(3.232.129.123) 您好!臺灣時間:2021/03/04 17:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃柏憲
研究生(外文):Po-HsienHuang
論文名稱:微波誘發電漿增進層流預混火焰燃燒特性之研究:氧化劑流中惰性氣體的作用
論文名稱(外文):A study of combustion characteristics of laminar premixed flames enhanced by microwave-induced plasma: the role of inert gas in oxidizer stream
指導教授:趙怡欽
指導教授(外文):Yei-Chin Chao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:106
中文關鍵詞:微波誘發電漿微波電漿層流預混火焰火焰穩駐氬氣電漿
外文關鍵詞:Microwave-induced plasmainert gaslaminar premixed flameargon plasma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
值此能源日益短缺的年代,貧油燃燒(lean combustion)受到普遍的重視,但是傳統貧油燃燒容易遭遇到火焰不穩定的問題,為使貧油預混燃燒器設計有良好的火焰穩定性,並在合理的範圍內避免火焰熄滅(extinction)、吹離(blowoff)及吹熄(blowout)等不穩定的情況。因此如何控制火焰型態與創新的燃燒穩駐機制已成為許多研究學者關注之重點。
本研究為了增進火焰穩駐,利用微波誘發電漿以輔助火焰穩駐而應用於甲烷與空氣的預混火焰,本研究自製創新的燃燒器有效利用微波誘發電漿以輔助甲烷預混火焰的穩駐,並深入探討此過程中微波電漿的能量傳遞機制。此外,為深入瞭解流體介質之性質與特性在此機制中扮演的角色,本研究之燃燒介質以氧化劑流中的惰性氣體氬氣(argon, Ar)取代空氣中的氮氣(nitrogen, N2),分別比較兩種氣體在微波誘發電漿火焰穩駐機制的差異性。實驗將甲烷/氧氣/氮氣以及甲烷/氧氣/氬氣之混合氣通入燃燒器形成一層流預混火焰,將燃燒器置入微波共振腔體內進行研究,本文亦利用數值計算作氬氣取代氮氣後基本火焰燃燒特性的探討,計算結果發現,氬氣在一般層流預混火焰中導致層流火焰速度最大上升40cm/s與絕熱火焰溫度最大上升200K左右主要是由於熱效應的影響。
除此之外,本實驗利用自然螢光(chemiluminescence)量測系統以及光譜量測(optical emission spectroscopy)系統進行觀察腔體內部火焰隨氧化劑惰性氣體改變之燃燒特性。當微波電場加入以後,火焰中形成電漿球能促進氧分子提早加速分解,導致OH自由基生成量提升,達到火焰燃燒反應更加劇烈之目的。最後實驗結果發現,燃燒介質氮氣以氬氣取代後,微波能量在介質為氬氣之電漿比介質為氮氣之電漿所維持電漿球的最小需求能量減少約50%。本研究在氬氣取代氮氣之電漿,氧氣容易受到電子撞擊形成分解,使得OH自由基生成量的提升進而使火焰增強。
In this research, a novel centralized microwave jet burner system is proposed that can be used as a test platform to enable direct studies of plasma assisted combustion (PAC) under various operation conditions and combustible mixtures. Computed results are obtained using the GRI3.0 mechanism and the Premix code of the CHEMKIN package. According to the simulation, when the dilution inert N2 in the oxidizer stream (air) is replaced by Ar, it is observed that the laminar burning velocities and adiabatic flame temperature are higher up to 40cm / s and 200K~300K, respectively. In the case of N2 replaced by Ar, the chemical effect is almost negligible and the heat capacity seems to possess the predominant effect on the flame characteristics. Spectroscopic characterizations of the burner have been conducted using digital imaging and optical emission spectrum. PAC of premixed methane/O2/N2 and methane/O2/Ar mixtures have been investigated at different fuel equivalence ratios and various microwave power. The continuous microwave plasma jets are generated successfully by the design of centralized microwave burner with a sharp-tip electrode as an antenna. The optical emission spectrum results show that with the initiation of a plasma flame by microwave, emission intensity peaks of the OH (A2Σ+) radicals can be observed both in the methane/O2/N2 and methane/O2/Ar mixtures. A comparison of the OH (A2Σ+) emission intensity profile shows that the intensity of OH radical in methane/O2/Ar mixtures is three orders of magnitude larger than that in methane/O2/N2 mixture. Experimental results also show that the minimum energy of the microwave energy requirements in maintaining a plasma ball is reduced by about 50% in methane/O2/Ar mixtures. Namely, the flame enhancement by applying an non-equilibrium plasma is more efficient when the dilution inert N2 in the oxidizer stream (air) is replaced by Ar. The coupling efficiency of the dilution inert in the oxidizer stream plays an important role in the flame enhancement mechanism for the PAC system.
摘 要 I
Extended Abstract III
致 謝 IX
目 錄 XI
表 目 錄 XVI
圖 目 錄 XVII
符 號 表 XXII
第一章 緒論 1
第二章 文獻回顧與問題研究 9
2-1 文獻回顧 9
2-2 微波輔助火焰燃燒 12
2-3電漿增強火焰 14
2-4研究動機與目的 19
第三章 理論實驗設備與研究方法 22
3-1 實驗設備 22
3-1-1創新微波誘發電漿燃燒器 22
3-1-2 氣體供給系統 23
3-1-3微波放電與微波設備 24
3-2基本理論 27
3-2-1電磁波傳遞特性介紹 27
3-2-2微波場方程式 28
3-2-3連續方程式與動量方程式 30
3-2-4燃燒反應速率 31
3-2-5燃燒化學反應 32
3-3量測儀器 33
3-3-1 影像處理系統 33
3-3-2自然螢光量測 34
3-3-3光譜量測系統 35
3-3-3.1卡塞格倫反射鏡(Cassegrain) 35
3-3-3.2光纖(Optic fiber) 36
3-3-3.3光譜儀(Ocean Optics USB400) 36
3-4數值方法 37
3-4-1 Equil-code 38
3-4-2 Premix-code 38
3-4-3化學反應機構 39
3-5研究方法與步驟 40
第四章 結果與討論 42
4-1 實驗火焰介紹 42
4-2絕熱火焰溫度計算 43
4-3層流火焰速度 43
4-3-1數值計算結果 43
4-3-2 物種濃度分析 44
4-3-3層流火焰速度靈敏度分析 46
4-4熱效應分析 47
4-5物種反應速率分析 47
4-6火焰結構型態變化 50
4-7微波誘發電漿之反應過程 51
4-7-1光譜(OES)量測 52
4-7-1.1氮氣電漿(N2 plasma)之光譜圖 53
4-7-1.2氬氣電漿(Ar plasma ball)之光譜圖 55
4-7-1.3氧氣之光譜圖比較 58
4-7-1.4 電漿球(plasma ball)光譜比較 59
4-8自然螢光量測 60
4-9電漿與甲烷/氧氣/惰性氣體預混火焰 61
第五章 結論 64
參考文獻 66
S.Y. Liao , D.M. Jiang , Z.H. Huang , K. Zeng, “Characterization of laminar premixed methanol–air flames, Fuel, Vol. 85, pp. 1346-1353, 2006.
K. Saeed , C.R. Stone, “Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model, Combustion and Flame, Vol. 152, pp. 152-166, 2004.
J. Natarajan , T. Lieuwen, J. Seitzman, “Laminar flame speeds of H2 /CO mixtures: Effect of CO2 dilution, preheat temperature, and pressure, Combustion and Flame, Vol. 151, pp. 104-119, 2007.
K. K.Kuo., Principles of Combustion. Second edition. P.449-450
A. M. Kanury, “Chapter 8, Introduction to Combustion Phenomena, New York, Gordon and Breach, 1975.
T. W. Reynolds and M. Gerstein, “Influence of molecular structure of hydrocarbons on rate of flame propagation, Combustion and Flame, and Explosion Phenomena, Vol.3, No.1, pp. 190-194, 1948.
C. Tanford, “The role of free atoms and radicals in burner flames, Combustion and Flame, and Explosion Phenomena, Vol.3, No.1, pp. 140-146, 1948.
G. Wortberg, “Ion-concentration measurements in a flat flame at atmospheric pressure, Tenth Symposium (International) on Combustion, pp. 651-655, 1965.
H. F. Calcote, “Ion production and recombination in flames, Symposium (International) on Combustion, Vol.8, No. 1, pp. 184-199, 1961.
S. H. Zaidi, S.O. Macheret, Y. Ju, R.B. Miles , D.J. Sullivan, “INCREASED SPEED OF PREMIXED LAMINAR FLAMES IN A MICROWAVE RESONATOR, AIAA, 2004.
S. H. Zaidi, S.O. Macheret, Y. Ju, R.B. Miles , D.J. Sullivan, “Microwave-assisted Hydrocarbon Flame Speed Enhancement, AIAA, 2005.
E. S. Stockman, S. H. Zaidi, R. B. Miles, C. D. Carter, M. D. Ryan, “Measurements of combustion properties in a microwave enhanced flame, Combustion and Flame, Vol. 156, pp. 1453-1461, 2009.
T. Ombrello, S. H. Won, Y. Ju, S. Williams, “Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3, Combustion and Flame, Vol. 157, pp. 1906-1915, 2010.
T. Ombrello, S. H. Won, Y. Ju, S. Williams, “Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O2(a1∆g ), Combustion and Flame, Vol. 157, pp. 1916-1928, 2010.
M. A. V. Ward, “Microwave stimulated combustion., J. of Microwave Power, Vol. 15, pp. 193-202, 1980.
R. M. Clements, R. D. Smith, P. R. Smy, “Enhancement of flame speed by intense microwaveradiation, Combustion Science and Technology, Vol. 26, pp. 77-81, 1981.
D. Galley, G. Pilla , D. Lacoste, S. Ducruix, F. Lacas, D. Veynante, C.O. Laux, “Plasma-enhanced combustion of a lean premixed air-propane turbulent flame using ananosecond repetitively pulsed plasma., 43rd AIAA Aerospcae Science meeting and Exhibit, 2005.
K. W. Hemawan, C. L. Romei, S. Zuo, I. S. Wichman, T. A. Grotjohn, J. Asmussen, “Microwave plasma-assisted premixed flame combustion, Appl. Physics Letters, Vol. 89, p. 141501, 2006.
J. Han , H. Yamashita, “Numerical study of the effects of non-equilibrium plasma on the ignition delay of a methane–air mixture using detailed ion chemical kinetics, Combustion and Flame, Vol. 161, pp. 2064-2072, 2014.
藍宇丹,何立明,王峰,杜宏亮,陳鑫,梁華, “等離子體氣動效應對燃燒室流場的影響, 高電壓技術, 38, 編號 1, pp. 217-222, 2012.
杜宏亮,何立明,藍宇丹,趙華, “等離子體對氫氣-空氣混和物燃燒過程影響的數值研究, 彈箭與制導學報, 第28卷, 第6期, pp. 141-143, 2008.
郭向陽,何立明,藍宇丹, “非平衡性等離子體對燃燒影響的研究, 彈箭與制導學報, 第28卷, 第6期, pp. 148-151, 2008.
M.S. Bak , H. Do , M.G. Mungal , M. A. Cappelli, “Plasma-assisted stabilization of laminar premixed methane/air flames around the lean flammability limit, Combustion and Flame , Vol. 159, pp. 3128-3137, 2012.
X. Rao, S. Hammack, T. Lee, Campbell Carter, and Igor B. Matveev, “Combustion Dynamics of Plasma-Enhanced Premixed and Nonpremixed Flames, IEEE Transactions on plasma science, Vol. 38, pp. 3265-3271, 2010.
J. Henriques , E. Tatarova , V. Guerra , C.M. Ferreira, “Nitrogen dissociation in N 2 –Ar microwave plasmas, Vacuum, Vol.69, pp. 177-181, 2003.
J. Henriques , N. Bundaleska , E. Tatarova , F.M. Dias , C.M. Ferreira, “Microwave plasma torches driven by surface wave applied for hydrogen production, International journal of hydrogen energy, Vol.36, pp. 26-35, 2011.
R. Rincon , J. Munoz , M. Saez , M.D. Calzada, “Spectroscopic characterization of atmospheric pressure argon plasmas sustained with the Torche a Injection Axiale sur Guide d'Ondes, Spectrochimica Acta Part B, Vol. 81, pp. 26-35, 2013.
M . Beave , A. Bosel , J. Ehlbeck , and D. Loffhagen, “Modeling of microwave-induced plasma in argon at atmospheric pressure, Physical Reviewe,Vol. 85, p. 056404, 2012.
J Gregorio , P Leprince , C Boisse-Laporte and L L Alves, “Self-consistent modelling of atmospheric micro-plasmas produced by a microwave source, Plasma Sources Science Technol., Vol.21, p. 015013(16), 2012.
G. Wattieaux , M. Yousfi , N. Merbahi, “Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure, Spectrochimica Acta Part B , Vol. 89, pp. 66-76, 2013.
N. L. Aleksandrov , S. V. Kindysheva , E. N. Kukaev , S. M. Starikovskaya and A. Yu. Starikovskii, “Simulation of the Ignition of a Methane?Air Mixture by a High-Voltage Nanosecond Discharge, Plasma Physics Reports, Vol. 35, pp. 867-882, 2009.
C. Wang , W. Wu, “Roles of the state-resolved OH(A) and OH(X) radicals in microwave plasma assisted combustion of premixed methane/air: An exploratory study, Combustion and Flame,Vol. 161, pp. 2073-2084, 2014.
M. Huang , D. S. Hanselman , Q. Jin and G. M. Hieftje, “Non-thermal features of atmospheric-pressure argon and helium microwave-induced plasmas observed by laser-light Thomson scattering and Rayleigh scattering, Spectrochimica Acta,Vol. 45, p. 13394352, 1990.
利鴻源, 微波電漿用於火焰穩駐和電子推進器之穩駐機制研究與發展, 台南, 國立成功大學航空太空工程學系, 2013.
B. Galmiche , F. Halter , F. Foucher ,and P. Dagaut, “Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames, Energy Fuels, Vol. 25, pp. 948-954, 2011.
G.-B. Chen , Y.-H. Li , T.-S. Cheng , H.-W. Hsu , Y.-C. Chao, “Effects of hydrogen peroxide on combustion enhancement of premixed methane/air flames, International journal of hydrogen energy, Vol.36, pp. 15414-15426, 2011.
G.-B. Chen , Y.-H. Li , T.-S. Cheng , Y.-C. Chao, “Chemical effect of hydrogen peroxide addition on characteristics of methane air combustion, Energy, Vol.55, pp. 564-570, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔