontronite from a low-temperature hydrothermal system on the Juan de Fuca Ridge. Earth Planet. Sci. Lett. 65, 343-352.
Murray, J.W., Grundmanis, V., Smethie, W.M., 1978. Interstitial water chemistry in the sediments of Saanich Inlet. Geochim. Cosmochim. Acta 42, 1011-1026.
Muxworthy, A.R., Williams, W., Roberts, A.P., Winklhofer, M., Chang, L., Posfai, M., 2013. Critical single domain grain sizes in chains of interacting greigite particles: Implications for magnetosome crystals. Geochem. Geophys. Geosyst. 14, 5430-5441.
Muza, J.P., Wise Jr, S.W., 1983. An authigenic gypsum, pyrite, and glauconite association in a Miocene deep sea biogenic ooze from the Falkland Plateau, Southwest Atlantic Ocean, In: Blakeslee, J.H., Lee, M. (Eds.), Init. Rep. DSDP, pp. 361-375.
Naehr, T.H., Rodriguez, N.M., Bohrmann, G., Paull, C.K., Botz, R., 2000. Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diapir, In: Paull, C.K., Matsumoto, R., Wallace, P.J., Dillon, W.P. (Eds.), Proc. ODP, Sci. Results, vol. 164. ODP, College Station, TX, pp. 285-300.
Nakano, S., 1992. Manganoan vivianite in the bottom sediments of Lake Biwa, Japan. Miner. J. 16, 96-107.
Nembrini, G.P., Capobianco, J.A., Viel, M., Williams, A.F., 1983. A Mossbauer and chemical study of the formation of vivianite in sediments of Lago Maggiore (Italy). Geochim. Cosmochim. Acta 47, 1459-1464.
Neretin, L.N., Bottcher, M.E., Jorgensen, B.B., Volkov, I.I., Luschen, H., Hilgenfeldt, K., 2004. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea. Geochim. Cosmochim. Acta 68, 2081-2093.
Novosel, I., Spence, G.D., Hyndman, R.D., 2005. Reduced magnetization produced by increased methane flux at a gas hydrate vent. Mar. Geol. 216, 265-274.
Nriagu, J.O., 1972. Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O. Geochim. Cosmochim. Acta 36, 459-470.
Nriagu, J.O., Dell, C.I., 1974. Diagenetic formation of iron phosphates in recent lake sediments. Am. Mineral. 59, 934-946.
Odin, G.S., 1988. Green marine clays. Elsevier, New York.
Odin, G.S., Fullagar, P.D., 1988. Geological significance of the glaucony facies, In: Odin, G.S. (Ed.), Green marine clays. Elsevier, New York, pp. 295-332.
Odin, G.S., Matter, A., 1981. De glauconiarum origine. Sedimentology 28, 611-641.
Ohfuji, H., 2004. Framboids. University of Wales, Cardiff, U.K., p. 246.
Ohfuji, H., Rickard, D., 2005. Experimental syntheses of framboids—a review. Earth-Sci. Rev. 71, 147-170.
Ohfuji, H., Rickard, D., 2006. High resolution transmission electron microscopic study of synthetic nanocrystalline mackinawite. Earth Planet. Sci. Lett. 241, 227-233.
Ostwald, J., England, B.M., 1979. The relationship between euhedral and framboidal pyrite in base-metal sulphide ores. Mineral. Mag. 43, 297-300.
Posfai, M., Buseck, P.R., Bazylinski, D.A., Frankel, R.B., 1998a. Iron sulfides from magnetotactic bacteria: structure, composition, and phase transitions. Am. Mineral. 83, 1469-1481.
Posfai, M., Buseck, P.R., Bazylinski, D.A., Frankel, R.B., 1998b. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science 280, 880-883.
Paktunc, A.D., Dave, N.K., 2002. Formation of secondary pyrite and carbonate minerals in the Lower Williams Lake tailings basin, Elliot Lake, Ontario, Canada. Am. Mineral. 87, 593-602.
Palache, C., Berman, H., Frondel, C., Dana, E.S., 1951. The system of mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University, 1837–1892, Volume II, halides, nitrates, borates, carbonates, sulfates, phosphates, arsenates, tungstates, molybdates, ect., 7 ed. John Wiley and Sons, New York.
Passier, H.F., Middelburg, J.J., de Lange, G.J., Bottcher, M.E., 1997. Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel. Geology 25, 519-522.
Passier, H.F., Middelburg, J.J., de Lange, G.J., Bottcher, M.E., 1999. Modes of sapropel formation in the eastern Mediterranean: some constraints based on pyrite properties. Mar. Geol. 153, 199-219.
Passier, H.F., Middelburg, J.J., van Os, B.J.H., de Lange, G.J., 1996. Diagenetic pyritisation under eastern Mediterranean sapropels caused by downward sulphide diffusion. Geochim. Cosmochim. Acta 60, 751-763.
Patrick, W.H., Khalid, R.A., 1974. Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186, 53-55.
Paull, C.K., Ussler, W., Dillon, W.P., 1991. Is the extent of glaciation limited by marine gas?hydrates? Geophys. Res. Lett. 18, 432-434.
Paytan, A., Griffith, E.M., 2007. Marine barite: Recorder of variations in ocean export productivity. Deep Sea Res. Pt. II 54, 687-705.
Paytan, A., McLaughlin, K., 2007. The oceanic phosphorus cycle. Chem. Rev. 107, 563-576.
Peckmann, J., Reimer, A., Luth, U., Luth, C., Hansen, B.T., Heinicke, C., Hoefs, J., Reitner, J., 2001. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar. Geol. 177, 129-150.
Peketi, A., Joshi, R., Patil, D., Srinivas, P., Dayal, A., 2012. Tracing the Paleo sulfate?methane transition zones and H2S seepage events in marine sediments: An application of C?S?Mo systematics. Geochem. Geophys. Geosyst. 13, doi:10.1029/2012GC004288.
Pierre, C., Bayon, G., Blanc-Valleron, M.-M., Mascle, J., Dupre, S., 2014. Authigenic carbonates related to active seepage of methane-rich hot brines at the Cheops mud volcano, Menes caldera (Nile deep-sea fan, eastern Mediterranean Sea). Geo-Mar. Lett. 34, 253-267.
Pierre, C., Blanc-Valleron, M.-M., Demange, J., Boudouma, O., Foucher, J.-P., Pape, T., Himmler, T., Fekete, N., Spiess, V., 2012. Authigenic carbonates from active methane seeps offshore southwest Africa. Geo-Mar. Lett. 32, 501-513.
Piriou, B., Poullen, J.F., 1984. Raman-study of vivianite. J. Raman Spectrosc. 15, 343-346.
Pirlet, H., Wehrmann, L.M., Brunner, B., Frank, N., Dewanckele, J., Van Rooij, D., Foubert, A., Swennen, R., Naudts, L., Boone, M., Cnudde, V., Henriet, J.-P., 2010. Diagenetic formation of gypsum and dolomite in a cold?water coral mound in the Porcupine Seabight, off Ireland. Sedimentology 57, 786-805.
Pirlet, H., Wehrmann, L.M., Foubert, A., Brunner, B., Blamart, D., De Mol, L., Van Rooij, D., Dewanckele, J., Cnudde, V., Swennen, R., Duyck, P., Henriet, J.-P., 2012. Unique authigenic mineral assemblages reveal different diagenetic histories in two neighbouring cold?water coral mounds on Pen Duick Escarpment, Gulf of Cadiz. Sedimentology 59, 578-604.
Pohlman, J.W., Riedel, M., Bauer, J.E., Canuel, E.A., Paull, C.K., Lapham, L., Grabowski, K.S., Coffin, R.B., Spence, G.D., 2013. Anaerobic methane oxidation in low-organic content methane seep sediments. Geochim. Cosmochim. Acta 108, 184-201.
Porreca, M., Mattei, M., Di Vincenzo, G., 2009. Post-deformational growth of late diagenetic greigite in lacustrine sediments from southern Italy. Geophys. Res. Lett. 36, L09307.
Postma, D., 1977. The occurrence and chemical composition of recent Fe-rich mixed carbonates in a river bog. J. Sediment. Res. 47, 1089-1098.
Postma, D., 1981. Formation of siderite and vivianite and the pore-water composition of a recent bog sediment in Denmark. Chem. Geol. 31, 225-244.
Postma, D., 1982. Pyrite and siderite formation in brackish and freshwater swamp sediments. Am. J. Sci. 282, 1151-1183.
Poulton, S.W., Krom, M.D., Raiswell, R., 2004. A revised scheme for the reactivity of iron (oxyhydr) oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 68, 3703-3715.
Pu, X., Zhong, S., Yu, W., Tao, X., 2007. Authigenic sulfide minerals and their sulfur isotopes in sediments of the northern continental slope of the South China Sea and their implications for methane flux and gas hydrate formation. Chinese Sci. Bull. 52, 401-407.
Pye, K., 1981. Marshrock formed by iron sulphide and siderite cementation in saltmarsh sediments. Nature 294, 650-652.
Pye, K., 1984. SEM analysis of siderite cements in intertidal marsh sediments, Norfolk, England. Mar. Geol. 56, 1-12.
Romer, M., Sahling, H., Pape, T., Ferreira, C.d.S., Wenzhofer, F., Boetius, A., Bohrmann, G., 2014. Methane fluxes and carbonate deposits at a cold seep area of the Central Nile Deep Sea Fan, Eastern Mediterranean Sea. Mar. Geol. 347, 27-42.
Raiswell, R., 1982. Pyrite texture, isotopic composition and the availability of iron. Am. J. Sci. 282, 1244-1263.
Raiswell, R., Canfield, D.E., 1996. Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments. Geochim. Cosmochim. Acta 60, 2777-2787.
Raiswell, R., Canfield, D.E., 1998. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219-245.
Raiswell, R., Canfield, D.E., Berner, R.A., 1994. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chem. Geol. 111, 101-110.
Rajan, S., Mackenzie, F.T., Glenn, C.R., 1996. A thermodynamic model for water column precipitation of siderite in the Plio-Pleistocene Black Sea. Am. J. Sci. 296, 506-548.
Rao, V.P., Rao, C.M., Mascarenhas, A., Rao, K.M., Reddy, N.P.C., Das, H.C., 1992. Changing sedimentary environments during Pleistocene-Holocene in a core from the eastern continental-margin of India. J. Geol. Soc. India 40, 59-69.
Reeburgh, W.S., 2007. Oceanic methane biogeochemistry. Chem. Rev. 107, 486-513.
Reed, D.C., Slomp, C.P., Gustafsson, B.G., 2011. Sedimentary phosphorus dynamics and the evolution of bottom-water hypoxia: A coupled benthic-pelagic model of a coastal system. Limnol. Oceanogr. 56, 1075-1092.
Reed, D.L., Lundberg, N., Liu, C.-S., Kuo, B.-Y., 1992. Structural relations along the margins of the offshore Taiwan accrentionary wedge: implications for accretion and crustal kinematics. Acta Geol. Taiwan. 30, 105-122.
Reinholdsson, M., Snowball, I., Zillen, L., Lenz, C., Conley, D.J., 2013. Magnetic enhancement of Baltic Sea sapropels by greigite magnetofossils. Earth Planet. Sci. Lett. 366, 137-150.
Richard, M., Maury, R.C., Bellon, H., Stephan, J.F., Boirat, J.M., Calderon, A., 1986. Geology of Mt. Iraya volcano and Batan island, northern Philippines. Philippines Bulletin of Volcanology 3, 1-27.
Rickard, D., 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation. Geochim. Cosmochim. Acta 61, 115-134.
Rickard, D., Butler, I.B., Oldroyd, A., 2001. A novel iron sulphide mineral switch and its implications for Earth and planetary science. Earth Planet. Sci. Lett. 189, 85-91.
Rickard, D., Luther, G.W., 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism. Geochim. Cosmochim. Acta 61, 135-147.
Rickard, D., Luther, G.W., 2007. Chemistry of iron sulfides. Chem. Rev. 107, 514-562.
Rickard, D., Morse, J.W., 2005. Acid volatile sulfide (AVS). Mar. Chem. 97, 141-197.
Rickard, D., Schoonen, M.A.A., Luther, G.W., 1995. Chemistry of iron sulfides in sedimentary environments, In: Vairavamurthy, M.A., Schoonen, M.A.A. (Eds.), Geochemical Transformations of Sedimentary Sulfur. ACS Publications, Washington, D.C., pp. 168-193.
Rickard, D.T., 1970. The origin of framboids. Lithos 3, 269-293.
Rickard, D.T., 1975. Kinetics and mechanism of pyrite formation at low temperatures. Am. J. Sci. 275, 636-652.
Riedinger, N., Kasten, S., Groger, J., Franke, C., Pfeifer, K., 2006. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth Planet. Sci. Lett. 241, 876-887.
Roberts, A.P., Chang, L., Rowan, C.J., Horng, C.S., Florindo, F., 2011. Magnetic properties of sedimentary greigite (Fe3S4): An update. Rev. Geophys. 49, RG1002.
Roberts, A.P., Weaver, R., 2005. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth Planet. Sci. Lett. 231, 263-277.
Roberts, H.H., Feng, D., Joye, S.B., 2010. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico. Deep Sea Res. Pt. II 57, 2040-2054.
Robertson, B.T., 1982. Occurrence of epigenetic phosphate minerals in a phosphatic iron-formation, Yukon Territory. Can. Mineral. 20, 177-187.
Rodgers, K.A., 1987. Baricite, a further occurrence. Neues Jb. Miner. Mh. 1987, 183-192.
Rodgers, K.A., Kobe, H.W., Childs, C.W., 1993. Characterization of vivianite from Catavi, Llallagua Bolivia. Mineral. Petrol. 47, 193-208.
Rodriguez, N.M., Paull, C.K., Borowski, W.S., 2000. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge: offshore southeastern North America, Proc. ODP Sci. Results, pp. 301-312.
Rowan, C.J., Roberts, A.P., 2005. Tectonic and geochronological implications of variably timed magnetizations carried by authigenic greigite in marine sediments from New Zealand. Geology 33, 553-556.
Rowan, C.J., Roberts, A.P., 2006. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet. Sci. Lett. 241, 119-137.
Rowan, C.J., Roberts, A.P., Broadbent, T., 2009. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth Planet. Sci. Lett. 277, 223-235.
Roychoudhury, A.N., Kostka, J.E., Van Cappellen, P., 2003. Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuar. Coast. Shelf Sci. 57, 1183-1193.
Ruttenberg, K.C., 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 37, 1460-1482.
Ruttenberg, K.C., Berner, R.A., 1993. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmochim. Acta 57, 991-1007.
Ruttenberg, K.C., Goni, M.A., 1997. Depth trends in phosphorus distribution and C:N:P ratios of organic matter in Amazon fan sediments: indices of organic matter source and burial history, In: Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. (Eds.), Proc. ODP, Sci. Results, vol. 155. ODP, College Station, TX, pp. 505-517.
Sagnotti, L., Cascella, A., Ciaranfi, N., Macri, P., Maiorano, P., Marino, M., Taddeucci, J., 2010. Rock magnetism and palaeomagnetism of the Montalbano Jonico section (Italy): Evidence for late diagenetic growth of greigite and implications for magnetostratigraphy. Geophys. J. Int. 180, 1049-1066.
Sagnotti, L., Roberts, A.P., Weaver, R., Verosub, K.L., Florindo, F., Pike, C.R., Clayton, T., Wilson, G.S., 2005. Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite. Geophys. J. Int. 160, 89-100.
Sapota, T., Aldahan, A., Al-Aasm, I.S., 2006. Sedimentary facies and climate control on formation of vivianite and siderite microconcretions in sediments of Lake Baikal, Siberia. J. Paleolimn. 36, 245-257.
Schallreuter, R., 1984. Framboidal pyrite in deep-sea sediments, In: Hay, W.W., Sibuet, J.-C., Barron, E.J., Brassell, S., Dean, W.E., Hue, A.Y., Keating, B.H., McNulty, C.L., Meyers, P.A., Nohara, M., Schallreuter, R.E., Steinmetz, J.C., Stow, D., Stradner, H. (Eds.), Initial Reports of the DSDP, vol. 75. US Government Printing Office, pp. 875–891.
Scheidegger, K.F., Stakes, D.S., 1977. Mineralogy, chemistry and crystallization sequence of clay minerals in altered tholeiitic basalts from the Peru Trench. Earth Planet. Sci. Lett. 36, 413-422.
Schenau, S.J., De Lange, G.J., 2000. A novel chemical method to quantify fish debris in marine sediments. Limnol. Oceanogr. 45, 963-971.
Schiffman, P., 1998. Mineralogical investigation of an enterolith from a Grant's zebra. Environ. Geochem. Health 20, 103-112.
Schnurle, P., Liu, C.-S., Lin, A.T., Lin, S., 2011. Structural controls on the formation of BSR over a diapiric anticline from a dense MCS survey offshore southwestern Taiwan. Mar. Pet. Geol. 28, 1932-1942.
Schoonen, M.A.A., Barnes, H.L., 1991. Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C. Geochim. Cosmochim. Acta 55, 1505-1514.
Schultz, D.G., 2002. An introduction to soil mineralogy, In: Amonette, J.E., Bleam, W.F., Schultz, D.G., Dixon, J.B. (Eds.), Soil mineralogy with environmental applications. Soil Science Society of America, Inc., Madison, Wisconsin, USA, pp. 1-35.
Schulz, H.D., Dahmke, A., Schinzel, U., Wallmann, K., Zabel, M., 1994. Early diagenetic processes, fluxes, and reaction rates in sediments of the South Atlantic. Geochim. Cosmochim. Acta 58, 2041-2060.
Setti, M., Marinoni, L., Lopez-Galindo, A., 2001. Crystal-chemistry of smectites in sediments of CRP-3 drillcore (Victoria Land Basin, Antarctica): preliminary results. Terra Antartica 8, 543-550.
Setti, M., Marinoni, L., Lopez-Galindo, A., 2004. Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica. Clay Miner. 39, 405–421.
Setti, M., Marinoni, L., Lopez-Galindo, A., Delgado-Hubertas, A., 2000. Compositional and morphological features of the smectites of the sediments of CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antartica 7, 581-587.
Severmann, S., Mills, R.A., Palmer, M.R., Fallick, A.E., 2004. The origin of clay minerals in active and relict hydrothermal deposits. Geochim. Cosmochim. Acta 68, 73-88.
Seyfried, W.E., Shanks, W.C., Dibble, W.E., 1978. Clay mineral formation in DSDP Leg 34 basalt. Earth Planet. Sci. Lett. 41, 265-276.
Shau, Y.-H., Peacor, D.R., 1992. Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83—a TEM and AEM study. Contrib. Mineral. Petrol. 112, 119-133.
Siesser, W.G., Rogers, J., 1976. Authigenic pyrite and gypsum in South West African continental slope sediments. Sedimentology 23, 567-577.
Singer, A., Stoffers, P., 1987. Mineralogy of a hydrothermal sequence in a core from the Atlantis II Deep, Red Sea. Clay Miner. 22, 251-267.
Singer, A., Stoffers, P., Heller-Kallai, L., Szafranek, D., 1984. Nontronite in a deep-sea core from the South Pacific. Clays & Clay Miner. 32, 375-383.
Skinner, B.J., Erd, R.C., Grimaldi, F.S., 1964. Greigite, the thio-spinel of iron; a new mineral. Am. Mineral. 49, 543-555.
Slomp, C.P., Epping, E.H.G., Helder, W., Van Raaphorst, W., 1996. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. J. Mar. Res. 54, 1179-1205.
Slomp, C.P., Mort, H.P., Jilbert, T., Reed, D.C., Gustafsson, B.G., Wolthers, M., 2013. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane, PloS ONE, e62386. doi:62310.61371/journal.pone.0062386.
Snyder, G., Hiruta, A., Matsumoto, R., Dickens, G., Tomaru, H., Takeuchi, R., Komatsubara, J., Ishida, Y., Yu, H., 2007a. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea. Deep Sea Res. Pt. II 54, 1216-1239.
Snyder, G.T., Dickens, G.R., Castellini, D.G., 2007b. Labile barite contents and dissolved barium concentrations on Blake Ridge: new perspectives on barium cycling above gas hydrate systems. J. Geochem. Explor. 95, 48-65.
Stamatakis, M.G., Koukouzas, N.K., 2001. The occurrence of phosphate minerals in lacustrine clayey diatomite deposits, Thessaly, Central Greece. Sed. Geol. 139, 33-47.
Stoffers, P., Lallier-Verges, E., Pluger, W., Schmitz, W., Bonnot-Courtois, C., Hoffert, M., 1985a. A fossil hydrothermal deposit in the South Pacific. Mar. Geol. 62, 133-151.
Stoffers, P., Schmitz, W., Glasby, G.P., Pluger, W.L., Walter, P., 1985b. Mineralogy and geochemistry of sediments in the Southwestern Pacific Basin: Tahiti–East Pacific Rise–New Zealand. N. Z. J. Geol. Geophys. 28, 513–530.
Stoffers, P., Singer, A., McMurtry, G., Arquit, A., Yeh, H.W., 1990. Geochemistry of a hydrothermal nontronite deposit from the Lau Basin, Southwest Pacific. Geol. Jb. D 92, 615-628.
Sturman, B.D., Mandarino, J.A., 1976. Baricite, the magnesium analogue of vivianite, from Yukon territory, Canada. Can. Mineral. 14, 403-406.
Suits, N.S., Wilkin, R.T., 1998. Pyrite formation in the water column and sediments of a meromictic lake. Geology 26, 1099-1102.
Sweeney, R.E., Kaplan, I.R., 1973. Pyrite framboid formation; laboratory synthesis and marine sediments. Econ. Geol. 68, 618-634.
Szczepanik, P., Sawlowicz, Z., 2010. Fe–S mineralization in the Jurassic biogenic remains (Cz?stochowa, Poland). Chemie der Erde-Geochemistry 70, 77-87.
Taitel-Goldman, N., Singer, A., 2001. High-resolution transmission electron microscopy study of newly formed sediments in the Atlantis II Deep, Red Sea. Clays & Clay Miner. 49, 174–182.
Taitel-Goldman, N., Singer, A., 2002. Metastable Si-Fe phases in hydrothermal sediments of Atlantis II Deep, Red Sea. Clay Miner. 37, 235–248.
Takagi, S., Mathew, M., Brown, W.E., 1986. Crystal structures of bobierrite and synthetic Mg3(PO4)2.8H2O. Am. Mineral. 71, 1229-1233.
Talukder, A.R., 2012. Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova 24, 255-272.
Tamburini, F., Adatte, T., Follmi, K.B., 2003. Origin and nature of green clay layers, ODP Leg 184, South China Sea, Proc. ODP Sci. Results, doi:10.2973/odp.proc.sr.2184.2206.2003.
Tang, Y., Chen, Q.-W., Xiong, Y., Li, Y., 2007. Magnetic field-induced increase in conversion rate of Fe3S4 to FeS2. Chinese Journal of Inorganic Chemistry 23, 941-947.
Taylor, G.R., 1983. A mechanism for framboid formation—The role of bacteria. A reply to Dr. SI Kalogeropoulos and a further contribution. Miner. Deposita, 18, 129-130.
Taylor, K.G., Boult, S., 2007. The role of grain dissolution and diagenetic mineral precipitation in the cycling of metals and phosphorus: A study of a contaminated urban freshwater sediment. Appl. Geochem. 22, 1344-1358.
Taylor, K.G., Hudson-Edwards, K.A., Bennett, A.J., Vishnyakov, V., 2008. Early diagenetic vivianite [Fe3(PO4)2?8H2O] in a contaminated freshwater sediment and insights into zinc uptake: A mu-EXAFS, mu-XANES and Raman study. Appl. Geochem. 23, 1623-1633.
Taylor, K.G., Macquaker, J.H.S., 2000. Early diagenetic pyrite morphology in a mudstone-dominated succession: the Lower Jurassic Cleveland Ironstone Formation, eastern England. Sed. Geol. 131, 77-86.
Thamdrup, B., Canfield, D.E., 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol. Oceanogr. 41, 1629-1650.
Tong, H., Feng, D., Cheng, H., Yang, S., Wang, H., Min, A.G., Edwards, R.L., Chen, Z., Chen, D., 2013. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: new insights into fluid sources and geochronology. Mar. Pet. Geol. 43, 260-271.
Torres, M.E., Brumsack, H.J., Bohrmann, G., Emeis, K.C., 1996. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chem. Geol. 127, 125-139.
Treude, T., Niggemann, J., Kallmeyer, J., Wintersteller, P., Schubert, C.J., Boetius, A., Jorgensen, B.B., 2005. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim. Cosmochim. Acta 69, 2767-2779.
Tryon, M.D., Brown, K.M., Torres, M.E., 2002. Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II: Hydrological processes. Earth Planet. Sci. Lett. 201, 541-557.
Uda, M., 1965. On the synthesis of greigite Am. Mineral. 50, 1487-1489.
van Dongen, B.E., Roberts, A.P., Schouten, S., Jiang, W.-T., Florindo, F., Pancost, R.D., 2007. Formation of iron sulfide nodules during anaerobic oxidation of methane. Geochim. Cosmochim. Acta 71, 5155-5167.
Vanneste, H., James, R.H., Kelly-Gerreyn, B.A., Mills, R.A., 2013. Authigenic barite records of methane seepage at the Carlos Ribeiro mud volcano (Gulf of Cadiz). Chem. Geol. 354, 42-54.
Vanneste, H., Kastner, M., James, R.H., Connelly, D.P., Fisher, R.E., Kelly-Gerreyn, B.A., Heeschen, K., Haeckel, M., Mills, R.A., 2012. Authigenic carbonates from the Darwin Mud Volcano, Gulf of Cadiz: A record of palaeo-seepage of hydrocarbon bearing fluids. Chem. Geol. 300, 24-39.
Vaughan, D.J., Tossell, J.A., 1981. Electronic structure of thiospinel minerals: results from MO calculations. Am. Mineral. 66, 1250-1253.
Virtasalo, J.J., Lowemark, L., Papunen, H., Kotilainen, A.T., Whitehouse, M.J., 2010. Pyritic and baritic burrows and microbial filaments in postglacial lacustrine clays in the northern Baltic Sea. J. Geol. Soc. London 167, 1185-1198.
Wachtershauser, G., 1988. Pyrite formation, the first energy source for life: a hypothesis. Syst. Appl. Microbiol. 10, 207-210.
Wachtershauser, G., 1993. The cradle chemistry of life: on the origin of natural-products in a pyrite-pulled chemo-autotrophic origin of life. Pure Appl. Chem. 65, 1343-1348.
Wada, H., 1977. The synthesis of greigite from a polysulfide solution at about 100°C. Bull. Chem. Soc. Jpn. 50, 2615-2617.
Walpersdorf, E., Koch, C.B., Heiberg, L., O'connell, D.W., Kjargaard, C., Hansen, H.C., 2013. Does vivianite control phosphate solubility in anoxic meadow soils? Geoderma 193, 189-199.
Wang, J., Chen, Q., Wei, Q., Wang, X., Li, Q., Gao, Y., 2008. Authigenic pyrites and their stable sulfur isotopes in sediments from IODP 311 on Cascadia margin, northeastern Pacific. Proceedings of the 6th International Conference on Gas Hydrates(ICGH 2008).
Wang, J., Suess, E., Rickert, D., 2004. Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern North Pacific. Science in China (Series D): Earth Sciences 47, 280–288.
Wang, L., Shi, X., Jiang, G., 2012. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Paleogeogr. Paleoclimatol. Paleoecol. 333, 218-227.
Wang, P., Huang, Y., Wang, C., Feng, Z., Huang, Q., 2013. Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Paleogeogr. Paleoclimatol. Paleoecol. 385, 125-136.
Wang, Q., Morse, J.W., 1996. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology. Mar. Chem. 52, 99-121.
Wei, H., Chen, D., Wang, J., Yu, H., Tucker, M.E., 2012. Organic accumulation in the lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies. Paleogeogr. Paleoclimatol. Paleoecol. 353-355, 73-86.
Westrich, J.T., Berner, R.A., 1984. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol. Oceanogr. 29, 236-249.
Whittig, L.D., Allardice, W.R., 1986. X-ray diffraction techniques, In: Klute, A. (Ed.), Methods of soil analysis, Part 1. Physical and mineralogical methods, 2nd ed. American Society of Agronomy, Inc., Madison, pp. 331-362.
Wiewiora, A., Giresse, P., Petit, S., Wilamowski, A., 2001. A deep-water glauconitization process on the Ivory Coast-Ghana Marginal Ridge (ODP Site 959): determination of Fe3+-rich montmorillonite in green grain. Clays & Clay Miner. 49, 540-558.
Wignall, P.B., Newton, R., 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Am. J. Sci. 298, 537-552.
Wignall, P.B., Newton, R., 2001. Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France. Sed. Geol. 144, 335-356.
Wilkin, R.T., Arthur, M.A., 2001. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition. Geochim. Cosmochim. Acta 65, 1399-1416.
Wilkin, R.T., Arthur, M.A., Dean, W.E., 1997. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth Planet. Sci. Lett. 148, 517-525.
Wilkin, R.T., Barnes, H.L., 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim. Cosmochim. Acta 60, 4167-4179.
Wilkin, R.T., Barnes, H.L., 1997a. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 61, 323-339.
Wilkin, R.T., Barnes, H.L., 1997b. Pyrite formation in an anoxic estuarine basin. Am. J. Sci. 297, 620-650.
Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. Cosmochim. Acta 60, 3897-3912.
Windom, H.L., 1976. Lithogenous material in marine sediments, In: Riley, J.P., Chester, R. (Eds.), Chemical Oceanography. Academic Press, London, pp. 103-135.
Wolters, F., Lagaly, G., Kahr, G., Nueeshch, R., Emmerich, K., 2009. A Comprehensive Characterization of Dioctahedral Smectites. Clays & Clay Miner. 57, 115-133.
Wolthers, M., Butler, I.B., Rickard, D., 2007. Influence of arsenic on iron sulfide transformations. Chem. Geol. 236, 217-227.
Wolthers, M., Van der Gaast, S.J., Rickard, D., 2003. The structure of disordered mackinawite. Am. Mineral. 88, 2007-2015.
Wong, V.N.L., Johnston, S.G., Burton, E.D., Bush, R.T., Sullivan, L.A., Slavich, P.G., 2013. Seawater-induced mobilization of trace metals from mackinawite-rich estuarine sediments. Water Research 47, 821-832.
Wu, D., Wu, N., Ye, Y., Zhang, M., Liu, L., Guan, H., Cong, X., 2011. Early Diagenesis Records and Pore Water Composition of Methane-Seep Sediments from the Southeast Hainan Basin, South China Sea. J. Geo. Res. 2011, doi:10.1155/2011/592703.
Xavier, A., Klemm, D.D., 1979. Authigenie gypsum in deep?sea manganese nodules. Sedimentology 26, 307-310.
Xie, L., Wang, J., Wu, N., Wu, D., Wang, Z., Zhu, X., Hu, J., Chen, H., Lin, Q., 2013. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea: Implications for a possible mud volcano environment. Science China (Series D): Earth Sciences 56, 541–548.
Yamaguchi, S., Wada, H., 1972. Aging of colloidal iron sulfide. J. Colloid Interface Sci. 40, 477-478.
Zeng, Z., Chen, S., Wang, X., Ouyang, H., Yin, X., Li, Z., 2012a. Mineralogical and micromorphological characteristics of Si-Fe-Mn oxyhydroxides from the PACMANUS hydrothermal field, Eastern Manus Basin. Science China (Series D): Earth Sciences 55, 2039–2048.
Zeng, Z., Ouyang, H., Yin, X., Chen, S., Wang, X., Wu, L., 2012b. Formation of Fe–Si–Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: Mineralogical and geochemical evidence. J. Asian Earth Sci. 60, 130-146.
Zhou, W., Peacor, D.R., Alt, J.C., Van der Voo, R., Kao, L.-S., 2001. TEM study of the alteration of interstitial glass in MORB by inorganic processes. Chem. Geol. 174, 365-376.
王煒誠,2011。臺灣西南海域沉積物之自生重晶石富集與甲烷移棲之關係。國立臺灣大學海洋研究所碩士論文,台北市,74頁。
江威德,2005。臺灣西南海域天然氣水合物賦存區地質調查研究─海域地質調查與地球化學探勘(2/4):沉積物之黏土礦物分析。經濟部中央地質調查所報告 第94-26-C號,192頁。
江威德,2006。臺灣西南海域天然氣水合物賦存區地質調查研究─海域地質調查與地球化學探勘(3/4):沉積物之黏土礦物分析。經濟部中央地質調查所報告 第95-26-C號,134頁。
江威德,2007。臺灣西南海域天然氣水合物賦存區地質調查研究─海域地質調查與地球化學探勘(4/4):沉積物之黏土礦物分析。經濟部中央地質調查所報告 第96-27-C號,169頁。
江威德,2008。臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(1/4):臺灣西南海域天然氣水合物探勘熱區之黏土礦物與自生礦物研究。經濟部中央地質調查所報告 第97-29-E號,197頁。
江威德,2009。臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(2/4):臺灣西南海域天然氣水合物探勘熱區之黏土礦物與自生礦物研究。經濟部中央地質調查所報告 第98-27-E號,71頁。
江威德,2010。臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(3/4):臺灣西南海域天然氣水合物探勘熱區之黏土礦物與自生礦物研究。經濟部中央地質調查所報告 第99-26-D號,93頁。
江威德,2011。臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(4/4):臺灣西南海域天然氣水合物探勘熱區之黏土礦物與自生礦物研究。經濟部中央地質調查所報告 第100-25-D號,102頁。
林曉武,2004。臺灣西南海域天然氣水合物賦存區地質調查研究─海域地質調查與地球化學探勘(1/4):硫酸鹽還原在天然氣水合物賦存區之應用與調查及活塞岩心標本採集系統之研究及製作。經濟部中央地質調查所報告 第93-25-E號,58頁。
林曉武,2005。臺灣西南海域天然氣水合物賦存區地質調查研究─海域地質調查與地球化學探勘(2/4):硫酸鹽還原在天然氣水合物賦存區之應用與調查。經濟部中央地質調查所報告 第94-26-E號,86頁。
林曉武,2006。臺灣西南海域天然氣水合物賦存區地質調查研究─海域地質調查與地球化學探勘(3/4):硫酸鹽還原在天然氣水合物賦存區之應用與調查。經濟部中央地質調查所報告 第95-26-E號,70頁。
林曉武,2007。臺灣西南海域天然氣水合物賦存區地質調查研究─海域地質調查與地球化學探勘(4/4):硫酸鹽還原在天然氣水合物賦存區之應用與調查。經濟部中央地質調查所報告 第96-27-E號,94頁。
林曉武,2010。臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(3/4):臺灣西南海域自生性碳酸鹽及硫物種之變化與天然氣水合物賦存之關係。經濟部中央地質調查所報告 第99-26-C號,87頁。
林曉武,楊燦堯,賴美津,陳天任,江威德,洪崇勝,陳汝勤,2011。臺灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究(4/4)總論。經濟部中央地質調查所報告 第100-26號,130頁。
洪崇勝,2005。臺灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(2/4):臺灣西南海域沈積物之磁學性質。經濟部中央地質調查所報告 第94-26-G號,35頁。
胡靜宜,2012。臺灣西南海域天然氣水合物潛藏區甲烷通量與流體來源探討。國立臺灣大學地質科學研究所碩士論文,台北市,80頁。
孫嘉璘,2009。深海沉積物自生礦物群甲烷衍生成因之礦物學研究。行政院國家科學委員會補助大專學生參與專題研究計畫研究成果報告,90頁。
徐達偉、江威德,2014。臺灣西南海域永安海脊冷泉址沉積物之反差性黃鐵礦組織。臺灣?業 已接受。
徐達偉、江威德、黃克峻、陳朝煒、李柏澍,2014。臺灣西南海域永安海脊甲烷冷泉沉積物中之自生硫複鐵礦。臺灣?業 已接受。
翁子偉、羅聖宗、黃瑞賢、李建鋒,2013。南海天然氣水合物分布與資源量概況。?冶 第57卷,第56-70頁。
陳汝勤,2007。臺灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(4/4)總論。經濟部中央地質調查所報告 第96-27總號,127頁。
陳松春、許樹坤、王詠絢、蔡慶輝,2012。臺灣西南海域高屏斜坡上活躍的泥火山群與可能的天然氣水合物賦存。?冶 第56卷,第73-88頁。
陳朝煒,2014。臺灣西南海域永安及好景海脊甲烷冷泉沉積物中自生性磁黃鐵礦之電子顯微研究。國立成功大學地球科學系碩士論文,台南市,120頁。
游鎮烽,2005。臺灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(2/4):沈積物間隙水之硼與氯同位素研究。經濟部中央地質調查所報告 第94-26-D 號,35頁。
楊燦堯,2004。臺灣西南海域天然氣水合物賦存區地質調查研究─海域地質調查與地球化學探勘(1/4):海床底水與沈積物間隙水之鹽度、氣體化學特性與其同位素組成。經濟部中央地質調查所報告 第93-25-F號,61頁。
楊燦堯,2006。臺灣西南海域天然氣水合物賦存區地質調查研究─海域地質調查與地球化學探勘(3/4):臺灣西南海域海水與沉積物之氣體化學組成。經濟部中央地質調查所報告 第95-26-F號 39頁。
楊燦堯,2007。臺灣西南海域天然氣水合物賦存區地質調查研究─海域地質調查與地球化學探勘(4/4):臺灣西南海域海水與沉積物之氣體化學組成。經濟部中央地質調查所報告 第96-27-F 號,71頁。
楊燦堯,2008。臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(1/4):臺灣西南海域海水與沉積物之氣體化學組成。經濟部中央地質調查所報告 第97-29A號, 57頁。
楊燦堯, 2009。臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(2/4):臺灣西南海域海水與沉積物之氣體化學組成。經濟部中央地質調查所報告 第98-27A號,54頁。
楊燦堯,2011。臺灣西南海域新興能源─天然氣水合物資源調查與評估:地球化學調查研究(4/4):臺灣西南海域海水與沉積物之氣體化學組成。經濟部中央地質調查所報告 第100-25-A號,88頁。
劉家瑄,2007。臺灣西南海域天然氣水合物賦存區地質調查研究-地球物理調查(4/4)總論。經濟部中央地質調查所報告 第96-26總號,176頁。
劉家瑄,2011。臺灣西南海域新興能源-天然氣水合物資源調查與評估:震測及地熱調查(4/4)總論。經濟部中央地質調查所報告 第100-24號,238頁。
劉家瑄,2013。天然氣水合物資源潛能調查: 震測、地熱及地球化學調查研究(2/4)總論。經濟部中央地質調查所報告 第102-19號,195頁。
駱守凡,2008。海洋次生重晶石在臺灣西南海域泥火山沉積物之分佈。國立成功大學地球科學系碩士論文,台南市,74頁。
羅健瑛,2006。臺灣西南海域岩心沉積物之礦物、化學與物理特性。國立臺灣大學海洋研究所碩士論文,台北市,126頁。
電子全文 電子全文(網際網路公開日期:20251231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔