跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林炫旻
研究生(外文):Hsuan-MinLin
論文名稱:低溫活化奈米碳纖維/二氧化錳奈米混合結構於超級電容器電極之應用
論文名稱(外文):Low temperature activated-CNFs/MnO2 nanocomposites for use in supercapacitor electrodes
指導教授:丁志明丁志明引用關係
指導教授(外文):Jyh-Ming Ting
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:111
中文關鍵詞:奈米碳纖維二氧化錳超級電容微波水熱法酸氧化X光光電子光譜
外文關鍵詞:Carbon nanofiberMnO2supercapacitormicrowave-assisted hydrothermalacid oxidationXPS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這個研究中,分成兩個部份的實驗;在第一部份,使用低溫的酸洗方法來活化碳纖維,利用不同比例配置的硝酸硫酸混合液酸洗碳纖維,接著第二部分的實驗則是選用快速又簡單的微波水熱法的方式來合成二氧化錳在活化碳纖維上,前驅物使用過錳酸鉀作為錳金屬來源,使其水熱於水溶液中作化學反應。材料特性部分,我們可以發現在酸洗過後,經由SEM與BET測試可得知碳纖維表面會因隨著酸洗比例不同而有所變化,但是可由XPS之結果得知在某些酸洗條件下可以大量地引入氧原子至碳纖維表面,進而達到碳纖維我們所想要改質的效果,而此一結果也可由電化學測試中得知;在第二部份中,由XRD確認二氧化錳為δ相,再經過SEM/TEM與TGA發現在此結構中二氧化錳為多數,並藉由BET測量複合材料的比表面積,最後利用XPS得到複合材料中的元素成分組成與元素氧化組態。
電化學部分,取合成後之二氧化錳/碳纖維奈米複合材料作為超級電容之電極材料,做循環伏安法、交流阻抗分析之電化學測試;條件為使用1M Na2SO4水溶液作為電解質,電位窗為-0.2-0.8V。酸洗變因之樣品以1-20SN46為最佳擁有229.9F/g電容值,其餘的二氧化錳/碳纖維奈米複合材料大部份介於100-190F/g的範圍內,而最低的1-20SN19則是只有93.5 F/g電容值。

Summary:
In this work, our research was separated into the two parts. At the first part, we employed the low temperature to activate the Carbon nanofiber (CNFs) by the various sulfuric acid/nitric acid ratio. At the second part, the activated-CNFs/MnO2 nanocomposites was synthesized using a simple and rapid (5min) microwave-assisted hydrothermal technique through the decomposition of KMnO4 in various activated-CNFs. The hydrothermal solution consisted of KMnO4 and HCl. We check the surface of CNFs after acid-treatment by SEM and BET. To determine the oxidation of CNFs and the functional groups on the surface, XPS was used. The structure of activated-CNFs/MnO2 nanocomposites was detected by XRD. The morphology of activated-CNFs/MnO2 nanocomposites was obtained by SEM/TEM. We used TGA to know the MnO2 content in the activated-CNFs/MnO2 nanocomposites. XPS was employed to get the chemical composition and chemical bonding.
The obtained activated-CNFs/MnO2 nanocomposites was made into electrodes for use in supercapacitors. The supercapacitors were evaluated using cyclic voltammetry and electrochemical impedance spectroscopy in 1M Na2SO4 within potential window -0.2~0.8V. The samples 1-20SN46 obtain the best specific capacitance performance (229.6F/g) .

中文摘要 III
Extend Abstract V
致謝 XXII
表目錄 XXXII
一、研究動機與目的 1
1.1 緒論 1
1.2 研究動機與目的 5
二、文獻回顧 7
2.1 超級電容器之儲能方式 7
2.1.1 電雙層電容器 7
2.1.2 擬電容器 8
2.2 電極材料 11
2.2.1 電雙層電容器電極材料 11
2.2.1.1 碳電極材料簡介 11
2.2.1.2 碳電極改質 13
2.2.2 擬電容器電極材料 15
2.3 電化學測試方法 21
2.3.1 循環伏安法(CV)分析 21
2.3.2 交流阻抗(EIS)分析 24
三、實驗設備與方法 29
3.1 材料與實驗流程圖 29
3.1.1 藥品與材料 29
3.1.2 酸洗碳纖維 30
3.1.3 合成碳纖維/過錳酸鉀1:20重量比複合材料 31
3.2材料與電極製備 32
3.2.1 碳纖維前處理 32
3.2.2 酸洗碳纖維 32
3.2.3 碳纖維/二氧化錳複合材料製備 33
3.2.4三極式電化學測試 34
3.2.5 二極式電化學測試 36
3.3 分析方法 38
3.3.1 拉曼光譜分析(Raman spectroscopy) 38
3.3.2 粉末晶體結構分析 38
3.3.3 表面形貌及微結構分析 39
3.3.4 氮氣等溫吸附 40
3.3.5 X光光電子能譜儀 40
3.3.6 熱重分析 40
3.3.7 循環伏安法 41
3.3.8 電化學阻抗頻譜 41
四、結果與討論 43
4.1 碳纖維改質分析 43
4.1.1 碳纖維XPS分析 43
4.1.2 表面形態觀察及微結構 54
4.1.3 Raman分析與BET結果 61
4.1.4 循環伏安法(Cyclic Voltammetry)測試 67
4.1.5 交流阻抗分析 70
4.2 碳纖維/二氧化錳奈米混合結構分析 74
4.2.1 粉末晶體結構分析 74
4.2.2 表面形貌觀察與微結構 76
4.2.3 TGA與BET之結果 82
4.2.4 CNF/MnO2複合材料之XPS分析 87
4.2.5 CNF/MnO2複合材料之循環伏安法分析(CV) 96
4.2.6 CNF/MnO2複合材料之交流阻抗分析(EIS) 99
4.2.7 CNF/MnO2複合材料之電化學行為分析 102
五、結論 105
六、未來展望 106
七、參考文獻 107



[1] P. Simon , B. Dunn, Science, 343 (2014) 1210-1211.
[2] M. Winter, R.J. Brodd, Chemical Reviews, 105 (2005) 1021-1021.
[3] P. Simon, Y. Gogotsi, Nature Materials, 7 (2008) 845-854.
[4] R. Kotz, M. Carlen, Electrochimica Acta, 45 (2000) 2483-2498.
[5] R.A. Huggins, Solid State Ionics, 134 (2000) 179-195.
[6] A. Burke, Journal of Power Sources, 91 (2000) 37-50.
[7] C. Lin, J.A. Ritter, B.N. Popov, Journal of The Electrochemical Society, 145 (1998) 4097-4103.
[8] E. Frackowiak, F. Beguin, Carbon, 39 (2001) 937-950.
[9] C.M. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, Applied Physics Letters, 70 (1997) 1480-1482.
[10] H.Y. Lee, J.B. Goodenough, Journal of Solid State Chemistry, 148 (1999) 81-84.
[11] J.P. Zheng, P.J. Cygan, T.R. Jow, Journal of The Electrochemical Society, 142 (1995) 2699-2703.
[12] C.C. Hu, T.W. Tsou, Electrochemistry Communications, 4 (2002) 105-109.
[13] S. Ghosh, O. Inganas, Advanced Materials, 11 (1999) 1214-1218.
[14] V. Gupta, N. Miura, Electrochemical and Solid-State Letters, 8 (2005) A630-A632.
[15] A.F. Burke , 95 PROCEEDINGS OF THE IEEE (2007) 806-820.
[16] H. Xia, Y. Shirley, Meng, G. Yuan, C. Cui, L. Lu, Electrochemical and Solid-State Letters, 15 (2012) A60.
[17] Y. Li, H.Q. Xie, J.F. Wang, L.F. Chen, Materials Letters, 65 (2011) 403-405.
[18] X.R. Liu, P.G. Pickup, Journal of Solid State Electrochemistry, 14 (2010) 231-240.
[19] B. Xu, F. Wu, S. Chen, C.Z. Zhang, G.P. Cao, Y.S. Yang, Electrochimica Acta, 52 (2007) 4595-4598.
[20] H.A. Andreas, B.E. Conway, Electrochimica Acta, 51 (2006) 6510-6520.
[21] B.E. Conway, Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications, Kluwer-Plenum ed., New York 1999.
[22] A. J. Bard; L. R. Faulkner Electrochemical Methods, Fundamentals and Applications; 2nd ed.; John Wiley and Sons, INC: New York, 2001 [23] H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Journal of the American Chemical Society, 132 (2010) 7472-7477.
[24] E. Raymundo-Pinero, V. Khomenko, E. Frackowiak, F. Beguin, Journal of The Electrochemical Society, 152 (2005) A229-A235.
[25] C.C. Hu, 電化學原理與方法, 五南圖書, 2002.
[26] E, Frackowiak; F, Beguin, Carbon, 39 (2001) 937–950.
[27] S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Journal of Materials Chemistry, 22 (2012) 767-784.
[28] T.-C. Weng, H. Teng, Journal of The Electrochemical Society, 148 (2001) A368.
[29] G.A. Ferrero, M. Sevilla, A.B. Fuertes, Carbon, 88 (2015) 239-251.
[30] E. Redondo, J. Carretero-González, E. Goikolea, J. Ségalini, R. Mysyk, Electrochimica Acta, 160 (2015) 178-184.
[31] C.-W. Huang, C.-M. Chuang, J.-M. Ting, H. Teng, Journal of Power Sources, 183 (2008) 406-410.
[32] E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Applied Physics Letters, 77 (2000) 2421.
[33] C.W. Huang, H.S. Teng, Journal of The Electrochemical Society, 155 (2008) A739-A744.
[34] D. Qu, Journal of Power Sources, 109 (2002) 403-411.
[35] Y.C. Chiang, W.H. Lin, Y.C. Chang, Applied Surface Science, 257 (2011) 2401-2410.
[36] Y.R. Nian, H. Teng, Journal of The Electrochemical Society, 149 (2002) A1008.
[37] Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Advanced materials, 23 (2011) 4828-4850.
[38] A.L.O. C. Prado-burgurete, F. Rodrfguez-reinoso, C. Salinas-martfnez de Lecea, Journal of Catalysis, 115 (1989) 98-106.
[39] Y. Liang, H. Zhang, B. Yi, Z. Zhang, Z. Tan, Carbon, 43 (2005) 3144-3152.
[40] T. Momma , T. Osaka , Y. Ushio , Y. Sawada , Journal of Power Sources, 60 (1996) 249-253.
[41] S. Bhati, J.S. Mahur, S. Dixit, O.N. Chobey, Carbon letters, 15 (2014) 45-49.
[42] A.B. Dongil, B. Bachiller-Baeza, A. Guerrero-Ruiz, I. Rodriguez-Ramos, A. Martinez-Alonso, J.M. Tascon, Journal of colloid and interface science, 355 (2011) 179-189.
[43] C.H. Kim, S.I. Pyun, H.C. Shin, Journal of The Electrochemical Society, 149 (2002) A93.
[44] Y. Yan, T. Kuila, N.H. Kim, J.H. Lee, Carbon, 74 (2014) 195-206.
[45] M.N. M. Nakamura, K. Yamamoto, Journal of Power Sources, 60 (1996) 225-231.
[46] K.V. Sankar, R.K. Selvan, Journal of Power Sources, 275 (2015) 399-407.
[47] P. Sekar, B. Anothumakkool, S. Kurungot, ACS applied materials & interfaces, 7 (2015) 7661-7669.
[48] X. Xiao, T. Li, Z. Peng, H. Jin, Q. Zhong, Q. Hu, B. Yao, Q. Luo, C. Zhang, L. Gong, J. Chen, Y. Gogotsi, J. Zhou, Nano Energy, 6 (2014) 1-9.
[49] C. Portet, P.L. Taberna, P. Simon, E. Flahaut, Journal of Power Sources, 139 (2005) 371-378.
[50] J.M. Rosolen, E.Y. Matsubara, M.S. Marchesin, S.M. Lala, L.A. Montoro, S. Tronto, Journal of Power Sources, 162 (2006) 620-628.
[51] N.L. Wu, S.Y. Wang, C.Y. Han, D.S. Wu, L.R. Shiue, Journal of Power Sources, 113 (2003) 173-178.
[52] G.A. Tompsett, W.C. Conner, K.S. Yngvesson, Chemphyschem, 7 (2006) 296-319.
[53] B. Ming, J. Li, F. Kang, G. Pang, Y. Zhang, L. Chen, J. Xu, X. Wang, Journal of Power Sources, 198 (2012) 428-431.
[54] J. Yan, Z.J. Fan, T. Wei, W.Z. Qian, M.L. Zhang, F. Wei, Carbon, 48 (2010) 3825-3833.
[55] X. Zhang, X. Sun, H. Zhang, D. Zhang, Y. Ma, Electrochimica Acta, 87 (2013) 637-644.
[56] H. Huang, W. Zhang, Y. Fu, X. Wang, Electrochimica Acta, 152 (2015) 480-488.
[57] L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, H.Y. Wu, Journal of Physical Chemistry C, 118 (2014) 22865-22872.
[58] Y. Su, I. Zhitomirsky, Journal of Power Sources, 267 (2014) 235-242.
[59] H. Zhong Chi, G. Zhang, L. Gao, K. Su, Z. Ji, Materials Letters, 106 (2013) 197-199.
[60] S. Jiang, T. Shi, D. Liu, H. Long, S. Xi, F. Wu, X. Li, Q. Xia, Z. Tang, Journal of Power Sources, 262 (2014) 494-500.
[61] D. Zhou, H. Lin, F. Zhang, H. Niu, L. Cui, Q. Wang, F. Qu, Electrochimica Acta, 161 (2015) 427-435.
[62] Q. Yang, X.T. Zhang, M.Y. Zhang, Y. Gao, H. Gao, X.C. Liu, H. Liu, K.W. Wong, W.M. Lau, Journal of Power Sources, 272 (2014) 654-660.
[63] Y. Jiang, X. Ling, Z. Jiao, L. Li, Q. Ma, M. Wu, Y. Chu, B. Zhao, Electrochimica Acta, 153 (2015) 246-253.
[64] Y. Zhang, Q.Q. Yao, H.L. Gao, L.Z. Wang, X.L. Jia, A.Q. Zhang, Y.H. Song, T.C. Xia, H.C. Dong, Powder Technology, 262 (2014) 150-155.
[65] H. Zheng, J. Wang, Y. Jia, C.A. Ma, Journal of Power Sources, 216 (2012) 508-514.
[66] A.J.F. Bard, L. R. , Electrochemical Methods Fundamental and Applications, Jhon Wiley & Sons, Canada, 1980.
[67] L.R.F. A. J. Bard, Electrochemical Principles, Methods and Applications, Oxford University, Britain, 1996.
[68] A.M.O.B. C. M. Brett, Electrochemistry-Principles, Methods, and Applications, Oxford, New York, 1993.
[69] C.C. Hu, W.C. Chen, K.H. Chang, Journal of The Electrochemical Society, 151 (2004) A281-A290.
[70] J, Zhang; HL, Zou; Q, Qing, The Journal of Physical Chemistry B, 107 (2003) 3712-3718.
[71] A.R. Ferrari , J. Robertson, Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 362 ( 2004) 2477-2512.
[72] R.C. Hyer, M. Green, S.C. Sharma, Physical Review B, 49 (1994) 14573-14581.
[73] S. Morales-Torres, T.L. Silva, L.M. Pastrana-Martinez, A.T. Brandao, J.L. Figueiredo, A.M. Silva, Physical chemistry chemical physics : PCCP, 16 (2014) 12237-12250.
[74] Y. Xing, L. Li, C. C. Chusuei, R.V. Hull, Langmuir, 21 (2005) 4185-4190.
[75] M. Ghaemi, F. Ataherian, A. Zolfaghari, S.M. Jafari, Electrochimica Acta, 53 (2008) 4607-4614.
[76] S.C. Pang, M.A. Anderson, T.W. Chapman, Journal of The Electrochemical Society, 147 (2000) 444-450.
[77] S.E. Chun, S.I. Pyun, G.J. Lee, Electrochimica Acta, 51 (2006) 6479-6486.
[78] L.L. Zhang, T. Wei, W. Wang, X.S. Zhao, Microporous and Mesoporous Materials, 123 (2009) 260-267.
[79] O. Ghodbane, J.L. Pascal, B. Fraisse, F. Favier, ACS applied materials & interfaces, 2 (2010) 3493-3505.
[80] M. Toupin, T. Brousse, D. Belanger, Chemistry of Materials, 16 (2004) 3184-3190.
[81] M. Huang, R. Mi, H. Liu, F. Li, X.L. Zhao, W. Zhang, S.X. He, Y.X. Zhang, Journal of Power Sources, 269 (2014) 760-767.
[82] J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, Journal of Power Sources, 224 (2013) 86-92.
[83] B. Anothumakkool, S. Kurungot, Chemical communications, 50 (2014) 7188-7190.
[84] S. Devaraj, N. Munichandraiah, Journal of Physical Chemistry C, 112 (2008) 4406-4417.
[85] L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse, Journal of Physical Chemistry C, 112 (2008) 7270-7277.
[86] H.T. Zhu, J. Luo, H.X. Yang, J.K. Liang, G.H. Rao, J.B. Li, Z.M. Du, Journal of Physical Chemistry C, 112 (2008) 17089-17094.
[87] T.B. Mathieu Toupin, D. Belanger, Chemistry of Materials, 16 (2004) 3184-3190.
[88] O. Ghodbane, M. Louro, L. Coustan, A. Patru, F. Favier, Journal of the Electrochemical Society, 160 (2013) A2315-A2321.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 劉紀蕙〈女性的複製:男性作家筆下二元化的象徵符號〉《中外文學》18卷1期,1989年6月
2. 廖玉蕙〈論柳敬亭及其說書藝術〉《中正嶺學術研究集刊》第11集,1991年6月
3. 路況〈表象世界的思維者—讀陳克華詩的一些聯想〉《現代詩》復刊11期,1987年12月
4. 劉純之(1993),人壽保險需求之估計與模擬,保險專刊,33,P.87-101。
5. 賴本隊(2002),台灣壽險業投資型保險商品的發展與現況,壽險季刊,第126期。
6. 瘂弦〈戰火紋身—尹玲的戰爭詩〉《現代詩》復刊18期,1992年9月
7. 龔顯宗〈徐志摩的文學觀〉《中國現代文學理論季刊》4期1996年12月
8. 龔鵬程〈遊人記遊:論晚明小品遊記〉《中華學苑》48期,1996年7月
9. 顏瑞芳〈戴望舒詩的寂寞主題〉《中國現代文學理論季刊》8期,1997年12月
10. 蔣勳〈獨白—評羅智成的「夢的塔湖書簡」〉《聯合文學》34期,1987年8月
11. 楊四平〈李魁賢與里爾克論詩歌精神的故事〉《笠詩社》227期,2002年2月
12. 黃居仁〈時間如流水—由古典詩歌中的時間用語談到中國人的時間觀〉《中外文學》9卷11期,1981年4月
13. 曾淑美〈你讀過羅智成的詩嗎?〉《藍星詩學》1999端午號,1999年6月
14. 陳淑美〈隨我走天涯—旅行文學正發燒〉《光華》23卷6期,1998年6月
15. 許麗芳〈試論莊、荀二子天人觀念之異同〉《孔孟月刊》34卷5期