跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅至良
研究生(外文):Jhih-LiangLuo
論文名稱:Y6WO12:Eu3+螢光粉體之共沉澱法製備及其發光特性之研究
論文名稱(外文):Preparation and luminescent properties of Y6WO12:Eu3+ phosphors by Co-precipitation method
指導教授:黃啟祥黃啟祥引用關係
指導教授(外文):Chii-Shyang Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:159
中文關鍵詞:螢光粉共沉澱法顆粒尺寸光致發光非對稱指數濃度淬滅衰減時間分散劑
外文關鍵詞:phosphorco-precipitationparticle sizedispersant
相關次數:
  • 被引用被引用:7
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本研究以製備具有微小尺寸及高發光性質之菱方晶Y6WO12:Eu3+螢光粉為目標,實驗是以共沉澱法製備前驅物粉末,以碳黑為分散劑,檢討煆燒溫度、煆燒氣氛及碳黑量對合成Y6WO12:Eu3+螢光粉體發光性質之影響。此等結果並與固相反應法者做比較。
以共沉澱法製備經1300 °C / 6 h空氣中煆燒可得單一菱方晶結構之Eu0.3Y5.7WO12螢光粉體,其顆粒大小為300 ~ 900 nm,以固相法經相同條件煆燒所製得粉體之顆粒大小為200 ~ 2000 nm,後者之粒徑較前者大,且粒徑分佈較廣。以共沉法製備經空氣中高溫與低溫煆燒所得Eu0.3Y5.7WO12螢光粉體分別為菱方晶與立方晶之晶體結構。其激發、光致發光圖譜有所不同,菱方晶結構者之激發、放射光強度較立方晶結構者強,且波長位置較立方晶結構者短。菱方晶結構EuxY6-xWO12 (x = 0.3 ~ 1.2)螢光粉體之Eu3+的摻雜量在低於x = 0.9時,其5D0→7F2躍遷峰值會隨Eu3+摻雜量之增加而增強;而摻雜量高於x = 0.9時,會導致濃度淬滅的發生,造成PL強度減弱,且所計算出之臨界能量轉移距離(RC)為11.2 Å。以共沉法製備的菱方晶結構與立方晶結構之Eu0.3Y5.7WO12螢光粉體,其非對稱指數分別為接近1與3 ~ 4之間,此顯示Eu3+離子在立方晶主體中所佔據之位置為較不具對稱性的,因此Eu0.3Y5.7WO12螢光粉的5D0→7F2放射強度高於5D0→7F1之放射強度。Eu0.3Y5.7WO12螢光粉體衰減時間為0.8 ~ 1.1 ms,菱方晶結構者之衰減時間較立方晶結構者短。
菱方晶結構與立方晶結構之Eu0.3Y5.7WO12螢光粉體,其CIE色度座標分別為( 0.62 , 0.38 )及( 0.64 , 0.36 ),立方晶結構者之色純度較接近標準紅光(x , y) standard。
為改善高溫煆燒時顆粒間之團聚現象,本研究以碳黑作為分散劑。空氣中,添加1 wt%碳黑經1300 °C / 6 h煆燒所合成菱方晶結構的Eu0.3Y5.7WO12螢光粉體,其發光強度比固相反應法合成者之強度增強28.5%。其粉體顆粒大小為300 ~ 900 nm,雖較固相反應法者小,但對於抑制顆粒長大並無明顯之效果。氬氣中,添加1 wt%碳黑時,經1300 °C / 6 h煆燒所合成菱方晶結構的Eu0.3Y5.7WO12螢光粉體,其粒徑為300 ~ 900 nm,而放射光強度較固相反應法者增強63.2 %;添加3 wt%時,可得最小顆粒之菱方晶結構的粉體,其粒徑為100 ~ 500 nm。此等顯示在共沉澱法製程中添加碳黑有助於抑制粉體顆粒之長大。
Y6WO12 shows two crystal structures, rhombohedral and cubic. The objective of this study is to prepare Y6WO12:Eu3+ phosphors with rhombohedral structure, small particle size and well photoluminescence (PL) properties. The precursors were prepared by co-precipitation (CP) method, and carbon black was selected as dispersant to restrain the agglomeration of particles during calcining. Effects of calcination temperature, atmosphere and carbon amounts on the luminescent porperties of phosphors were investigated. The results were also compared with those by solid-state reaction method (SSR). The Eu0.3Y5.7WO12 powders with a rhombohedral structure were obtained by CP method and calcined at 1300 °C for 6 h in air. It showed the particle sizes of 300 ~ 900 nm which were much smaller than that of SSR method (200 ~ 2000 nm). In order to restrain the agglomeration of particles due to calcination at high temperatures, carbon black was selected as dispersant. The rhombohedral structure of Eu0.3Y5.7WO12 phosphors prepared by precursor with 1 wt% carbon black calcined at 1300 °C for 6 h in air showed the highest PL emission intensity, which increased 28.5 % than that of SSR, and the particle sizes were 300 ~ 900 nm. However, calcination in air was not helpful to restrain the agglomeration of particles. In a reducing atmosphere (Ar), the rhombohedral structure of Eu0.3Y5.7WO12 phosphors prepared by precursor with 1 wt% carbon black calcined at 1300 °C for 6 h showed the highest PL emission intensity, which increased 63.2 % than that of SSR, and the particle size was 300 ~ 900 nm. When adding 3 wt% carbon black, the rhombohedral structure of Eu0.3Y5.7WO12 phosphors with a smaller particle size (100 ~ 500 nm) could be obtained. The results showed that the effect of carbon black might be beneficial to restrain the agglomeration of particles.
摘要 .....I
Extended Abstract .....III
誌謝 .....XIV
總目錄 .....XVIII
表目錄 .....XXIII
圖目錄 .....XXVI
第一章 緒論 .....1
1-1 前言 .....1
1-2 研究動機與目的 .....4
第二章 理論基礎與文獻回顧 .....8
2-1 發光機制簡介 .....8
2-1-1 發光定義 .....8
2-1-2 螢光體發光原理 .....10
2-1-3 電子-聲子之交互作用(electron-phonon interaction) .....11
2-1-4 組態座標圖(configuration coordination diagrams) .....13
2-1-5 史托克位移(Stokes shift) .....14
2-1-6 非輻射躍遷(non-radiative transition) .....15
2-1-7 能量轉移(energy transfer) .....15
2-1-7-1 能量遷徙(energy migration) .....16
2-1-7-2 交叉緩解(cross-relaxation) .....16
2-1-7-3 激發態吸收(excitation state absorption) .....16
2-1-7-4 補償效應(Offset effect) .....17
2-2 螢光材料簡介 .....17
2-3 螢光材料的組成與選擇 .....21
2-4 影響發光效率之因素 .....22
2-4-1 主體晶格(Host) .....22
2-4-2 濃度淬滅(Concentration quenching) .....23
2-4-3 熱淬滅(Thermal quenching) .....23
2-4-4 毒劑現象(poisoning) .....24
2-5 固態材料中的光致發光 .....24
2-5-1 本質型發光(intrinsic luminescence) .....24
2-5-2 外質型發光(extrinsic luminescence) .....25
2-5-2-1 非侷限型(unlocalized type)發光材料 .....26
2-5-2-2 侷限型(localized type)發光材料 .....26
2-6 鑭系元素之性質 .....27
2-6-1 稀土離子之價數 .....28
2-6-2 稀土離子之f - f電子躍遷 .....28
2-6-3 稀土離子之f - d電子躍遷 .....29
2-7 色彩簡介 .....30
2-7-1 色溫(Color temperature) .....30
2-7-2 演色性指標(Color rendering index, CRI) .....30
2-7-3 色度座標圖(CIE chromaticity diagram ) .....31
2-8 光致發光衰減現象 .....32
2-9 粉體之合成方法 .....33
2-9-1 固相反應法(Solid-state reaction method) .....33
2-9-2 膠體共沉澱法(Co-precipitation method) .....34
2-9-3 溶膠-凝膠法(Sol-gel method) .....38
2-9-4 水熱合成法(Hydrothermal method) .....39
2-10 分散劑 .....40
2-11 Y6WO12晶體簡介 .....42
第三章 實驗方法與步驟 .....63
3-1 實驗原料 .....63
3-2 實驗流程 .....64
3-3 量測與分析方法 .....65
3-3-1 X光繞射分析(X-Ray Diffraction Analysis) .....65
3-3-2 熱重/熱差分析(TG/DTA)分析 .....65
3-3-3 掃描式電子顯微鏡(SEM)分析 .....65
3-3-4 光致發光光譜(Photoluminescence spectrum)分析 .....66
3-3-5 衰減時間(Decay time)與衰減曲線(Decay curve)分析 .....66
3-3-6 色度座標分析(Analysis of CIE Chromaticity Diagram) .....66
第四章 結果與討論 .....72
4-1 主體晶格Y6WO12 .....72
4-1-1 熱重熱差(TG/DTA)分析 .....72
4-1-2 結晶相分析 .....74
4-1-3 表面形態及粒徑分析..... 75
4-1-4 結論 .....76
4-2 EuxY6-xWO12螢光粉體 .....84
4-2-1 熱重熱差(TG/DTA)分析 .....84
4-2-2 結晶相分析 .....86
4-2-3 表面形態及粒徑分析..... 87
4-2-4 激發、光致發光光譜分析 .....89
4-2-5 光致發光的衰減現象..... 93
4-2-6 臨界能量轉移距離(Critical energy transfer distance, RC) .....94
4-2-7 非對稱指數(5D0→7F2 / 5D0→7F1之PL強度比值) .....95
4-2-8 5D0→7F2躍遷的衰減曲線 .....95
4-2-9 色度座標圖 .....97
4-2-10 結論 .....98
4-3 分散劑碳黑對合成Eu0.3Y5.7WO12螢光粉體之影響 .....118
4-3-1 空氣中煆燒之影響 .....118
4-3-1-1 熱重熱差分析 .....118
4-3-1-2 結晶相分析 .....119
4-3-1-3 表面形態及粒徑分析 .....119
4-3-1-4 激發、光致發光光譜分析 .....120
4-3-2 氬氣中煆燒之影響 .....121
4-3-2-1 結晶相分析 .....122
4-3-2-2 表面形態及粒徑分析 .....123
4-3-2-3 激發、光致發光光譜分析 .....124
4-3-3 結論 .....127
第五章 總結 .....146
參考文獻 .....149
[1] 楊俊瑜,電子產業用螢光材料之應用調查,工業技術研究院:新竹,1992.
[2] 維基百科,發光二極體.
[3] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes : Recent advances in materials, techniques and properties, Mater. Sci. Eng. R, 71, 1-34, 2010.
[4] 許榮宗,白光LED製作技術,工業材料雜誌,220,2005.
[5] Lucychang,淺談白光LED發光顏色與螢光粉的關係,LEDinside-技術專欄,2007.
[6] W. M. Yen, S. Shionoya, H. Yamamoto, “Phosphor Handbook, second edition, CRC Press, 1000, 2006.
[7] 楊素華,“螢光粉在發光上的應用,科學發展,358,2002.
[8] 王書任、林仁鈞,讓LED發光的功臣--螢光粉,科學發展,435,2009.
[9] V. Sivakumar, U. V. Varadaraju, “Intense Red-Emitting Phosphors for White Light Emitting Diodes, J. Electrochem. Soc, 152, 168, 2005.
[10] O. A. Lopez, J. Mckittrick, L. E. Shea, “Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges, J. Lumin., 71, 1-11, 1997.
[11] H. Yamamoto, M. Mikami, Y. Shimomura, Y. Oguri, “Host-to-activator energy transfer in a new blue-emitting phosphor SrHfO3:Tm3+, J. Lumin., 87-89, 1079-1082, 2000.
[12] K. N. Kim, H. K. Jung, H. D. Park, D. Kim, “High luminance of new green emitting phosphor, Mg2SnO4:Mn, J. Lumin., 99, 169, 2002.
[13] L. D. Carlos, V. de Zea Bermudez, R. A. Sá Ferreira, “Multi-wavelength europium-based hybrid phosphors, J. Non-Cryst. Solids, 247, 203-208, 1999.
[14] C. A. Kodaira, H. F. Brito, M. Cla´udia, F. C. Felinto, “Luminescence investigation of Eu3+ ion in the RE2(WO4)3 matrix (RE=La and Gd) produced using the Pechini method, J. Solid State Chem., 171, 401-407, 2003.
[15] M. V. Nazarov, D. Y. Jeon, J. H. Kang, E. J. Popovici, L. E. Muresan, M. V. Zamoryanskaya, B. S. Tsukerblat, Luminescence properties of europium–terbium double activated calcium tungstate phosphor, J. Solid State commun., 131, 307-311, 2004.
[16] F. S. Wen, X. Xhao, H. Huo, J. S. Chen, E. S. Lin, J. H. Zhang, “ Hydrothermal synthesis and photoluminescent properties of ZnWO4 and Eu3+-doped ZnWO4“, J. Mater. Lett. 55, 152-157, 2002.
[17] N. Kim, J. F. Stebbins, “Sc2(WO4)3 and Sc2(MoO4)3 and Their Solid Solutions : 45Sc, 17O, and 27Al MAS NMR Results at Ambient and High Temperature“, Chem. Mater., 21, 309-315, 2009.
[18] P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, “Designing fast oxide-ion conductors based on La2Mo2O9, Nature, 404, 856-858, 2000.
[19] B. R. Judd, “Hypersensitive Transitions in Rare-earth Ions, J. Chem. Phys., 44, 839, 1966.
[20] R. S. Yadav, S. K. Pandey, A. C. Pandey, “BaAl12O19:Mn2+ green emitting nanophosphor for PDP application synthesized by solution combustion method and its Vacuum Ultra-Violet Photoluminescence Characteristics, J. Lumin 131 (2011) 1998-2003.
[21] 陳琨明,釔鋁石榴石螢光體(Y3Al5O12:Ce)之合成與發光特性研究,國立成功大學材料科學及工程學系研究所碩士論文,台灣(2007).
[22] H. Chander, “Development of nanophosphors─A review, Mater. Sci. Eng. R 49 (2005) 113-155.
[23] H. S. Mader, P. Kele, S. M. Saleh, O. S. Wolfbeis, “Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging, Sci. Cur. Opin. Chem. Bio. 2010, 14:582–596.
[24] 林顯光,奈米科技與顯示器產業,講義,工研院材料所電子有機材料研究組,產業資訊服務電子報:第75期(2004年7月16日).
[25] 光連雙月刊‧55期光電科技工業協進會 PIDA,2005.
[26] Z. Wang, Y. Wang, Y. Li, B. Liu, “Enhanced photoluminescence of BaMgAl10O17:Eu2+ nanophosphor for PDP application, J. Alloys Compd. 509 (2011) 343-346.
[27] W. T. Hsu, W. H. Wu, C. H. Lu, “Synthesis and luminescent properties of nano-sized Y3Al5O12:Eu3+ phosphors, Mater. Sci. Eng. B 104 (2003) 40-44.
[28] 吳信謀、林英志、洪浩恩,白光LED與螢光粉發展應用趨勢,新新季刊第四十二卷第一期,中華民國103年(2014).
[29] 材料世界網,高功率LED封裝技術之實務解析-Luxenon Like產品,2011年7月11日報導.
[30] DeLuca, John A., “An Introduction to Luminescence in Organic Solids Journal of Chemical Education., 57, 8, 1980.
[31] 楊智量,“藉pH 值控制混合之固相反應製備的YAG:Ce粉體分析及其螢光性質,國立成功大學資源工程學系碩士論文,2005.
[32] 陳俞仲,“錫酸鹽M2SnO4 (M = Sr, Ca, Zn)螢光粉之合成與螢光特性研究,國立成功大學材料科學及工程學系博士論文,2005.
[33] 劉如熹,林益山,廖秋峰,“LED照明光源展望(一):從藍光紫外光到白光,220,138-140,2005.
[34] 湯友聖,“發光二極體之螢光材料及其封裝特性分析,國立臺灣師範大學光電科技研究所碩士論文,2008.
[35] D. A. Skoog, F. J. Holler, T. A. Niemen, “Principles of instrumental analysis, Harcourt Brace & Company, Orlando, 1998.
[36] 李育群,“鍺酸鹽LaAlGe2O7螢光粉光致發光特性研究,國立成功大學材料科學及工程學系博士論文,2007.
[37] 劉如熹,紀喨勝,“紫外光發光二極體用螢光粉介紹,全華科技,2003.
[38] H. S. Nalwa, L. S. Rohwer, A. J. Heeger, N. Laureate, “Handbook of Luminescence, Display Materials, and Devices–Inorganic Display Materials, American Scientific Publishers, 2003.
[39] A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics, Prog. Quant. Electron., 26, 225-284, 2002.
[40] B. Henderson, G. F. Imbusch, “Optical Spectroscopy of Inorganic Solids, Clarendon, Oxford, 1989.
[41] B. DiBartolo, “Energy Transfer Process in Condensed Matter, Plenum, New York, 1984.
[42] G. Blasse, K. C. Bleijenberg, R. C. Powell, “luminescence and Energy Transfer, Springer-Verlag, New York, 1980.
[43] 楊俊英,“電子產業用螢光材料之應用調查“,工業技術研究院工業材料研究所,1992.
[44] G. Blasse, “Handbook on the Physics and Chemistry of Rare Earths, North-Holland, 1979.
[45] T. Hoshina, “Luminescence of Rare Earth Ions, Sony Research Center Rep., 1983.
[46] R. C. Ropp, “Luminescence and the Solid State-2nd ed, Elsevier:Amsterdam, 2004.
[47] 張永政,“矽酸鹽Na3YSi2O7系螢光粉之製備與光致發光特性研究,國立成功大學材料科學及工程學系碩士論文,2010.
[48] S. Shionoya, W. M. Yen, “Phosphor Handbook, CRC Press, Boca 303 Raton, 1999.
[49] G. Blasse, B. C. Grabmaier, “Luminescent Materials, Springer-Verlag, 1994.
[50] P. Atkins, L. Jones, “Chemistry molecules, Matter, and Change, 3rd edition, 22, 1997.
[51] Vij, D. R., “Luminescence of Solid, Plenum Press:New York, 61, 1998.
[52] 蘇鏘,“稀土化學,河南科學技術出版社,1993.
[53] 蘇鏘,“稀土元素,北京 , 清華大學出版社,2000.
[54] 杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯,磁性基本特性及磁性材料應用,國立台灣大學化學系,2010.
[55] D. Burgard, R. Nass, H. Schmidt, “Process for Producing Weakly Agglomerated Nanoscalar particle, U.S. Patent 5935275, 1999.
[56] 高至鈞,溶液法製備精密陶瓷粉末的原理與製程,445-456,精密陶瓷科技,2005.
[57] 江建志,氧化鈰粉體之合成及其在化學機械研磨漿料中之特性探討,逢甲大學化學工程學系碩士論文,台灣(2003).
[58] 魏明通著,“無機化學,五南圖書出版公司,2001年10月,pp.127~133、pp.323.
[59] Z. Huang, X. Sun, Z. Xiu, S. Chem, C. T. Tsai, “Precipitation synthesis and sintering of yttria nanopowders, Materials Letters., 58, pp.2137-2142 (2004).
[60] 王明發,YAG螢光粉體的製備及其性質,南台科技大學化學工程研究所碩士學位論文,台灣(2004).
[61] Google search, key words, “Solubility Product Constants.
[62] K. Kuribayashi, M. Yoshimura, “High temperature phase relations in the system Y2O3-Y2O3‧WO3, J. Am. Ceram. Soc., 63, 11-12, 1980.
[63] J. Ma, M. Yoshimura, M. Kakihana, M. Yashima, “Synthesis of ZrO2–Y6WO12 solid solution powders by a polymerized complex method, J. Mater. Res., 13, 939-943, 1997.
[64] M. Yoshimura, J. Ma, M. Kakihana, “Low-temperature synthesis of cubic and rhombohedral Y6WO12 by a polymerized complex method, J. Am. Ceram. Soc., 81, 2721-2724, 1998.
[65] N. Diot, O. Larcher, R. Marchand, J. Y. Kempf, P. Macaudie`re, “Rare-earth and tungsten oxynitrides with a defect fluorite-type structure as new pigments, J. Alloys Comp., 323-324, 45-48, 2001.
[66] H. J. Borchardt, “Yttrium-Tungsten Oxides, Inorg. Chem., 2, 170-173, 1963.
[67] K. Kuribayashi, T. Sata, “Process in the reaction of Y2O3 with WO3, Bull. Chem. Soc. Jpn., 50, 2932–2934, 1977.
[68] D. Mikhailova, H. Ehrenberg, H. Fuess, “Synthesis, crystal structure and magnetic properties of new indium rhenium and scandium rhenium oxides, In6ReO12 and Sc6ReO12, J. Solid State Chem., 179, 3672–3680, 2006.
[69] Huheey, James E., Keiter, Richard L., Keiter, Ellen A., “Inorganic chemistry:principles of structure and reactivity, HarperCollins College publishers, 1993.
[70] H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, S. S. Yi, “Investigation of the structure and photoluminescence properties of Eu3+ ion-activated Y6WxMo(1-x)O12, J Mater. Chem. 2011, 21, 4531-4537.
[71] H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, S. S. Yi, “Crystal Structure, Electronic Structure, and Optical and Photoluminescence Properties of Eu(III) Ion-Doped Lu6Mo(W)O12, Inorg. Chem. 2011, 50, 12522−12530.
[72] J. Choisnet, L. Bizoa, M. Allix, M. Rosseinsky, B. Raveau, “Cation ordering in the fluorite-like transparent conductors In(4+x)Sn(3-2x)SbxO12 and In6TeO12, J. Solid State Chem., 180, 1002–1010, 2007.
[73] A. Magras´o, C. Frontera, D. Marrero-L´opez, P. N´u˜nez, “New crystal structure and characterization of lanthanum tungstate La6WO12 prepared by freeze-drying synthesis, J. Roy. Soc. Chem. Dalton Trans., 10273-10283, 2009.
[74] F. Chevire’, F. Munoza, C. F. Baker, F. Tessier, O. Larcher, S. Boujday, C. Colbeau-Justin, R. Marchand, “UV absorption properties of ceria-modified compositions within the fluorite-type solid solution CeO2–Y6WO12, J. Solid State Chem., 179, 3184-3190, 2006.
[75] Y. Zheng, H. You, K. Liu, Y. Song, G. Jia, Y. Huang, M. Yang, L. Zhang, G. Ning, “Facile selective synthesis and luminescence behavior of hierarchical NaY(WO4)2:Eu3+ and Y6WO12:Eu3+, Cryst. Eng. Comm., 13, 3001-3007, 2011.
[76] O. Beaury, M. Faucher, P. Caro, “Crystal structure and fluorescence spectrum of 3Y2O3, WO3:Eu3+, Mat. Res. Bul., 13, 175-185, 1978.
[77] B. Xue, J. Sun, “Synthesis and tuning orange to green up-conversion color in Y6WO12:Er/Yb phosphor, Opt. Mater. 36 (2013) 278-282.
[78] R. Yu, Y. Guo, L. Wang, H. M. Noh, B. K. Moon, B. C. Choi, J. H. Jeong, “Characterizations and optical properties of orange–red emitting Sm3+-doped Y6WO12 phosphors“, Lumin. 155 (2014) 317–321.
[79] R. Yu, D. S. Shin, K. Jang, Y. Guo, H. M. Noh, B. K. Moon, B. C. Choi, J. H. Jeong, S. S. Yi, “Photoluminescence Properties of Novel Host-Sensitized Y6WO12:Dy3+ Phosphors“, J. Am. Ceram. Soc., 97, 2170–2176, 2014.
[80] B. Xue, J. Sun, “Upconversion emission properties and tunable morphologies of Y6WO12:Yb3+/Er3+ phosphor“, Infr. Phys. & Tech. 62 (2014) 45–49.
[81] T. C. Chien, C. S. Hwang, M. Yoshimura, Y. T. Nien, “Synthesis and photoluminescence properties of fluorite-related (Y1-xEux)10W2O21 phosphor, Ceram. Int. 41 (2015) 155-161.
[82] H. Ruonan, M. Qingyu, L. Wei, L. Hongling, “Synthesis and luminescent properties of Eu3+ doped Y2WO6 nanophosphors, J. Rare Earths, 31 (2013) 864-870.
[83] N. Xue, X. Fan, Z. Wang, M. Wang, “Synthesis process and luminescence properties of Ln3+ doped NaY(WO4)2 nanoparticles, J. Mater. Lett. 60 (2007) 1576-1579.
[84] H. J. Borchardt, “Yttrium-Tungsten Oxides, Inorg. Chem., 1962.
[85] B. K. Datta, “Powder Metallurgy: An Advanced Technique of Processing Engineering Materials, PHI Learning, 2012.
[86] W. Robinson, “Free and bound water determinations by the heat of fusion of ice method, Biol. Chem. (1931) 92:699-709.
[87] J. Saldo, E. Sendra, B. Guamis, “Changes in water binding in high-pressure treated cheese, measured by TGA (thermogravimetrical analysis), Inno. Foo. Sci. Emerg. Techn. 3 (2002) 203–207.
[88] 楊基淳,Y6WO12:Eu3+螢光粉體之製備及發光特性研究,國立成功大學材料科學及工程學系研究所碩士論文,台灣(2011).
[89] 齊振銓,助熔劑對Y6WO12:Eu3+螢光粉體光致發光性質之影響,國立成功大學材料科學及工程學系研究所碩士論文,台灣(2013).
[90] F. N. Shi, J. Meng, Y. F. Ren, “Structure and luminescent properties of three new silver lanthanide molybdates, J. Solid State Chem., 121, 236-239, 1996.
[91] G. H. Lee, T. H. Kim, C. Yoon, S. Kang, “Effect of local environment and Sm3+-codoping on the luminescence properties in the Eu3+-doped potassium tungstate phosphor for white LEDs, J. Lumi., 128, 1922-1926, 2008.
[92] S. Freed, “Spectra of ions in fields of various symmetry in crystals and solutions, Rev. Mod. Phys., 14, 105, 1942.
[93] B. S. Tsai, Y. H. Chang, Y. C. Chen, “Synthesis and luminescent properties of MgIn(2-x)GaxO4:Eux3+ phosphors, Electrochem, Solid-State Lett., 8, 55, 2005.
[94] G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions, J. Chem. Phys., 37, 511, 1962.
[95] H. Y. Chen, R. Y. Yang, S. J. Chang, Y. K. Yang, “Microstructure and photoluminescent properties of Sr2SiO4:Eu3+ phosphors with various NH4Cl flux concentrations, Materials Research Bulletin, 47, 1412-1416, 2012.
[96] G. Blasse, “Energy transfer between inequivalent Eu2+ ions, J. Solid State Chem. 62(2) (1986) 207-211.
[97] J. Liao, Y. Wei, B. Qiu, Y. Li, L. Liu, Q. Wu, “Photoluminescence properties of La(2-x)Eux(WO4)3 red phosphor prepared by hydrothermal method, Physica B, 405, 3507–3511, 2010.
[98] S. Polizzi, M. Battagliarin, M. Bettinelli, A. Speghini, G. Gagherazzi, “Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis, J. Mater. Chem., 12, 742-747, 2002.
[99] W. J. L. Oomen, A. M. A. van Dongen, “Europium(III) in oxide glasses:Dependence of the emission spectrum upon glass composition, J. Non-Cryst. Solids, 111, 205-213, 1989.
[100] R. Schmechel, H. Winkler, L. Xaomao, M. Kennedy, M. Kolbe, A. Benker, M. Winterer, R. A. Fischer, H. Hahn, H. V. Seggern, “Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environment, Scripta Mater., 44, 1213, 2001.
[101] M. Inokuti, F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence, J. Chem. Phys., 43, 1978-1989, 1965.
[102] J. P. Rainho, D. Ananias, Z. Lin, A. Ferreira, L. D. Carlos, J. Rocha, “Photoluminescence and local structure of Eu(III)-doped zirconium silicates, J. Alloys Comp. , 374 , 185-189 , 2004.
[103] 陳志鵬,楊貴忠,任進福,許士燕,含有碳黑助劑的光伏電池用導電漿料及其製備方法,專利CN102360584B,Sep 21, 2011.
[104] 維基百科,金屬鎢.
[105] I. Ahmed, A. K. Gupta, “Syngas yield during pyrolysis and steam gasification of paper, J. Appl. Energ., 86, 1813-1821, 2009.
[106] 鎢的性質和主要用途,中國有色金屬學會,江蘇省金屬學會,2014年報導.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top