跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 22:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林洋佑
研究生(外文):Yang-YouLin
論文名稱:翼突節設計對垂直軸式風力機葉片性能研究
論文名稱(外文):The study of Protuberances design on Blade Performance of Vertical Axis Wind Turbine
指導教授:林三益林三益引用關係
指導教授(外文):San-Yih Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:84
中文關鍵詞:垂直軸風機計算流體力學翼前緣突節翼後緣突節渦流
外文關鍵詞:Vertical Axis Wind TurbineComputational Fluid DynamicsLeading Edge TubercleTrailing Edge TubercleVortex
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過計算流體力學(CFD)模型進行NACA0015翼剖面的垂直軸風機葉片性能研究. 透過商用套裝軟體ANSYS Fluent來進行模擬. 選擇壓力耦合方程組的半隱式(SIMPLE)方法演算法來求解不可壓縮納維爾-史托克(Navier-Stokes)方程式. 紊流模型模擬選擇k-ω SST(剪應力傳輸)紊流模型. 使用攻角0°到40°升力和阻力係數的模擬結果進行與實驗的驗證比對, 用以確認邊界層的分布狀況.並進行網格數與時間步的檢查,以確認該模擬的精準度. 為了觀察三維(3D)的效果, 另外發展出一個二維半(2.5D)模型, 並與二維(2D)模型進行比較. 最後, 從翼突節設計的葉片比較直線翼葉片的方式來獲得推力的預測. 總而言之, 使用翼前緣突節葉片垂直軸風機的推力會比直線翼風機的推力更低, 而使用翼後緣突節葉片垂直軸風機的推力會比直線翼風機的推力更高. 隨著風機翼前緣波狀葉片的振幅的增加和波長的降低, 推力值會下降, 而隨著風機翼後緣波狀葉片的振幅和波長的增加, 推力值會上升. 主要由於在風機葉片的突節區域產生的渦流結構所影響.
The performances of a VAWT blade with NACA0015 airfoil section were investigated through the CFD model. The simulations were carried out by the commercial software ANSYS FluentTM. The Semi Implicit Method for Pressure Linked Equations (SIMPLE) algorithm are chosen to solve the solutions of the incompressible Navier-Stokes equations. The k-ω SST (shear stress transport) turbulence model was selected for the turbulence flow simulations. The grid numbers and time step sizes were then examined to confirm the simulation accuracy. To exam the 3D effect, a 2.5D model was additionally developed and compared with 2D model. Finally, the predictions of thrust obtained from the blade with tubercle design were compared with the ones from the straight blade. Overall, the thrusts of VAWT with tubercle leading edge turbine blades were lower than the ones with straight blade, and the thrusts of VAWT with the tubercle trailing edge turbine blades were bigger than the ones with straight blade. The values of the thrust decreased with increasing amplitudes and decreasing wavelengths for the leading edge wavy blade, and the values of thrust increased with increasing amplitudes and wavelengths for the trailing edge wavy blade. We found out that these conditions are due to the structure of the vortices generated at the tubercle region of the turbine blade.
目錄
摘要I
Extended AbstractIII
誌謝VIII
目錄IX
符號說明XV
第一章 緒論1
1-1 前言1
1-2 研究動機與目的1
1-3 文獻回顧2
1-4 內容大綱4
第二章 風能基礎理論7
2-1 風機種類介紹7
2-2 Betz極限7
2-3 無因次化參數10
2-4 相對攻角(Relative Angle of Attack )12
第三章 數值方法13
3-1 統御方程式14
3-2 紊流模型(Turbulence Model)15
3-2-1 S-A(Spalart-Allmaras)模型15
3-2-2 SST(Shear-Stress Transport) k-ω模型17
3-3 SIMPLE 演算法20
3-4 幾何與網格生成21
3-5 翼突節設計23
3-6 2.5D模型與邊界條件23
3-7 壁面距離預測24
第四章 程式與物理模型驗證25
4-1 圓柱繞流驗證25
4-2 NACA0015翼剖面之流場模擬驗證27
4-3 2D NACA0015直線翼垂直軸風機之流場模擬驗證28
4-3-1 網格獨立性分析28
4-3-2 時間步獨立性分析29
4-4 2D與2.5D垂直軸風機模型比較30
第五章 結果與討論31
5-1 2.5D垂直軸風機直線翼與翼前緣突節葉片之性能比較31
5-2 2.5D垂直軸風機直線翼與翼後緣突節葉片之性能比較34
第六章 結論與建議38
參考文獻41
表3-1 Fluent之風機模擬設定.47
表4-1 圓柱繞流阻力係數(CD)比較表[34, 35].48
表4-2 圓柱繞流渦流長度比(γ)比較表[34, 35].48
表4-3 垂直軸風機網格數.49
表5-1 翼前緣突節葉片垂直軸風機不同振幅(Amplitude, A)和波長(Wavelength, W)之功率係數(Cp), 〖C_P〗_0 (2.5D直線翼葉片)=0.27395.49
表5-2 翼後緣突節葉片垂直軸風機不同振幅(Amplitude, A)和波長(Wavelength, W)之功率係數(Cp), 〖C_P〗_0 (2.5D直線翼葉片)=0.27395.49
圖2-1 (a) 水平軸風力發電機; (b)垂直軸風力發電機[39].50
圖2-2 無限長流管[40].51
圖2-3 相對攻角與相位角.51
圖2-4 風機旋轉向量圖.52
圖3-1 風洞中的垂直軸風機[26].52
圖3-2 垂直軸風機邊界條件, (a)網格區域; (b)轉子附近網格區域; (c)葉片附近網格區域.53
圖3-3 翼突節葉片設計概要圖, (a)翼前緣突節葉片; (b)翼後緣突節葉片.54
圖3-4 2.5D垂直軸風機模型之邊界條件.55
圖4-1 圓柱繞流, (a)邊界條件; (b)網格配置; (c)近壁面區網格.56
圖4-2 圓柱繞流不同雷諾數下流線圖(a)Re=10, (b)Re=20, (c)Re=40.57
圖4-3 NACA0015流場, (a)邊界條件; (b)網格配置.58
圖4-4 NACA0015在Re=36,000時, y+≤1和10模擬與實驗結果[36]之比對, (a)升力係數Cl; (b)阻力係數Cd.59
圖4-5 NACA0015在Re=36,000時, S-A和SST k-ω紊流模型模擬與實驗結果[36]之比對, (a)升力係數Cl; (b)阻力係數Cd.60
圖4-6 ANSYS Fluent進行y+≤1之驗證.61
圖4-7 NACA0015垂直軸風機網格獨立性分析.61
圖4-8 風機旋轉一圈在不同時間步長之比較; (a)平均功率係數(Cp), (b)其中一片葉片推力(Thrust).62
圖4-9 2D垂直軸風機流場分布圖;(a)速度分布, (b)壓力分布, (c)渦度分布.64
圖4-10 2D和2.5D風機其中一片葉片旋轉一圈的推力比較圖.64
圖4-11 2D和2.5D直線翼風機葉片轉到相位角210˚的渦度、壓力分布圖 (a)2D; (b)2.5D.65
圖4-12 2D和2.5D直線翼風機葉片轉到相位角240˚的渦度、壓力分布圖 (a)2D; (b)2.5D.66
圖5-1 2.5D風機其中一片葉片旋轉一圈的推力比較,固定翼前緣突節振幅(a)A=0.004m; (b)A=0.008m; (c)A=0.016m.68
圖5-2 2.5D風機其中一片葉片旋轉一圈的推力比較,固定翼前緣突節波長(a)W=0.030m; (b)W=0.060m.69
圖5-3 2.5D風機其中一片葉片流線圖, (a)20˚的直線翼葉片; (b)140˚的直線翼葉片; (c)20˚的A16W60翼突節葉片; (d)140˚的A16W60翼突節葉片.70
圖5-4 2.5D風機其中一片葉片在相位角90˚的渦度、壓力分布圖, (a)直線翼葉片; (b)A16W60翼突節葉片波峰剖面; (c)A16W60翼突節葉片波谷剖面.72
圖5-5 2.5D風機其中一片葉片在相位角140˚的渦度、壓力分布圖, (a)直線翼葉片; (b)A16W60翼突節葉片波峰剖面; (c)A16W60翼突節葉片波谷剖面.73
圖5-6 2.5D風機其中一片葉片旋轉一圈的推力比較,固定翼後緣突節振幅(a)A=0.004m; (b)A=0.006m; (c)A=0.008m; (d)A=0.016m.75
圖5-7 2.5D風機其中一片葉片旋轉一圈的推力比較,固定翼後緣突節波長(a)W=0.060m; (b)W=0.090m.77
圖5-8 2.5D風機其中一片A16W60翼前緣與翼後緣突節葉片流線圖, (a)120˚; (b)210˚; (c)240˚.78
圖5-9 風機其中一片葉片在相位角120˚的渦度、壓力分布圖, (a)2D直線翼葉片; (b)2.5D直線翼葉片; (c)A16W60翼後緣突節葉片波峰剖面; (d)A16W60翼後緣突節葉片波谷剖面.80
圖5-10 風機其中一片葉片在相位角210˚的渦度、壓力分布圖, (a)A16W60翼後緣突節葉片波峰剖面; (b)A16W60翼後緣突節葉片波谷剖面.81
圖5-11 風機其中一片葉片在相位角240˚的渦度、壓力分布圖, (a)A16W60翼後緣突節葉片波峰剖面; (b)A16W60翼後緣突節葉片波谷剖面.82
圖5-12 2.5D翼後緣突節風機葉片振幅(A)與功率係數(CP)相對增量圖, 其中, 功率係數相對增量=(Cp-Cp_0)/Cp_0 , 振幅相對增量=(Cmax-C_0)/C_0 , Cp_0 (2.5D直線翼葉片)=0.27395, C_0 (直線翼葉片弦長)=0.04m.83
圖5-13 2D、2.5D直線翼、A16W60翼前緣突節和A16W60翼後緣突節風機葉片推力圖.84


[1] Islam, M., D.S.K. Ting, and A. Fartaj, Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews, 12(4): p. 1087-1109, 2008.
[2] Bai, C.-J., W.-C. Wang, P.-W. Chen, and W.-T. Chong, System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator. Energies, 7(11): p. 7773-7793, 2014.
[3] Strickland, J.H., B.T. Webster, and T. Nguyen, A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study. J. Fluids Eng., 101(4): p. 500-505, 1979.
[4] Wang, L.B., L. Zhang, and N.D. Zeng, A potential flow 2-D vortex panel model: Applications to vertical axis straight blade tidal turbine. Energy Conversion and Management, 48(2): p. 454-461, 2007.
[5] Hirsch, H. and A. Mandal, A cascade theory for the aerodynamic performance of darrieus wind turbines. Wind Eng, 11(3): p. 164-175, 1987.
[6] Lanzafame, R., S. Mauro, and M. Messina, Wind turbine CFD modeling using a correlation-based transitional model. Renewable Energy, 52(0): p. 31-39, 2013.
[7] McLaren, K., S. Tullis, and S. Ziada, Computational fluid dynamics simulation of the aerodynamics of a high solidity, small‐scale vertical axis wind turbine. Wind Energy, 2012.
[8] Dobrev, I. and F. Massouh, CFD and PIV investigation of unsteady flow through Savonius wind turbine. Energy Procedia, 6(0): p. 711-720, 2011.
[9] Lanzafame, R., S. Mauro, and M. Messina, 2D CFD Modeling of H-Darrieus Wind Turbines Using a Transition Turbulence Model. Energy Procedia, 45(0): p. 131-140, 2014.
[10] Li, C., S. Zhu, Y.-l. Xu, and Y. Xiao, 2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow. Renewable Energy, 51(0): p. 317-330, 2013.
[11] Biadgo, A.M., A. Simonovic, D. Komarov, and S. Stupar, Numerical and Analytical Investigation of Vertical Axis Wind Turbine FME Transactions, 41: p. 49-58, 2013.
[12] Vassbverg, J., A.K. Gopinath, and A. Jameson. Revising the vertical-axis wind turbine Design using Advanced computational fluid Dynamicsc. in 43rd AIAA ASM. Reno, NV. 2005.
[13] Raciti Castelli, M., A. Englaro, and E. Benini, The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy, 36(8): p. 4919-4934, 2011.
[14] Pedro, H.T. and M.H. Kobayashi. Numerical study of stall delay on humpback whale flippers. in 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. 2008.
[15] Hansen, K.L., R.M. Kelso, B.B. Dally, and E.R. Hassan. Analysis of the Streamwise Vortices Generated Between Leading Edge Tubercles. in Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (6th: 2011: Canberra, Australia). 2011.
[16] Favier, J., A. Pinelli, and U. Piomelli, Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers. Comptes Rendus Mécanique, 340(1–2): p. 107-114, 2012.
[17] Fish, F.E. and J.M. Battle, Hydrodynamic design of the humpback whale flipper. Journal of Morphology, (225): p. 51–60, 1995.
[18] Miklosovic, D.S., M.M. Murray, L.E. Howle, and F.E. Fish, Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Physics of Fluids, 16(5): p. L39, 2004.
[19] Ferziger, J.H. and M. Peric, Computational methods for fluid dynamics. third, rev. edition ed. Berlin: Springer, 1999.
[20] Dropkin, A., D. Custodio, C. Henoch, and H. Johari, Computation of Flow Field Around an Airfoil with Leading-Edge Protuberances. Journal of Aircraft, 49(5): p. 1345-1355, 2012.
[21] Rostamzadeh, N., K. Hansen, R. Kelso, and B. Dally, The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification. Physics of Fluids (1994-present), 26(10): p. 107101, 2014.
[22] Rostamzadeh, N., R. Kelso, B. Dally, and K. Hansen, The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics. Physics of Fluids (1994-present), 25(11): p. 117101, 2013.
[23] Watts, P. and F. Fish. The influence of passive, leading edge tubercles on wing performance. in Proc. Twelfth Intl. Symp. Unmanned Untethered Submers. Technol. Auton. Undersea Syst. Inst. Durham New Hampshire. 2001.
[24] Bai, C.J., W.C. Wang, and P.W. Chen, The Effects of Sinusoidal Leading Edge of the turbine blade on the power coefficient of Horizontal-Axis Wind Turbine (HAWT), 2015 (unpubilshed).
[25] Manwell, J.F., J.G. McGowan, and A.L. Rogers, Wind energy explained: theory, design and application. John Wiley & Sons. pp.83-138, 2010.
[26] Bravo, R., S. Tullis, and S. Ziada, Performance Testing of a Small Vertical-Axis Wind Turbine. Department of Mechanical Engineering, McMaster University.
[27] Blazek, J., Computational Fluid Dynamics: Principles and Applications:(Book with accompanying CD). Elsevier, 2005.
[28] Fluent, I., ANSYS FLUENT 14: theory guide. USA: Fluent Inc, 2012.
[29] Wilcox, D.C., Multiscale model for turbulent flows. AIAA journal, 26(11): p. 1311-1320, 1988.
[30] Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8): p. 1598-1605, 1994.
[31] Patankar, S.V. and D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10): p. 1787-1806, 1972.
[32] Weiss, J.M., J.P. Maruszewski, and W.A. Smith, Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid. AIAA journal, 37(1): p. 29-36, 1999.
[33] White, F.M., Fluid Mechanics, 5th Edition (McGraw-Hill Series in Mechanical Engineering). 5th cd. ed.: Elizabeth A. Jones. pp.467, 2003.
[34] He, X. and G. Doolen, Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder. Journal of Computational Physics, 134(2): p. 306-315, 1997.
[35] Silva, A.L.E., A. Silveira-Neto, and J. Damasceno, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. Journal of Computational Physics, 189(2): p. 351-370, 2003.
[36] Sheldahl, R.E. and P.C. Klimas, Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Sandia National Labs., Albuquerque, NM (USA), 1981.
[37] Yoon, H.S., P.A. Hung, J.H. Jung, and M.C. Kim, Effect of the wavy leading edge on hydrodynamic characteristics for flow around low aspect ratio wing. Computers & Fluids, 49(1): p. 276-289, 2011.
[38] Zhang, L.X., Y.B. Liang, X.H. Liu, Q.F. Jiao, and J. Guo, Aerodynamic Performance Prediction of Straight-Bladed Vertical Axis Wind Turbine Based on CFD. Advances in Mechanical Engineering, 2013: p. 11, 2013.
[39] Bai, C.-J., Y.-Y. Lin, S.-Y. Lin, and W.-C. Wang, Computational fluid dynamics analysis of the vertical axis wind turbine blade with tubercle leading edge. Journal of Renewable and Sustainable Energy, 7(3): p. 033124, 2015.
[40] Corp., H.-V.T. Vertical Axis Small Wind Turbines. 2014 December 31, 2014]; Available from: http://www.hi-vawt.com.tw/en/about_vaswt.html.
[41] Rankine, W.M., On the mathematical theory of combined streams. Proceedings of the Royal Society of London, 19(123-129): p. 90-94, 1870.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top