(3.237.234.213) 您好!臺灣時間:2021/03/09 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張智華
研究生(外文):Chih-HuaChang
論文名稱:抑制海馬迴內NMDA受體減緩斷奶後社會隔離引起的情緒失調
論文名稱(外文):NMDA receptor blockade in the hippocampus improves the post-weaning social isolation-induced emotional dysfunctions
指導教授:簡伯武簡伯武引用關係
指導教授(外文):Po-Wu Gean
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:122
中文關鍵詞:社會隔離攻擊行為NMDA受體急性壓力eEF2BDNF
外文關鍵詞:social isolationaggressionNMDA receptoracute stresseEF2BDNF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
已知早年的社會環境是發展憂鬱症或精神分裂症等神經心理疾病的潛在因子之一。在神經心理疾病患者常可觀察到突發性的攻擊行為,然而暴力行為相關的神經研究仍屬少見。本篇研究欲利用斷奶後早年社會隔離(post-weaning social isolation)的動物模式來探討在成年後所發展出的異常暴力行為以及如何利用藥物減緩暴力行為的發生。在本實驗建立的動物模式裡可觀察到早年隔離小鼠在成年後出現過動、前刺激抑制聲音驚嚇反射(prepulse inhibition of acoustic startle reflex, PPI)缺損和似憂鬱行為表徵。而在攻擊行為測試中,相較於群居小鼠,隔離小鼠只表現較多的威嚇行為,而無直接的咬嚙攻擊。如進一步給予急性壓力,則可發現隔離小鼠會明顯用咬的攻擊BALB/c小鼠以及在open field測試裡更為焦慮。此實驗結果表示在早年社會隔離後,在成年時面對急性壓力的反應更為強烈,易出現攻擊和焦慮行為。此外,隔離小鼠的海馬迴也發現神經突觸表面NR2A和NR2B有明顯增多。利用腦顯微手術將MK-801(NMDA-R抑制劑)或是ifenprodil (NR2B專一抑制劑) 在急性壓力前注入隔離小鼠的海馬迴內,結果發現除了能減緩隔離小鼠的憂鬱症狀且能明顯減少異常攻擊行為;而利用shRNA技術減少海馬迴內的NR2B蛋白表現後,也發現隔離小鼠的攻擊行為明顯下降。實驗結果顯示早年社會隔離所造成的海馬迴內NMDA-Rs異常增加會導致成年後面臨壓力時易出現異常的暴力行為。此外,隔離小鼠海馬迴內的磷酸化eEF2也比群居小鼠多,急性壓力則促使更多的磷酸化eEF2,此現象與隔離小鼠面臨壓力時易出現暴力行為極為相符;而MK-801會促使eEF2去磷酸化,增加eEF2活性,並提升海馬迴內BDNF蛋白的表現;在急性壓力前注入eEF2激酶抑制劑於海馬迴內能減緩憂鬱症狀和異常攻擊行為,並促使BDNF蛋白表現量增加,此與MK-801的效果相同;而利用shRNA技術減少BDNF蛋白的表現,則使得MK-801和eEF2激酶抑制劑的效果消失,因此可知MK-801抑制攻擊行為的效果來自於eEF2活性的增加,促使提升海馬迴內BDNF蛋白的表現。總結上述的實驗結果,社會隔離使得小鼠海馬迴內的NMDA受體增加,促使面對壓力時易有攻擊行為,NMDA受體抑制劑能減緩憂鬱症狀和異常攻擊行為,其分子機轉來自於活化海馬迴內的eEF2和BDNF。
Accumulating epidemiological evidence shows that early life events have long-term effects on the susceptibility to subsequent stress exposure during adulthood. Here we reported the effects of post-weaning social isolation, an animal model of early life adversities, on the behavioral responses to acute stress in adult mice. At postnatal day 21, mice were randomly assigned to group housing (GH) or individual cages for 8 weeks and behavioral tests were performed at the age of 3 months. Socially isolated (SI) mice exhibited higher spontaneous locomotor activity, depression-like behavior, impaired sensorimotor gating and more aggressive behavior but not attack number. Moreover, acute stress significantly exacerbated attack counts of SI mice to the intruder BABL/c mice and induced higher levels of anxiety-like behavior in the SI mice than in GH mice. In addition, post-weaning social isolation increased hippocampal surface expression of NR2A and NR2B subunits. Bilateral hippocampal infusion of the NMDA antagonist, MK-801or ifenprodil, reversed stress-induced attack behavior in the SI mice. Moreover, the specific knockdown of NR2B expression in the hippocampus by shRNA transfection technique significantly reduced the stress-induced attack level of SI mice. Thus, the increased levels of NMDA-Rs in the hippocampus may be responsible for the post-weaning social isolation-induced emotional alterations. Additionally, SI mice exhibited an increased level of eEF2 phosphorylation in the hippocampus and acute stress induced even higher levels of eEF2 phosphorylation. This corresponds to the stress-induced outburst of attack behavior in SI mice. Furthermore, NMDA-R blockade increased the eEF2 activity and induction of BDNF expression in the hippocampus. Microinjection of eEF2 kinase (eEF2K) inhibitors into ventral hippocampus mimicked MK-801-induced anti-aggressive response and increased BDNF expression. Knockdown of BDNF expression in the hippocampus blocked the behavioral effects of MK-801 and eEF2K inhibitor. Thus, anti-aggressive effects of MK-801 are mediated through the increased eEF2 activity, leading to induction of BDNF expression. Conclusion: These results suggested the isolation-induced increased levels of NMDA receptors in the hippocampus may mediate the stress-induced aggression. NMDA-R blockade reduces the attack and depression-like behavior, which requires the activation of eEF2-BDNF pathway. Our findings could yield novel therapeutic targets for aggression.
Abstract in Chinese...........1
Abstract in English..........4
Acknowledgement............7
Contents .............. 8
List of figures ...........10
Abbreviations............13
Chapter 1: Introduction..........15
The aims of the research............24
Chapter 2: Materials and methods........26
Chapter 3: Post-weaning social isolation induces abnormal phenotypes in relative to symptoms of neuropsychiatric disorders..............36
Chapter 4: Post-weaning social isolation induces an increased NMDA-R level in the hippocampus.....41
Chapter 5: The activation of the eEF2-BDNF pathway is required for the anti-aggressive effect of NMDA-R blockade ...................52
Chapter 6: Discussion and prospect........63
Future perspectives ...........72
Conclusions .............73
References ..............75
Figures and Legends..........89
Curriculum vitae .............122
Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642-649 (2008).
Ashby DM, Habib D, Dringenberg HC, Reynolds JN, Beninger RJ. Subchronic MK-801 treatment and post-weaning social isolation in rats: differential effects on locomotor activity and hippocampal long-term potentiation. Behav Brain Res 212:64-70 (2010).
Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91-95 (2011).
Bakshi VP, Swerdlow NR, Braff DL, Geyer MA. Reversal of isolation rearing-induced deficits in prepulse inhibition by Seroquel and olanzapine. Biol Psychiatry 43:436-445 (1998).
Barha CK, Brummelte S, Lieblich SE, Galea LA. Chronic restraint stress in adolescence differentially influences hypothalamic-pituitary-adrenal axis function and adult hippocampal neurogenesis in male and female rats. Hippocampus 21:1216-1227 (2011).
Bartolomucci A, Palanza P, Sacerdote P, Panerai AE, Sgoifo A, Dantzer R, Parmigiani S. Social factors and individual vulnerability to chronic stress exposure. Neuroscience and biobehavioral reviews 29:67-81 (2005).
Bassell GJ, Warren ST. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201-214 (2008).
Belelovsky K, Elkobi A, Kaphzan H, Nairn AC, Rosenblum K. A molecular switch for translational control in taste memory consolidation. The European journal of neuroscience 22:2560-2568 (2005).
Bibancos T, Jardim DL, Aneas I, Chiavegatto S. Social isolation and expression of serotonergic neurotransmission-related genes in several brain areas of male mice. Genes, brain, and behavior 6:529-539 (2007).
Bortolato M, Godar SC, Melis M, Soggiu A, Roncada P, Casu A, Flore G, Chen K, Frau R, Urbani A, Castelli MP, Devoto P, Shih JC. NMDARs mediate the role of monoamine oxidase A in pathological aggression. The Journal of neuroscience 32:8574-8582 (2012).
Browne CA, Lucki I. Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Frontiers in pharmacology 4:161 (2013).
Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. European journal of biochemistry / FEBS 269:5360-5368 (2002).
Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262:578-580 (1993).
Carrier N, Kabbaj M. Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology 70:27-34 (2013).
Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R. Role of genotype in the cycle of violence in maltreated children. Science 297:851-854 (2002).
Chen WS, Bear MF. Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex. Neuropharmacology 52:200-214 (2007).
Christian KM, Miracle AD, Wellman CL, Nakazawa K. Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience 174:26-36 (2011).
Cilia J, Hatcher PD, Reavill C, Jones DN. Long-term evaluation of isolation-rearing induced prepulse inhibition deficits in rats: an update. Psychopharmacology (Berl) 180:57-62 (2005).
Cossenza M, Cadilhe DV, Coutinho RN, Paes-de-Carvalho R. Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: a new mechanism for the regulation of nitric oxide production. Journal of neurochemistry 97:1481-1493 (2006).
Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Science's STKE : signal transduction knowledge environment 2004:re16 (2004).
Davidson RJ, McEwen BS. Social influences on neuroplasticity: stress and interventions to promote well-being. Nature neuroscience 15:689-695 (2012).
Dodge KA, Bates JE, Pettit GS. Mechanisms in the cycle of violence. Science 250:1678-1683 (1990).
Dranovsky A, Picchini AM, Moadel T, Sisti AC, Yamada A, Kimura S, Leonardo ED, Hen R. Experience dictates stem cell fate in the adult hippocampus. Neuron 70:908-923 (2011).
Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends in neurosciences 35:47-56 (2012).
Duman RS, Li N, Liu RJ, Duric V, Aghajanian G. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62:35-41 (2012).
Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7-19 (2010).
Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG. Imaging the neural circuitry and chemical control of aggressive motivation. BMC neuroscience 9:111 (2008).
Fonagy P. Early-life trauma and the psychogenesis and prevention of violence. Annals of the New York Academy of Sciences 1036:181-200 (2004).
Fone KC, Porkess MV. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neuroscience and biobehavioral reviews 32:1087-1102 (2008).
Gal-Ben-Ari S, Kenney JW, Ounalla-Saad H, Taha E, David O, Levitan D, Gildish I, Panja D, Pai B, Wibrand K, Simpson TI, Proud CG, Bramham CR, Armstrong JD, Rosenblum K. Consolidation and translation regulation. Learning & memory 19:410-422 (2012).
Gallardo-Pujol D, Andres-Pueyo A, Maydeu-Olivares A. MAOA genotype, social exclusion and aggression: an experimental test of a gene-environment interaction. Genes, brain, and behavior 12:140-145 (2013).
Geyer MA, Dulawa SC. Assessment of murine startle reactivity, prepulse inhibition, and habituation. Curr Protoc Neurosci Chapter 8:Unit 8 17 (2003).
Gideons ES, Kavalali ET, Monteggia LM. Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proceedings of the National Academy of Sciences of the United States of America 111:8649-8654 (2014).
Glenn AL, Raine A. Neurocriminology: implications for the punishment, prediction and prevention of criminal behaviour. Nature reviews Neuroscience 15:54-63 (2014).
Gregg TR, Siegel A. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Progress in neuro-psychopharmacology & biological psychiatry 25:91-140 (2001).
Haller J, Halasz J, Mikics E, Kruk MR. Chronic glucocorticoid deficiency-induced abnormal aggression, autonomic hypoarousal, and social deficit in rats. Journal of neuroendocrinology 16:550-557 (2004).
Haller J, Toth M, Halasz J, De Boer SF. Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness. Physiology & behavior 88:173-182 (2006).
Hallett PJ, Collins TL, Standaert DG, Dunah AW. Biochemical fractionation of brain tissue for studies of receptor distribution and trafficking. Current protocols in neuroscience / editorial board, Jacqueline N Crawley [et al] Chapter 1:Unit 1 16 (2008).
Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Progress in neuro-psychopharmacology & biological psychiatry 29:1201-1213 (2005).
Hildyard KL, Wolfe DA. Child neglect: developmental issues and outcomes. Child abuse & neglect 26:679-695 (2002).
Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends in neurosciences 33:67-75 (2010).
Holz N, Boecker R, Buchmann AF, Blomeyer D, Baumeister S, Hohmann S, Jennen-Steinmetz C, Wolf I, Rietschel M, Witt SH, Plichta MM, Meyer-Lindenberg A, Schmidt MH, Esser G, Banaschewski T, Brandeis D, Laucht M. Evidence for a Sex-Dependent MAOAx Childhood Stress Interaction in the Neural Circuitry of Aggression. Cerebral cortex : in press (2014).
Hong-Brown LQ, Kazi AA, Lang CH. Mechanisms mediating the effects of alcohol and HIV anti-retroviral agents on mTORC1, mTORC2 and protein synthesis in myocytes. World journal of biological chemistry 3:110-120 (2012).
Hong-Brown LQ, Brown CR, Huber DS, Lang CH. Alcohol regulates eukaryotic elongation factor 2 phosphorylation via an AMP-activated protein kinase-dependent mechanism in C2C12 skeletal myocytes. The Journal of biological chemistry 282:3702-3712 (2007).
Huang HJ, Liang KC, Ke HC, Chang YY, Hsieh-Li HM. Long-term social isolation exacerbates the impairment of spatial working memory in APP/PS1 transgenic mice. Brain Res 1371:150-160 (2011).
Ito W, Chehab M, Thakur S, Li J, Morozov A. BDNF-restricted knockout mice as an animal model for aggression. Genes, brain, and behavior 10:365-374 (2011).
Jimenez-Sanchez L, Campa L, Auberson YP, Adell A. The role of GluN2A and GluN2B subunits on the effects of NMDA receptor antagonists in modeling schizophrenia and treating refractory depression. Neuropsychopharmacology 39:2673-2680 (2014).
Kaul G, Pattan G, Rafeequi T. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Cell biochemistry and function 29:227-234 (2011).
Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW, Moffitt TE. MAOA, maltreatment, and gene-environment interaction predicting children's mental health: new evidence and a meta-analysis. Mol psychiatry 11:903-913 (2006).
Kohl C, Riccio O, Grosse J, Zanoletti O, Fournier C, Schmidt MV, Sandi C. Hippocampal neuroligin-2 overexpression leads to reduced aggression and inhibited novelty reactivity in rats. PloS one 8:e56871 (2013).
Lai MK, Chen CP, Hope T, Esiri MM. Hippocampal neurofibrillary tangle changes and aggressive behaviour in dementia. Neuroreport 21:1111-1115 (2010).
Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature reviews Neuroscience 8:413-426 (2007).
Lewis DO. From abuse to violence: psychophysiological consequences of maltreatment. Journal of the American Academy of Child and Adolescent Psychiatry 31:383-391 (1992).
Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959-964 (2010).
Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221-226 (2011).
Lipska BK, Jaskiw GE, Weinberger DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9:67-75 (1993).
Loeber R, Stouthamer-Loeber M. Development of juvenile aggression and violence. Some common misconceptions and controversies. The American psychologist 53:242-259 (1998).
Luecken LJ, Lemery KS. Early caregiving and physiological stress responses. Clinical psychology review 24:171-191 (2004).
Lukkes JL, Watt MJ, Lowry CA, Forster GL. Consequences of post-weaning social isolation on anxiety behavior and related neural circuits in rodents. Frontiers in behavioral neuroscience 3:18 (2009).
Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature reviews Neuroscience 10:434-445 (2009).
Ma J, Tai SK, Leung LS. Septohippocampal GABAergic neurons mediate the altered behaviors induced by n-methyl-D-aspartate receptor antagonists. Hippocampus 22:2208-2218 (2012).
Magarinos AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69:89-98 (1995).
Magarinos AM, Li CJ, Gal Toth J, Bath KG, Jing D, Lee FS, McEwen BS. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21:253-264 (2011).
Malinow R. New developments on the role of NMDA receptors in Alzheimer's disease. Current opinion in neurobiology 22:559-563 (2012).
Marino MD, Bourdelat-Parks BN, Cameron Liles L, Weinshenker D. Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behavioural brain research 161:197-203 (2005).
McCormick CM, Thomas CM, Sheridan CS, Nixon F, Flynn JA, Mathews IZ. Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood. Hippocampus 22:1300-1312 (2012).
McDermott MS, Browne BC, Conlon NT, O'Brien NA, Slamon DJ, Henry M, Meleady P, Clynes M, Dowling P, Crown J, O'Donovan N. PP2A inhibition overcomes acquired resistance to HER2 targeted therapy. Molecular cancer 13:157 (2014).
Menard C, Quirion R. Group 1 metabotropic glutamate receptor function and its regulation of learning and memory in the aging brain. Frontiers in pharmacology 3:182 (2012).
Miczek KA, Fish EW, De Bold JF, De Almeida RM. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology 163:434-458 (2002).
Miller EJ, Saint Marie LR, Breier MR, Swerdlow NR. Pathways from the ventral hippocampus and caudal amygdala to forebrain regions that regulate sensorimotor gating in the rat. Neuroscience 165:601-611 (2010).
Milnerwood AJ, Gladding CM, Pouladi MA, Kaufman AM, Hines RM, Boyd JD, Ko RW, Vasuta OC, Graham RK, Hayden MR, Murphy TH, Raymond LA. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice. Neuron 65:178-190 (2010).
Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37:4-15 (2012).
Muchimapura S, Fulford AJ, Mason R, Marsden CA. Isolation rearing in the rat disrupts the hippocampal response to stress. Neuroscience 112:697-705 (2002).
Naert A, Callaerts-Vegh Z, D'Hooge R. Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post-weaning socially isolated mice. Brain research bulletin 85:354-362 (2011).
Nairn AC, Palfrey HC. Identification of the major Mr 100,000 substrate for calmodulin-dependent protein kinase III in mammalian cells as elongation factor-2. The Journal of biological chemistry 262:17299-17303 (1987).
Narayanan U, Nalavadi V, Nakamoto M, Pallas DC, Ceman S, Bassell GJ, Warren ST. FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. The Journal of neuroscience 27:14349-14357 (2007).
Nelson RJ, Trainor BC. Neural mechanisms of aggression. Nature reviews Neuroscience 8:536-546 (2007).
Newman EL, Chu A, Bahamon B, Takahashi A, Debold JF, Miczek KA. NMDA receptor antagonism: escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology 224:167-177 (2012).
Opal MD, Klenotich SC, Morais M, Bessa J, Winkle J, Doukas D, Kay LJ, Sousa N, Dulawa SM. Serotonin 2C receptor antagonists induce fast-onset antidepressant effects. Mol psychiatry 19:1106-1114 (2014).
Pagani JH, Zhao M, Cui Z, Williams Avram SK, Caruana DA, Dudek SM, Young WS. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol psychiatry: in press (2014).
Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nature reviews Neuroscience 14:383-400 (2013).
Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 177:245-255 (2005).
Philpot BD, Sekhar AK, Shouval HZ, Bear MF. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29:157-169 (2001).
Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nature reviews Neuroscience 13:22-37 (2012).
Powell SB, Geyer MA, Preece MA, Pitcher LK, Reynolds GP, Swerdlow NR. Dopamine depletion of the nucleus accumbens reverses isolation-induced deficits in prepulse inhibition in rats. Neuroscience 119:233-240 (2003).
Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G. Phosphorylation and activation of p70s6k by PDK1. Science 279:707-710 (1998).
Radaelli D, Poletti S, Dallaspezia S, Colombo C, Smeraldi E, Benedetti F. Neural responses to emotional stimuli in comorbid borderline personality disorder and bipolar depression. Psychiatry research 203:61-66 (2012).
Renault J, Aubert A. Immunity and emotions: lipopolysaccharide increases defensive behaviours and potentiates despair in mice. Brain, behavior, and immunity 20:517-526 (2006).
Roberts L, Greene JR. Post-weaning social isolation of rats leads to a diminution of LTP in the CA1 to subiculum pathway. Brain Res 991:271-273 (2003).
Rodenas-Ruano A, Chavez AE, Cossio MJ, Castillo PE, Zukin RS. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nature neuroscience 15:1382-1390 (2012).
Rossi R, Lanfredi M, Pievani M, Boccardi M, Beneduce R, Rillosi L, Giannakopoulos P, Thompson PM, Rossi G, Frisoni GB. Volumetric and topographic differences in hippocampal subdivisions in borderline personality and bipolar disorders. Psychiatry research 203:132-138 (2012).
Ruocco AC, Amirthavasagam S, Zakzanis KK. Amygdala and hippocampal volume reductions as candidate endophenotypes for borderline personality disorder: a meta-analysis of magnetic resonance imaging studies. Psychiatry research 201:245-252 (2012).
Ryazanov AG, Shestakova EA, Natapov PG. Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 334:170-173(1988).
Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nature neuroscience 10:1110-1115 (2007).
Saint Marie RL, Miller EJ, Breier MR, Weber M, Swerdlow NR. Projections from ventral hippocampus to medial prefrontal cortex but not nucleus accumbens remain functional after fornix lesions in rats. Neuroscience 168:498-504 (2010).
Sakaue M, Ago Y, Baba A, Matsuda T. The 5-HT1A receptor agonist MKC-242 reverses isolation rearing-induced deficits of prepulse inhibition in mice. Psychopharmacology (Berl) 170:73-79 (2003).
Sams-Dodd F, Lipska BK, Weinberger DR. Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology 132:303-310 (1997).
Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, Hong CJ, Su SC, Volker J, Neve RL, Yue DT, Tsai LH. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56:823-837 (2007).
Scheetz AJ, Nairn AC, Constantine-Paton M. NMDA receptor-mediated control of protein synthesis at developing synapses. Nature neuroscience 3:211-216 (2000).
Shoemaker JM, Saint Marie RL, Bongiovanni MJ, Neary AC, Tochen LS, Swerdlow NR. Prefrontal D1 and ventral hippocampal N-methyl-D-aspartate regulation of startle gating in rats. Neuroscience 135:385-394 (2005).
Silva-Gomez AB, Rojas D, Juarez I, Flores G. Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain research 983:128-136 (2003).
Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature reviews Neuroscience 12:585-601 (2011).
Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458-461 (2011).
Springer KW, Sheridan J, Kuo D, Carnes M. Long-term physical and mental health consequences of childhood physical abuse: results from a large population-based sample of men and women. Child abuse & neglect 31:517-530 (2007).
Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nature reviews Neuroscience 15:655-669 (2014).
Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C. Antidepressants recruit new neurons to improve stress response regulation. Mol psychiatry 16:1177-1188 (2011).
Swerdlow NR, Shoemaker JM, Noh HR, Ma L, Gaudet I, Munson M, Crain S, Auerbach PP. The ventral hippocampal regulation of prepulse inhibition and its disruption by apomorphine in rats are not mediated via the fornix. Neuroscience 123:675-685 (2004).
Taha E, Gildish I, Gal-Ben-Ari S, Rosenblum K. The role of eEF2 pathway in learning and synaptic plasticity. Neurobiology of learning and memory 105:100-106 (2013).
Takahashi A, Miczek KA. Neurogenetics of aggressive behavior: studies in rodents. Current topics in behavioral neurosciences 17:3-44 (2014).
Toth M, Halasz J, Mikics E, Barsy B, Haller J. Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behavioral neuroscience 122:849-854 (2008).
Toth M, Mikics E, Tulogdi A, Aliczki M, Haller J. Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Hormones and behavior 60:28-36 (2011).
Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nature reviews Neuroscience 10:397-409 (2009).
Varty GB, Walters N, Cohen-Williams M, Carey GJ. Comparison of apomorphine, amphetamine and dizocilpine disruptions of prepulse inhibition in inbred and outbred mice strains. European journal of pharmacology 424:27-36 (2001).
Varty GB, Powell SB, Lehmann-Masten V, Buell MR, Geyer MA. Isolation rearing of mice induces deficits in prepulse inhibition of the startle response. Behav Brain Res 169:162-167 (2006).
Veenema AH. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Frontiers in neuroendocrinology 30:497-518 (2009).
Welberg LA, Seckl JR. Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 13:113-128 (2001).
Widom CS. Child abuse, neglect, and adult behavior: research design and findings on criminality, violence, and child abuse. The American journal of orthopsychiatry 59:355-367 (1989).
Widom CS, Brzustowicz LM. MAOA and the cycle of violence: childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biol Psychiatry 60:684-689 (2006).
Workman JL, Fonken LK, Gusfa J, Kassouf KM, Nelson RJ. Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacology, biochemistry, and behavior 100:25-32 (2011).
Yashiro K, Philpot BD. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55:1081-1094 (2008).
Yuen EY, Jiang Q, Chen P, Gu Z, Feng J, Yan Z. Serotonin 5-HT1A receptors regulate NMDA receptor channels through a microtubule-dependent mechanism. The Journal of neuroscience 25:5488-5501 (2005).
Yuen EY, Liu W, Karatsoreos IN, Feng J, McEwen BS, Yan Z. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc Natl Acad Sci U S A 106:14075-14079 (2009).
Yuen EY, Liu W, Karatsoreos IN, Ren Y, Feng J, McEwen BS, Yan Z. Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol Psychiatry 16:156-170 (2011).
Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, He S. Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Progress in neuro-psychopharmacology & biological psychiatry 33:1173-1177 (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔